

V23990-P866-F49/F48-PM

preliminary datasheet

flowPACK 0 3rd gen

Output Inverter Application

600V/75A

IGBT

Figure 1

Typical average static loss as a function of output current $P_{loss} = f(I_{out})$

$T_j =$ 150 °C Mi*cosfi from -1 to 1 in steps of 0,2

 $T_j =$ 150 °C DC link = 320 V 2 kHz to 16 kHz in steps of factor 2 f_{sw} from

Figure 2

150 $T_j =$ °C

Mi*cosfi from -1 to 1 in steps of 0,2

V23990-P866-F49/F48-PM

preliminary datasheet

flowPACK 0 3rd gen

Output Inverter Application

600V/75A

T _j =	150	°C	
DC link =	320	V	
f _{sw} =	4	kHz	
T _h from	60 °C to	100 °C in steps of 5 °C)

Figure 7

Typical available 50Hz output current as a function of Mi*cosfi and switching frequency $I_{out} = f(f_{sw}, Mi*cosfi)$

T_h = 90

T _j =	150	°C
DC link =	320	V
Mi*cosfi =	0,8	

 T_h from 60 °C to 100 °C in steps of 5 °C

Figure 8

Phase

Typical available 0Hz output current as a function of switching frequency $I_{outpeak} = f(f_{sw})$

 $\begin{array}{rrrr} T_{j} = & 150 & ^{\circ}\text{C} \\ \text{DC link} = & 320 & \text{V} \\ T_{h} \text{ from} & 60 & ^{\circ}\text{C} \text{ to } 100 & ^{\circ}\text{C} \text{ in steps of } 5 & ^{\circ}\text{C} \end{array}$

°C

V23990-P866-F49/F48-PM

preliminary datasheet

Vincotech

flowPACK 0 3rd gen

Output Inverter Application

600V/75A

Pout (kW) 25,0

20,0

Figure 11

Typical available overload factor as a function of motor power and switching frequency $P_{peak} / P_{nom}=f(P_{nom},f_{sw})$

 $T_j =$ 150 °C DC link = 320 V Mi = 1 cosfi = 0,8 f_{sw} from 1 kHz to 16 kHz in 2 steps T_h = 90 °C Motor eff = 0,85

Figure 10 Typical efficiency as a function of output power

efficiency=f(P_{out})

10,0

15,0

DC link = 320

Mi = 1

cosfi = 0,80

94.0

0,0

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

V

5,0