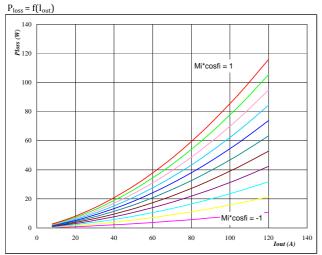


flow PIM 2 3rd

Output Inverter Application

600 V / 75 A

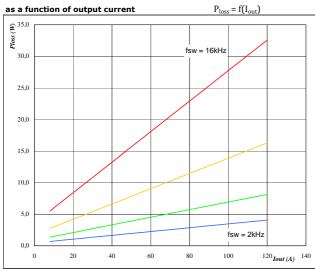
General conditions


3phase SPWM

15 V $V_{GEon} =$ -15 V V_{GEoff}

4 Ω R_{gon} =

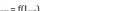
Rgoff 4 Ω

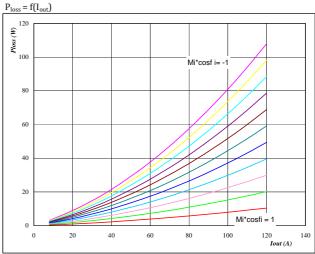

Αt

150 °C

Mi*cosfi from -1 to 1 in steps of 0,2

Figure 3

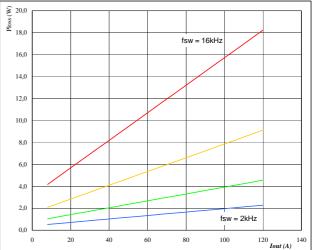



Αt

 $T_i =$ 150 °C DC link = 320V

fsw from 2 kHz to 16 kHz in steps of factor 2

Typical average static loss as a function of output current


Αt

150 ٥C

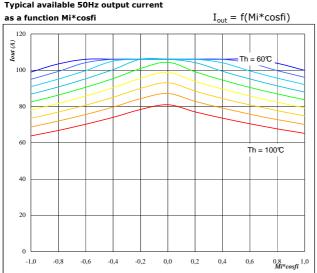
Mi*cosfi from -1 to 1 in steps of 0,2

Figure 4 Typical average switching loss

Αt

 $T_i =$ 150 ٥C DC link = 320٧

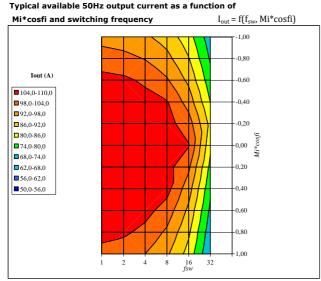
fsw from 2 kHz to 16 kHz in steps of factor 2 $\,$



flow PIM 2 3rd

Output Inverter Application

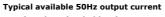
600 V / 75 A

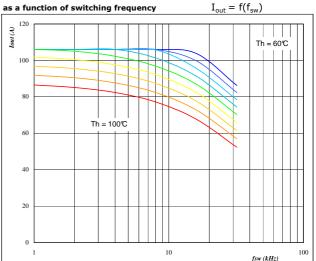


Αt

 T_j = 150 °C DC link = 320 V fsw = 16 kHz

Th from 60 °C to 100 °C in steps of 5 °C

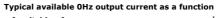

gure 7 Pha

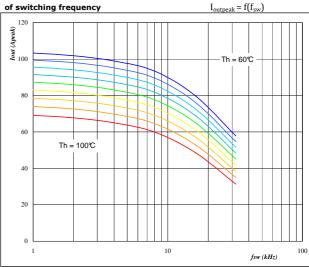


Αt

$$T_j$$
 = 150 °C DC link = 320 V T_h = 80 °C

Αt


 T_j = 150 °C DC link = 320 V


Mi*cosfi = 0,8

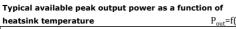
Th from 60 °C to 100 °C in steps of 5 °C

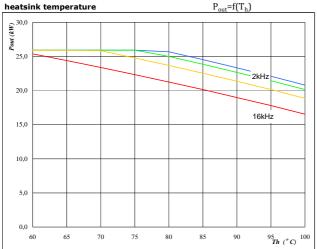
rigule 8

At

 $T_j = 150$ °C DC link = 320 V

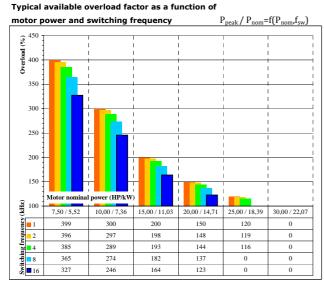
Th from 60 °C to 100 °C in steps of 5 °C




flow PIM 2 3rd

Output Inverter Application

600 V / 75 A


Αt

 $T_j =$ 125 °C DC link = 320 ٧

Mi= 1 0,80 cosfi =

fsw from 2 kHz to 16 kHz in steps of factor 2

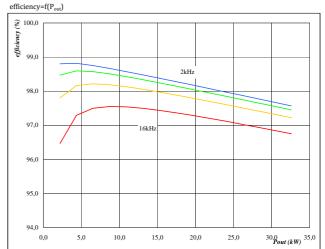
Figure 11

Αt

°C 125 $T_j =$ DC link = 320

Mi= 1

fsw from 1 kHz to 16 kHz in 2 steps


Th= 80 °C

0,8

Motor eff = 0,85

Figure 10

Typical efficiency as a function of output power

Αt

 $T_i =$ 125 °C ٧

DC link = 320 Mi = 1

cosfi = 0,80

fsw from 2 kHz to 16 kHz in steps of factor 2