flow BOOST

Features
- High efficiency dual boost
- Ultra fast switching frequency
- Low Inductance Layout
- 1200V IGBT and 1200V Si diode

Target Applications
- solar inverter

Types
- V23990-P629-L59-PM
- V23990-P629-L58-PM
- V23990-P629-L58Y-PM

Maximum Ratings

\(T_j=25°C\), unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass Diode (D7, D8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>(V_{RRM})</td>
<td>(T_j=25°C)</td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_{EAV})</td>
<td>(T_j=T_{j,max}) (T_s=80°C) (T_r=80°C)</td>
<td>34</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>(I_{FOM})</td>
<td>(t_s=10\mu s) (\sin 180°) (T_j=25°C)</td>
<td>220</td>
<td>A</td>
</tr>
<tr>
<td>(I_t)-value</td>
<td>(I_t^2)</td>
<td></td>
<td>240</td>
<td>A²s</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_j=T_{j,max}) (T_s=80°C) (T_r=80°C)</td>
<td>42</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j,max})</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Boost IGBT (T1, T2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>(V_{CE})</td>
<td>(T_j=25°C)</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>(I_C)</td>
<td>(T_j=T_{j,max}) (T_s=80°C) (T_r=80°C)</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>(I_{CEM})</td>
<td>(t_t), limited by (T_{j,max})</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_j=T_{j,max}) (T_s=80°C) (T_r=80°C)</td>
<td>113</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>(V_{GE})</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>(t_{SC}) (V_{CC})</td>
<td>(T_j≤150°C) (V_{CC}=15V)</td>
<td>10</td>
<td>μs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j,max})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT Protection Diode (D9, D10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{BSM}</td>
<td>$T_j=25^\circ C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j=T_{jmax}$</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>$T_s=80^\circ C$</td>
<td>13</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{FSM}</td>
<td>$t_f=10,ms$, $sin, 180^\circ$, $T_j=T_{jmax}$</td>
<td>21</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{jmax}$</td>
<td>26</td>
<td>W</td>
</tr>
<tr>
<td>$T_s=80^\circ C$</td>
<td>39</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Boost FWD (D1, D4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{BSM}</td>
<td>$T_j=25^\circ C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j=T_{jmax}$</td>
<td>39</td>
<td>A</td>
</tr>
<tr>
<td>$T_s=80^\circ C$</td>
<td>53</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{FSM}</td>
<td>$t_f=10,ms$, $sin, 180^\circ$, $T_j=25^\circ C$</td>
<td>270</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{jmax}$</td>
<td>89</td>
<td>W</td>
</tr>
<tr>
<td>$T_s=80^\circ C$</td>
<td>134</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40...+(T_{jmax} - 25)</td>
<td>°C</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>V_m</td>
<td>$t=2s$</td>
<td>DC voltage</td>
<td>4000</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT (T1 , T2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>(V_{GE(th)})</td>
<td>(V_{CE}=V_{GS})</td>
<td>0,0015</td>
<td>5,2</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>(V_{CEsat})</td>
<td></td>
<td>1,7</td>
<td>2,6</td>
</tr>
<tr>
<td>Collector-emitter cut-off</td>
<td>(I_{CES})</td>
<td>0</td>
<td>0.25</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>(I_{GE})</td>
<td>20</td>
<td>200</td>
<td>nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>(R_{gin})</td>
<td></td>
<td>none</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(\tau_{on})</td>
<td></td>
<td>22</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>(\tau_{r})</td>
<td>(R_{goff}=4 \Omega) (V_{Rgon}=4 \Omega)</td>
<td>21</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(\tau_{off})</td>
<td>15</td>
<td>24</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>(\tau_{f})</td>
<td></td>
<td>225</td>
<td>ms</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>(E_{on})</td>
<td></td>
<td>1,09</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>(E_{off})</td>
<td></td>
<td>1,01</td>
<td>mWs</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{in})</td>
<td>f=1MHz</td>
<td>150</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{out})</td>
<td></td>
<td>135</td>
<td>pF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>(Q_{ge})</td>
<td>15</td>
<td>600</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>(R_{th(j-c)})</td>
<td>Thermal grease thickness≤50um (k = 1 \text{ W/mK})</td>
<td>0.84</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to case</td>
<td>(R_{th(j-s)})</td>
<td>Thermal grease thickness≤50um (k = 1 \text{ W/mK})</td>
<td>0.56</td>
<td>K/W</td>
</tr>
<tr>
<td>Boost IGBT Protection Diode (D9 , D11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>(V_{F})</td>
<td></td>
<td>0.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>(R_{th(j-c)})</td>
<td>Thermal grease thickness≤50um (k = 1 \text{ W/mK})</td>
<td>2.72</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to case</td>
<td>(R_{th(j-s)})</td>
<td>Thermal grease thickness≤50um (k = 1 \text{ W/mK})</td>
<td>1.80</td>
<td>K/W</td>
</tr>
<tr>
<td>Boost FWD (D1 , D4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>(V_{F})</td>
<td></td>
<td>0.7</td>
<td>2.28</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(I_{R})</td>
<td></td>
<td>60</td>
<td>μA</td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>(I_{pk})</td>
<td></td>
<td>63</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(\tau_{r})</td>
<td>(R_{goff}=4 \Omega)</td>
<td>83</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>(Q_{rr})</td>
<td></td>
<td>2.25</td>
<td>μC</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>(E_{rec})</td>
<td></td>
<td>2.42</td>
<td>mWs</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(\frac{dV_{F}}{dt}_{\text{max}})</td>
<td></td>
<td>5104</td>
<td>A/μs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>(R_{th(j-c)})</td>
<td>Thermal grease thickness≤50um (k = 1 \text{ W/mK})</td>
<td>1.07</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to case</td>
<td>(R_{th(j-s)})</td>
<td>Thermal grease thickness≤50um (k = 1 \text{ W/mK})</td>
<td>0.71</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{GS} [V] or V_{GE} [V]</td>
<td>V_{GS}</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>I_s [A] or I_c [A]</td>
<td>I_s</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>V_{r} [V] or V_{CE} [V]</td>
<td>V_r</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>V_{DS} [V]</td>
<td>V_{DS}</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>I_C [A] or I_F [A] or I_D [A]</td>
<td>I_C</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
</tbody>
</table>

Thermistor

- **Rated resistance**
 - R
 - Conditions: $T_j=25°C$
 - Value: 22 kΩ

- **Deviation of R100**
 - ΔR_{100}
 - R100=1486Ω
 - Conditions: $T_c=100°C$
 - Value: -4,5 +4,5 %

- **Power dissipation**
 - P
 - Conditions: $T_j=25°C$
 - Value: 210 mW

- **Power dissipation constant**
 - $B_{(5/25)}$
 - Conditions: $T_j=25°C$
 - Value: 3,5 mW/K

- **B-value**
 - $B_{(4.5/25)}$
 - Conditions: $T_j=25°C$
 - Value: 3884 K

- **B-value**
 - $B_{(3.5/25)}$
 - Conditions: $T_j=25°C$
 - Value: 3964 K

- **Vincotech NTC Reference**
 - Value: F
Boost IGBT Protection Diode

Figure 1
Typical FWD forward current as a function of forward voltage

\[I_F = f(V_F) \]

At
\[t_p = 250 \ \mu s \]

Figure 2
Diode transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

At
\[D = \frac{t_p}{T_{Rth}} \]
\[R_{thJH} = 2.72 \ \text{K/W} \]

Figure 3
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_J) \]

At
\[T_J = 150 \ ^\circ C \]

Figure 4
Forward current as a function of heatsink temperature

\[I_F = f(T_J) \]

At
\[T_J = 150 \ ^\circ C \]
INPUT BOOST

Figure 3
BOOST IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

\[t_p = 250 \, \mu s \]

\[T_j = 25 \, ^\circ C \]

\[V_{GS} \] from 7 V to 17 V in steps of 1 V

![Typical output characteristics graph]

Figure 4
BOOST FWD

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

\[t_p = 250 \, \mu s \]

\[T_j = 125 \, ^\circ C \]

\[V_{GS} \] from 7 V to 17 V in steps of 1 V

![Typical output characteristics graph]

Figure 3
BOOST IGBT

Typical transfer characteristics

\[I_C = f(V_{CE}) \]

![Typical transfer characteristics graph]

Figure 4
BOOST FWD

Typical FWD forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

\[t_p = 250 \, \mu s \]

\[T_j = T_{j_{\max}} - 25 \, ^\circ C \]

\[V_{DS} = 10 \, V \]

![Typical FWD forward current graph]
Figure 5
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \, ^\circ C \)
- \(V_{DS} = 700 \, V \)
- \(V_{GS} = 15 \, V \)
- \(R_{gon} = 4 \, \Omega \)
- \(I_D = 24 \, A \)

Figure 6
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_J = 25/125 \, ^\circ C \)
- \(V_{DS} = 700 \, V \)
- \(V_{GS} = 15 \, V \)
- \(I_D = 24 \, A \)

Figure 7
Typical reverse recovery energy loss as a function of collector (drain) current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \, ^\circ C \)
- \(V_{DS} = 700 \, V \)
- \(V_{GS} = 15 \, V \)
- \(R_{gon} = 4 \, \Omega \)

Figure 8
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

- \(T_J = 25/125 \, ^\circ C \)
- \(V_{DS} = 700 \, V \)
- \(V_{GS} = 15 \, V \)
- \(I_D = 24 \, A \)
Typical switching times as a function of collector current
\(t = f(I_C) \)

With an inductive load at:
- \(T_J = 125 \, ^\circ\text{C} \)
- \(V_{DS} = 700 \, \text{V} \)
- \(V_{GS} = 15 \, \text{V} \)
- \(I_F = 24 \, \text{A} \)
- \(R_{gon} = 4 \, \Omega \)
- \(R_{goff} = 4 \, \Omega \)

Typical reverse recovery time as a function of collector current
\(t_{rr} = f(I_C) \)

At:
- \(T_J = 25/125 \, ^\circ\text{C} \)
- \(V_{DS} = 700 \, \text{V} \)
- \(V_{GS} = 15 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

Figure 13

At

- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{cc} = 700 \, \text{V} \)
- \(V_{gs} = 15 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)

Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

Figure 15

At

- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{cc} = 700 \, \text{V} \)
- \(I_F = 24 \, \text{A} \)
- \(V_{gs} = 15 \, \text{V} \)

Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

Figure 14

At

- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{cc} = 700 \, \text{V} \)
- \(I_F = 24 \, \text{A} \)
- \(V_{gs} = 15 \, \text{V} \)

Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

Figure 16

At

- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{cc} = 700 \, \text{V} \)
- \(I_F = 24 \, \text{A} \)
- \(V_{gs} = 15 \, \text{V} \)
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[\frac{dI_f}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

- **At**
 - \(T_j = 25/125 \degree C \)
 - \(V_{EE} = 700 \) V
 - \(V_{DR} = 15 \) V
 - \(R_{gon} = 4 \) Ω

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[\frac{dI_f}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

- **At**
 - \(T_j = 25/125 \degree C \)
 - \(V_r = 700 \) V
 - \(I_f = 24 \) A
 - \(V_{EE} = 15 \) V

Figure 19
IGBT/MOSFET transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

- **At**
 - \(D = 0.5 \)
 - \(R_{thJH} = 0.84 \) K/W

Figure 20
FWD transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

- **At**
 - \(D = 0.5 \)
 - \(R_{thJH} = 1.07 \) K/W

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\ Tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.107</td>
<td>1.413</td>
</tr>
<tr>
<td>0.391</td>
<td>0.188</td>
</tr>
<tr>
<td>0.223</td>
<td>0.056</td>
</tr>
<tr>
<td>0.092</td>
<td>0.011</td>
</tr>
<tr>
<td>0.030</td>
<td>0.001</td>
</tr>
</tbody>
</table>

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\ Tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.027</td>
<td>8.145</td>
</tr>
<tr>
<td>0.098</td>
<td>1.332</td>
</tr>
<tr>
<td>0.284</td>
<td>0.228</td>
</tr>
<tr>
<td>0.405</td>
<td>0.069</td>
</tr>
<tr>
<td>0.171</td>
<td>0.014</td>
</tr>
</tbody>
</table>
Figure 21

BOOST IGBT

Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At

\[T_j = 175 \, ^\circ\text{C} \]

Figure 22

BOOST IGBT

Collector/Drain current as a function of heatsink temperature

\[I_C = f(T_h) \]

At

\[T_j = 175 \, ^\circ\text{C} \]

\[V_{GS} = 15 \, \text{V} \]

Figure 23

BOOST FWD

Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At

\[T_j = 175 \, ^\circ\text{C} \]

Figure 24

BOOST FWD

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At

\[T_j = 175 \, ^\circ\text{C} \]
Figure 25
BOOST IGBT
Safe operating area as a function of drain-source voltage
$I_C = f(V_{CE})$

At
$D = $ single pulse
$T_J = 80 \, ^\circ C$
$V_{CE} = 15 \, V$
$T_J = T_{\text{max}} \, ^\circ C$

Figure 26
BOOST IGBT
Gate voltage vs Gate charge
$V_{GS} = f(Q_g)$

At
$I_D = 24 \, A$

240V
960V
Bypass Diode

Figure 1
Typical Diode forward current as a function of forward voltage
\[I_F = f(V_F) \]

![Graph of typical diode forward current](image)

At
\[t_p = 250 \, \mu s \]

Figure 2
Diode transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

![Graph of diode transient thermal impedance](image)

At
\[D = \frac{t_p}{T} \]
\[R_{thJH} = 1,674 \, \text{K/W} \]

Figure 3
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

![Graph of power dissipation](image)

At
\[T_j = 150 \, ^\circ C \]

Figure 4
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

![Graph of forward current](image)

At
\[T_j = 150 \, ^\circ C \]
Figure 1

Thermistor

Typical NTC characteristic as a function of temperature

\[R_T = f(T) \]
Switching Definitions BOOST IGBT

General conditions

- $T_j = 125 \, ^\circ\text{C}$
- $R_{on} = 4 \, \Omega$
- $R_{off} = 4 \, \Omega$

Turn-off Switching Waveforms & definition of t_{off}

- $t_{off} = 0.29 \, \mu s$
- $t_{Eoff} = 0.42 \, \mu s$

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CE} (0%)</td>
<td>0 V</td>
</tr>
<tr>
<td>V_{CE} (100%)</td>
<td>15 V</td>
</tr>
<tr>
<td>V_C (100%)</td>
<td>700 V</td>
</tr>
<tr>
<td>I_C (100%)</td>
<td>24 A</td>
</tr>
</tbody>
</table>

Turn-on Switching Waveforms & definition of t_{on}

- $t_{on} = 0.02 \, \mu s$
- $t_{Eon} = 0.14 \, \mu s$

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CE} (0%)</td>
<td>0 V</td>
</tr>
<tr>
<td>V_{CE} (100%)</td>
<td>15 V</td>
</tr>
<tr>
<td>V_C (100%)</td>
<td>700 V</td>
</tr>
<tr>
<td>I_C (100%)</td>
<td>24 A</td>
</tr>
</tbody>
</table>

Turn-off Switching Waveforms & definition of t_f

- $t_f = 0.06 \, \mu s$

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_C (100%)</td>
<td>700 V</td>
</tr>
<tr>
<td>I_C (100%)</td>
<td>24 A</td>
</tr>
</tbody>
</table>

Turn-on Switching Waveforms & definition of t_r

- $t_r = 0.01 \, \mu s$

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_C (100%)</td>
<td>700 V</td>
</tr>
<tr>
<td>I_C (100%)</td>
<td>24 A</td>
</tr>
</tbody>
</table>
Switching Definitions BOOST IGBT

Figure 5

Boost IGBT

Turn-off Switching Waveforms & definition of t_{Eoff}

![Graph showing turn-off switching waveforms and definition of t_{Eoff}.]

- $P_{\text{Eoff}} (100\%) = 16.97\ kW$
- $E_{\text{Eoff}} (100\%) = 1.55\ mJ$
- $t_{\text{Eoff}} = 0.42\ \mu s$

Figure 6

Boost IGBT

Turn-on Switching Waveforms & definition of t_{Eon}

![Graph showing turn-on switching waveforms and definition of t_{Eon}.]

- $P_{\text{Eon}} (100\%) = 16.97\ kW$
- $E_{\text{Eon}} (100\%) = 1.85\ mJ$
- $t_{\text{Eon}} = 0.14\ \mu s$

Figure 7

Boost IGBT

Gate voltage vs Gate charge (measured)

![Graph showing gate voltage vs gate charge.]

- $V_{\text{GE,ref}} = 0\ V$
- $V_{\text{CE,ref}} = 15\ V$
- $V_{\text{C}} (100\%) = 700\ V$
- $I_{\text{d}} (100\%) = 24\ A$
- $Q_{\text{g}} = 144.01\ \text{nC}$

Figure 8

Boost FWD

Turn-off Switching Waveforms & definition of t_{rr}

![Graph showing turn-off switching waveforms and definition of t_{rr}.]

- $V_{\text{d}} (100\%) = 700\ V$
- $I_{\text{d}} (100\%) = 24\ A$
- $I_{\text{RRM}} (100\%) = -76\ A$
- $t_{\text{rr}} = 0.21\ \mu s$

copyright Vincotech
Switching Definitions BOOST FWD

Figure 9
Turn-on Switching Waveforms & definition of \(t_{Qrr} \)
(\(t_{Qrr} = \) integrating time for \(Q_{rr} \))

Figure 10
Turn-on Switching Waveforms & definition of \(t_{Erec} \)
(\(t_{Erec} = \) integrating time for \(E_{rec} \))

\[
\begin{align*}
I_d (100\%) &= 24 \text{ A} \\
Q_{rr} (100\%) &= 4.94 \mu\text{C} \\
t_{Qrr} &= 0.43 \mu\text{s} \\
P_{rec} (100\%) &= 16.97 \text{ kW} \\
E_{rec} (100\%) &= 2.36 \text{ mJ} \\
t_{Erec} &= 0.43 \mu\text{s}
\end{align*}
\]
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 17mm housing</td>
<td>V23990-P629-L59-PM</td>
<td>P629-L59-PM</td>
<td>P629-L59-PM</td>
</tr>
<tr>
<td>without thermal paste 12mm housing</td>
<td>V23990-P629-L58-PM</td>
<td>P629-L58-PM</td>
<td>P629-L58-PM</td>
</tr>
<tr>
<td>without thermal paste 12mm housing with Press-fit pins</td>
<td>V23990-P629-L58Y-PM</td>
<td>P629-L58Y-PM</td>
<td>P629-L58Y-PM</td>
</tr>
</tbody>
</table>

Outline

![Outline Diagram]

Pinout

![Pinout Diagram]

copyright Vincotech

18

23 Febr. 2015 / Revision 2
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.