Features
- High efficiency dual boost
- Ultra fast switching frequency
- Low Inductance Layout
- 1200V IGBT and 1200V SiC diode
- Antiparallel IGBT protection diode with high current

Target Applications
- Solar inverter

Types
- V23990-P629-L43-PM
- V23990-P629-L43Y-PM

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass Diode D5, D6 / Boost Sw. Protection Diode D1, D2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>(V_{SSM})</td>
<td></td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>Mean forward current</td>
<td>(I_{FDM})</td>
<td>(T_{j} \leq 25 \degree C) (T_{j} = 80 \degree C)</td>
<td>38</td>
<td>A</td>
</tr>
<tr>
<td>Surge (non-repetitive) forward current</td>
<td>(I_{FHM})</td>
<td>(t_{f} = 10 \mu s) (T_{j} = 25 \degree C)</td>
<td>220</td>
<td>A</td>
</tr>
<tr>
<td>(I^{2}t)-value</td>
<td>(J^{2}t)</td>
<td></td>
<td>200</td>
<td>A²s</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_{j} = 80 \degree C) (T_{j} = 80 \degree C)</td>
<td>47</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j\text{max}})</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost Switch (T1, T2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>(V_{CE})</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>(I_{C})</td>
<td>(T_{j} \leq 150 \degree C) (V_{CE} = V_{CE})</td>
<td>65</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{CEM})</td>
<td>(T_{j}) limited by (T_{j\text{max}})</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td></td>
<td>(T_{j} \leq 150 \degree C) (V_{CE} = V_{CE})</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_{j} = 80 \degree C) (T_{j} = 80 \degree C)</td>
<td>210</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>(V_{GE})</td>
<td></td>
<td>420</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>(I_{SC})</td>
<td>(T_{j} \leq 150 \degree C) (V_{CB} = 15V)</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j\text{max}})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Diode (D3,D4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Mean forward current</td>
<td>I_{FDM}</td>
<td>$T_j=T_{max}$, $T_c=80^\circ$C</td>
<td>28</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_c=80^\circ$C</td>
<td>34</td>
<td>A</td>
</tr>
<tr>
<td>Surge (non-repetitive) forward current</td>
<td>I_{FSM}</td>
<td>$t=10$ms, $T_j=25^\circ$C</td>
<td>138</td>
<td>A</td>
</tr>
<tr>
<td>t^2-value</td>
<td>I_{T}^2</td>
<td></td>
<td>95</td>
<td>A2s</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{PM}</td>
<td>T_j limited by T_{max}</td>
<td>78</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{max}$, $T_c=80^\circ$C</td>
<td>81</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_c=80^\circ$C</td>
<td>123</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Properties

| Storage temperature | T_{stg} | | -40...+125 | °C |
| Operation temperature under switching condition | T_{op} | | -40...+$\left(T_{max} - 25\right)$ | °C |

Insulation Properties

Insulation voltage	$t=2$s, DC voltage		4000	V
Creepage distance			min 12,7	mm
Clearance	solder pins / Press-fit pins		9,55 / 9,57	mm
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td>25</td>
<td>25</td>
<td>0.8</td>
</tr>
<tr>
<td>Threshold voltage (for power loss calc. only)</td>
<td>V_T</td>
<td>25</td>
<td>25</td>
<td>0.92</td>
</tr>
<tr>
<td>Slope resistance (for power loss calc. only)</td>
<td>r_s</td>
<td>25</td>
<td>25</td>
<td>0.012</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_r</td>
<td>1500</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>25</td>
<td>125</td>
<td>25</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>25</td>
<td>125</td>
<td>25</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>25</td>
<td>125</td>
<td>25</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{int}</td>
<td>25</td>
<td>25</td>
<td>1.43</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{leak}</td>
<td>25</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_g</td>
<td>15</td>
<td>960</td>
<td>50</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-c)}$</td>
<td>25</td>
<td>25</td>
<td>4.05</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_r</td>
<td>15</td>
<td>25</td>
<td>1.36</td>
</tr>
</tbody>
</table>

Boost Switch (T1, T2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{th(e)}$</td>
<td>0.05</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{ces}</td>
<td>15</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off</td>
<td>V_{CEO}</td>
<td>0</td>
<td>1200</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{leak}</td>
<td>20</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{int}</td>
<td>25</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td>25</td>
<td>125</td>
<td>25</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>25</td>
<td>125</td>
<td>25</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td>25</td>
<td>125</td>
<td>25</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td>25</td>
<td>125</td>
<td>25</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>25</td>
<td>125</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>25</td>
<td>125</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rsc}</td>
<td>25</td>
<td>125</td>
<td>25</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_g</td>
<td>15</td>
<td>960</td>
<td>50</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-c)}$</td>
<td>25</td>
<td>125</td>
<td>25</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_r</td>
<td>15</td>
<td>25</td>
<td>4.05</td>
</tr>
</tbody>
</table>

Boost Diode (D3, D4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td>15</td>
<td>25</td>
<td>1.43</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{leak}</td>
<td>1200</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{peak}</td>
<td>15</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{r}</td>
<td>25</td>
<td>125</td>
<td>9</td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>Q_{rec}</td>
<td>25</td>
<td>125</td>
<td>0.24</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>25</td>
<td>125</td>
<td>0.093</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>dI/dt</td>
<td>25</td>
<td>125</td>
<td>670</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-c)}$</td>
<td>25</td>
<td>125</td>
<td>1.17</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_r</td>
<td>15</td>
<td>25</td>
<td>1.36</td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Conditions</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Characteristic Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter Symbol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{DS} [V] or V_{CE} [V]</td>
<td>V_GS</td>
<td>I_C [A] or I_F [A]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_r [V] or V_{CE} [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_j [°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermistor

- **Rated resistance**
 - Symbol: \(R \)
 - Value: 25
 - Unit: kΩ
- **Deviation of \(R_{100} \)**
 - Formula: \(R_{100} = 1486 \Omega \)
 - Min: 100
 - Typ: -12
 - Max: 12
 - Unit: %
- **Power dissipation**
 - Symbol: \(P \)
 - Min: 25
 - Typ: 200
 - Max: 500
 - Unit: mW
- **Power dissipation constant**
 - Formula: \(\Delta R/R \)
 - Value: 12
 - Unit: %
- **B-value**
 - Symbol: \(B_{(25/50)} \)
 - Min: 25
 - Typ: 3950
 - Max: 4000
 - Unit: K
- **B-value**
 - Symbol: \(B_{(25/50)} \)
 - Min: 25
 - Typ: 3998
 - Max: 4000
 - Unit: K

Vincotech NTC Reference

- Symbol: \(B \)
Boost Switch T1, T2 / Boost Diode D3, D4

Figure 1 T1, T2
Typical output characteristics
$I_C = f(V_{CE})$

At
$\tau = 250 \mu s$
$T_j = 25 ^{\circ}C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2 T1, T2
Typical output characteristics
$I_C = f(V_{CE})$

At
$\tau = 250 \mu s$
$T_j = 125 ^{\circ}C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3 T1, T2
Typical transfer characteristics
$I_C = f(V_{GE})$

At
$\tau = 100 \mu s$
$T_j = 25/125 ^{\circ}C$
$V_{CE} = 10 V$

Figure 4 D3, D4
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$

At
$\tau = 250 \mu s$
$T_j = 25/125 ^{\circ}C$
Figure 5
Typical switching energy losses
as a function of collector current
\[E = f(I_C) \]

With an inductive load at
\[T_j = \frac{25}{125} \, ^\circ\text{C} \]
\[V_{CE} = 700 \, \text{V} \]
\[V_{GE} = 15 \, \text{V} \]
\[R_{gon} = 4 \, \Omega \]
\[R_{goff} = 4 \, \Omega \]

Figure 6
Typical switching energy losses
as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
\[T_j = \frac{25}{125} \, ^\circ\text{C} \]
\[V_{CE} = 700 \, \text{V} \]
\[V_{GE} = 15 \, \text{V} \]
\[I_C = 40 \, \text{A} \]

Figure 7
Typical reverse recovery energy loss
as a function of collector current
\[E_{rec} = f(I_C) \]

With an inductive load at
\[T_j = \frac{25}{125} \, ^\circ\text{C} \]
\[V_{CE} = 700 \, \text{V} \]
\[V_{GE} = 15 \, \text{V} \]
\[R_{gon} = 4 \, \Omega \]
\[R_{goff} = 4 \, \Omega \]

Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
\[T_j = \frac{25}{125} \, ^\circ\text{C} \]
\[V_{CE} = 700 \, \text{V} \]
\[V_{GE} = 15 \, \text{V} \]
\[I_C = 40 \, \text{A} \]
Boost Switch T1,T2 / Boost Diode D3,D4

Figure 9
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at
- \(T_j = 126 \, ^\circ\text{C} \)
- \(V_{CE} = 700 \, \text{V} \)
- \(V_{CE} = 15 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)
- \(I_C = 40 \, \text{A} \)

Figure 10
Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at
- \(T_j = 126 \, ^\circ\text{C} \)
- \(V_{CE} = 700 \, \text{V} \)
- \(V_{CE} = 15 \, \text{V} \)
- \(I_C = 40 \, \text{A} \)

Figure 11
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At
- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 700 \, \text{V} \)
- \(V_{CE} = 15 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At
- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{GE} = 700 \, \text{V} \)
- \(V_{CE} = 15 \, \text{V} \)
Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

At
\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 700 \, V \]
\[V_{GE} = 15 \, V \]
\[R_{gon} = 4 \, \Omega \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

At
\[T_J = 25/125 \, ^\circ C \]
\[V_S = 700 \, V \]
\[I_F = 40 \, A \]
\[V_{GS} = 15 \, V \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

At
\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 700 \, V \]
\[V_{GE} = 15 \, V \]
\[R_{gon} = 4 \, \Omega \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

At
\[T_J = 25/125 \, ^\circ C \]
\[V_S = 700 \, V \]
\[I_F = 40 \, A \]
\[V_{GS} = 15 \, V \]
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

Figure 17

Figure 18

Figure 19

Figure 20

IGBT transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

\[Z_{th(j-s)} = f(t_p) \]

Table:

<table>
<thead>
<tr>
<th>(D)</th>
<th>(R_{th(j-s)}) (K/W)</th>
<th>(\tau_s) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.085</td>
<td>1.272</td>
<td>0.0035</td>
</tr>
<tr>
<td>0.179</td>
<td>0.186</td>
<td>0.0035</td>
</tr>
<tr>
<td>0.314</td>
<td>0.060</td>
<td>0.0035</td>
</tr>
<tr>
<td>0.053</td>
<td>0.005</td>
<td>0.0035</td>
</tr>
<tr>
<td>0.029</td>
<td>0.000</td>
<td>0.0035</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>(D)</th>
<th>(R_{th(j-s)}) (K/W)</th>
<th>(\tau_s) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.043</td>
<td>9.803</td>
<td>0.0010</td>
</tr>
<tr>
<td>0.101</td>
<td>0.815</td>
<td>0.0010</td>
</tr>
<tr>
<td>0.383</td>
<td>0.098</td>
<td>0.0010</td>
</tr>
<tr>
<td>0.308</td>
<td>0.026</td>
<td>0.0010</td>
</tr>
<tr>
<td>0.233</td>
<td>0.005</td>
<td>0.0010</td>
</tr>
<tr>
<td>0.098</td>
<td>0.001</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

Figure 19

Figure 20

IGBT thermal model values

R_{th(j-s)} = 0.66 K/W

R_{th(j-s)} = 0.80 K/W

Table:

<table>
<thead>
<tr>
<th>(R_{th(j-s)}) (K/W)</th>
<th>(\tau_s) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.085</td>
<td>1.272</td>
</tr>
<tr>
<td>0.179</td>
<td>0.186</td>
</tr>
<tr>
<td>0.314</td>
<td>0.060</td>
</tr>
<tr>
<td>0.053</td>
<td>0.005</td>
</tr>
<tr>
<td>0.029</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>(R_{th(j-s)}) (K/W)</th>
<th>(\tau_s) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.043</td>
<td>9.803</td>
</tr>
<tr>
<td>0.101</td>
<td>0.815</td>
</tr>
<tr>
<td>0.383</td>
<td>0.098</td>
</tr>
<tr>
<td>0.308</td>
<td>0.026</td>
</tr>
<tr>
<td>0.233</td>
<td>0.005</td>
</tr>
<tr>
<td>0.098</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Figure 19

Figure 20

FWD transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

\[Z_{th(j-s)} = f(t_p) \]

Table:

<table>
<thead>
<tr>
<th>(D)</th>
<th>(R_{th(j-s)}) (K/W)</th>
<th>(\tau_s) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.085</td>
<td>1.272</td>
<td>0.0035</td>
</tr>
<tr>
<td>0.179</td>
<td>0.186</td>
<td>0.0035</td>
</tr>
<tr>
<td>0.314</td>
<td>0.060</td>
<td>0.0035</td>
</tr>
<tr>
<td>0.053</td>
<td>0.005</td>
<td>0.0035</td>
</tr>
<tr>
<td>0.029</td>
<td>0.000</td>
<td>0.0035</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>(D)</th>
<th>(R_{th(j-s)}) (K/W)</th>
<th>(\tau_s) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.043</td>
<td>9.803</td>
<td>0.0010</td>
</tr>
<tr>
<td>0.101</td>
<td>0.815</td>
<td>0.0010</td>
</tr>
<tr>
<td>0.383</td>
<td>0.098</td>
<td>0.0010</td>
</tr>
<tr>
<td>0.308</td>
<td>0.026</td>
<td>0.0010</td>
</tr>
<tr>
<td>0.233</td>
<td>0.005</td>
<td>0.0010</td>
</tr>
<tr>
<td>0.098</td>
<td>0.001</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

Boost Switch T1,T2 / Boost Diode D3,D4

At

\[T_j = \frac{25}{125} \degree C \]

\[V_{CE} = 700 \, \text{V} \]

\[V_C = 15 \, \text{V} \]

\[R_{gon} = 4 \, \Omega \]

Figure 17

Figure 18

Figure 19

Figure 20

At

\[T_j = \frac{25}{125} \degree C \]

\[V_C = 700 \, \text{V} \]

\[I_o = 40 \, \text{A} \]

\[V_o = 15 \, \text{V} \]
Boost Switch T1, T2 / Boost Diode D3, D4

Figure 21
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]

Figure 22
Collector current as a function of heatsink temperature

\[I_C = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]
\[V_{GE} = 15 \, V \]

Figure 23
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]

Figure 24
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]
Figure 25
Safe operating area as a function of collector-emitter voltage
\[I_C = f(V_{CE}) \]

Figure 26
Gate voltage vs Gate charge
\[V_{GE} = f(Q_g) \]

Figure 27
Short circuit withstand time as a function of gate-emitter voltage
\[t_{sc} = f(V_{GE}) \]

Figure 28
Typical short circuit collector current as a function of gate-emitter voltage
\[I_C = f(V_{CE}) \]

At
\[D = \text{single pulse} \]
\[T_s = 80 \, ^\circ\text{C} \]
\[V_{CE} = 15 \, \text{V} \]
\[T_j = T_{j\max} \, ^\circ\text{C} \]

At
\[I_C = 50 \, \text{A} \]
\[V_{CE} \leq 600 \, \text{V} \]
\[T_j = 25 \, ^\circ\text{C} \]
Boost Switch T1, T2 / Boost Diode D3, D4

Figure 29
T1, T2

Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At

\[T_v \leq 150 \, ^\circ C \]
\[I_{C \, \text{MAX}} = 100 \, A \]
\[V_{CE \, \text{MAX}} = 1200 \, V \]

Boost Switch T1, T2 / Boost Diode D3, D4
Bypass Diode D5,D6 / Boost Sw. Protection Diode D1,D2

Figure 1
Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

Figure 2
Diode transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

Figure 3
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_s) \]

Figure 4
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At

- \(T_j = 25/125 \) °C
- \(t_p = 250 \) µs
- \(D = 0.5 \)
- \(R_{th(j-s)} = 1.49 \) K/W
- \(R_{h(j-s)} = 1.73 \) K/W
- \(T_j = 150 \) °C

copyright Vincotech

01 Dec. 2015 / Revision 5
Figure 1

Typical NTC characteristic as a function of temperature

\[R(T) = f(T) \]
Switching Definitions Boost

General conditions

\[T_J = 125 ^\circ C \]
\[R_{\text{on}} = 4 \Omega \]
\[R_{\text{off}} = 4 \Omega \]

Figure 1
Turn-off Switching Waveforms & definition of \(t_{\text{doff}} \), \(t_{\text{Eoff}} \)

\(t_{\text{Eoff}} = \) integrating time for \(E_{\text{off}} \)

\(V_{\text{CE}} (0\%) = 0 \) V
\(V_{\text{CE}} (100\%) = 700 \) V
\(I_C (100\%) = 40 \) A
\(t_{\text{doff}} = 0,320 \) \(\mu \)s
\(t_{\text{Eoff}} = 0,468 \) \(\mu \)s

Figure 2
Turn-on Switching Waveforms & definition of \(t_{\text{don}} \), \(t_{\text{Eon}} \)

\(t_{\text{Eon}} = \) integrating time for \(E_{\text{on}} \)

\(V_{\text{CE}} (0\%) = 0 \) V
\(V_{\text{CE}} (100\%) = 700 \) V
\(I_C (100\%) = 40 \) A
\(t_{\text{don}} = 0,027 \) \(\mu \)s
\(t_{\text{Eon}} = 0,157 \) \(\mu \)s

Figure 3
Turn-off Switching Waveforms & definition of \(t_f \)

\(V_{\text{CE}} (100\%) = 700 \) V
\(I_C (100\%) = 40 \) A
\(t_f = 0,057 \) \(\mu \)s

Figure 4
Turn-on Switching Waveforms & definition of \(t_r \)

\(V_{\text{CE}} (100\%) = 700 \) V
\(I_C (100\%) = 40 \) A
\(t_r = 0,017 \) \(\mu \)s
Switching Definitions Boost

Figure 5
Turn-off Switching Waveforms & definition of t_{Eoff}

- P_{off} (100%) = 28.02 kW
- E_{off} (100%) = 2.43 mJ
- $t_{Eoff} = 0.468$ µs

Figure 6
Turn-on Switching Waveforms & definition of t_{Eon}

- P_{on} (100%) = 28.02 kW
- E_{on} (100%) = 1.22 mJ
- $t_{Eon} = 0.1567$ µs

Figure 7
Turn-off Switching Waveforms & definition of t_{rr}

- V_d (100%) = 700 V
- I_d (100%) = 40 A
- I_{slew} (100%) = -15 A
- $t_{rr} = 0.009$ µs
Switching Definitions Boost

Figure 8

Turn-on Switching Waveforms & definition of t_{Qrr}

($t_{Qrr} = \text{integrating time for } Q_{rr}$)

$I_d (100\%) = 40 \text{ A}$

$Q_{rr} (100\%) = 0.21 \text{ µC}$

$t_{Qrr} = 0.02 \text{ µs}$

Figure 9

Turn-on Switching Waveforms & definition of t_{Erec}

($t_{Erec} = \text{integrating time for } E_{rec}$)

$P_{rec} (100\%) = 28.02 \text{ kW}$

$E_{rec} (100\%) = 0.07 \text{ mJ}$

$t_{Erec} = 0.02 \text{ µs}$
Ordering Code and Marking - Outline - Pinout

Pin table

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>22.5</td>
<td>G1</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>G2</td>
</tr>
<tr>
<td>2</td>
<td>2.9</td>
<td>22.5</td>
<td>S1</td>
<td>21</td>
<td>0</td>
<td>14.5</td>
<td>NTC1</td>
</tr>
<tr>
<td>3</td>
<td>8.3</td>
<td>22.5</td>
<td>DC-</td>
<td>22</td>
<td>0</td>
<td>14.5</td>
<td>NTC2</td>
</tr>
<tr>
<td>4</td>
<td>10.8</td>
<td>22.5</td>
<td>DC-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>19.6</td>
<td>22.5</td>
<td>DC+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>22.1</td>
<td>22.5</td>
<td>DC+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>29.1</td>
<td>22.5</td>
<td>Sol1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>22.5</td>
<td>Sol1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>33.5</td>
<td>17.8</td>
<td>Boost1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>33.5</td>
<td>15.3</td>
<td>Boost1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>33.5</td>
<td>7.2</td>
<td>Boost2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>33.5</td>
<td>4.7</td>
<td>Boost2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>32</td>
<td>0</td>
<td>Sol2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>29.1</td>
<td>0</td>
<td>Sol2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>22.1</td>
<td>0</td>
<td>DC+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>19.6</td>
<td>0</td>
<td>DC+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>10.8</td>
<td>0</td>
<td>DC-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>8.3</td>
<td>0</td>
<td>DC-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2.9</td>
<td>0</td>
<td>S2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outline

The center of package is the pin 1.
Dimensions of coordinates is given without tolerance.

Pinout

![Pinout Diagram]

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, T2</td>
<td>IGBT</td>
<td>1200 V</td>
<td>50 A</td>
<td>Boost Switch</td>
</tr>
<tr>
<td>D3, D4</td>
<td>PWD</td>
<td>1200 V</td>
<td>15 A</td>
<td>Boost Diode</td>
</tr>
<tr>
<td>D1, D2</td>
<td>PWD</td>
<td>1600 V</td>
<td>25 A</td>
<td>Boost Sw. Protection Diode</td>
</tr>
<tr>
<td>D5, D6</td>
<td>PWD</td>
<td>1600 V</td>
<td>25 A</td>
<td>Bypass Diode</td>
</tr>
<tr>
<td>R1</td>
<td>NTC</td>
<td></td>
<td></td>
<td>Thermistor</td>
</tr>
</tbody>
</table>
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.