Features
- High efficiency dual boost
- Ultra fast switching frequency
- Low Inductance Layout
- 1200V IGBT and 1200V Si diode

Target Applications
- Solar inverter

Types
- V23990-P629-F73-PM

Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>V_{RRM}</td>
<td>$T_j=25°C$</td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>$I_{F(AV)}$</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>34</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{SM}</td>
<td>$t_p=10\text{ms}$</td>
<td>220</td>
<td>A</td>
</tr>
<tr>
<td>I^2t-value</td>
<td>I^2t</td>
<td>$T_j=25°C$</td>
<td>200</td>
<td>As</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{ss}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>41</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td>$T_j=25°C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>34</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>$I_{P(10ms)}$</td>
<td>I_p limited by $T_{j\text{max}}$</td>
<td>160</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td></td>
<td>$V_{CE} \leq 800\text{V}$, $T_j \leq \text{Top max}$</td>
<td>160</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{ss}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>108</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>$T_j \leq 150°C$</td>
<td>±25</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>I_{DC}</td>
<td>V_{CE}</td>
<td>$V_{GE}=15\text{V}$</td>
<td>10</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT Protection Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>$T_j=25^\circ C$</td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j=T_{\text{max}}$</td>
<td>$T_j=80^\circ C$</td>
<td>34</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>$I_{F SM}$</td>
<td>$t_p=10\text{ms}, \sin 180^\circ$</td>
<td>220</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>$T_j=T_{\text{max}}$</td>
<td>$T_j=80^\circ C$</td>
<td>41</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{max}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Boost FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>$T_j=25^\circ C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j=T_{\text{max}}$</td>
<td>$T_j=80^\circ C$</td>
<td>37</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{\text{F SM}}$</td>
<td>I_s limited by T_{max}</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{\text{max}}$</td>
<td>$T_j=80^\circ C$</td>
<td>82</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{max}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40..-40...+T_{\text{max}} - 25</td>
<td>°C</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>V_is</td>
<td>$I=2s$ DC voltage</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_{F}</td>
<td>25</td>
<td>1.13</td>
<td>V</td>
</tr>
<tr>
<td>Threshold voltage (for power loss calc. only)</td>
<td>V_{th}</td>
<td>25</td>
<td>0.93</td>
<td>V</td>
</tr>
<tr>
<td>Slope resistance (for power loss calc. only)</td>
<td>r_{t}</td>
<td>40</td>
<td>0.008</td>
<td>Ω</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_{r}</td>
<td>1600</td>
<td>0.05</td>
<td>mA</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td></td>
<td>kW</td>
</tr>
<tr>
<td>Thermal resistance chip to case per chip</td>
<td>R_{thJC}</td>
<td></td>
<td></td>
<td>kW</td>
</tr>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td></td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td>40</td>
<td>2.74</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off</td>
<td>I_{CSS}</td>
<td>1200</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{fss}</td>
<td>± 25</td>
<td>1250</td>
<td>nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gin}</td>
<td>none</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>25</td>
<td>26</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>25</td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>25</td>
<td>16</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>25</td>
<td>43</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td>25</td>
<td>1.47</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td>25</td>
<td>0.93</td>
<td>mWs</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>$f=1MHz$</td>
<td>3200</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>0</td>
<td>370</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rs}</td>
<td></td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gate}</td>
<td>15</td>
<td>220</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness550um $\lambda = 1 \text{ W/mK}$</td>
<td>0.65</td>
<td>kW</td>
</tr>
<tr>
<td>Thermal resistance chip to case per chip</td>
<td>R_{thJC}</td>
<td>Thermal grease thickness550um $\lambda = 1 \text{ W/mK}$</td>
<td>0.43</td>
<td>kW</td>
</tr>
<tr>
<td>Boost IGBT Protection Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td>25</td>
<td>1.13</td>
<td>V</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness550um $\lambda = 1 \text{ W/mK}$</td>
<td>1.71</td>
<td>kW</td>
</tr>
<tr>
<td>Thermal resistance chip to case per chip</td>
<td>R_{thJC}</td>
<td>Thermal grease thickness550um $\lambda = 1 \text{ W/mK}$</td>
<td>1.13</td>
<td>kW</td>
</tr>
<tr>
<td>Boost FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_{F}</td>
<td>50</td>
<td>2.25</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{bn}</td>
<td>700</td>
<td>60</td>
<td>µA</td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{F}</td>
<td>700</td>
<td>98</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{off}</td>
<td>700</td>
<td>117</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>Q_{off}</td>
<td>700</td>
<td>3.71</td>
<td>µC</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{off}</td>
<td>700</td>
<td>3.69</td>
<td>mWs</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$di/dt_{m ax}$</td>
<td>700</td>
<td>3120</td>
<td>A/µs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness550um $\lambda = 1 \text{ W/mK}$</td>
<td>1.16</td>
<td>kW</td>
</tr>
<tr>
<td>Thermal resistance chip to case per chip</td>
<td>R_{thJC}</td>
<td>Thermal grease thickness550um $\lambda = 1 \text{ W/mK}$</td>
<td>0.76</td>
<td>kW</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermistor</td>
<td>R</td>
<td>Tol. ±5%</td>
<td>$T_j=25\degree C$</td>
<td>22000</td>
</tr>
<tr>
<td>Deviation of R25</td>
<td>$\Delta R/R$</td>
<td>$R_{100}=1503\Omega$</td>
<td>$T_c=100\degree C$</td>
<td>-5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>$T_j=25\degree C$</td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td>$T_j=25\degree C$</td>
<td>2</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>$B(25/50)$</td>
<td>Tol. ±3%</td>
<td>$T_j=25\degree C$</td>
<td>3950</td>
</tr>
<tr>
<td>B-value</td>
<td>$B(25/100)$</td>
<td>Tol. ±3%</td>
<td>$T_j=25\degree C$</td>
<td>3996</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>
Boost IGBT Protection Diode

Figure 1: Boost IGBT Protection Diode
Typical FWD forward current as a function of forward voltage
\(I_F = f(V_F) \)

At
\(t_p = 250 \mu s \)

Figure 2: Boost IGBT Protection Diode
Diode transient thermal impedance as a function of pulse width
\(Z_{thJH} = f(t_p) \)

At
\(D = \frac{t_p}{T} \)
\(R_{thJH} = 1.71 K/W \)

Figure 3: Boost IGBT Protection Diode
Power dissipation as a function of heatsink temperature
\(P_{tot} = f(T_h) \)

At
\(T_j = 150 ^\circ C \)

Figure 4: Boost IGBT Protection Diode
Forward current as a function of heatsink temperature
\(I_F = f(T_h) \)

At
\(T_j = 150 ^\circ C \)
INPUT BOOST

Figure 3 BOOST IGBT
Typical output characteristics
\[I_C = f(V_{CE}) \]

At
\[t_p = 250 \ \mu s \]
\[T_j = 25 \ ^\circ C \]
\[V_{GS} \text{ from 7 V to 17 V in steps of 1 V} \]

Figure 4 BOOST FWD
Typical output characteristics
\[I_C = f(V_{CE}) \]

At
\[t_p = 250 \ \mu s \]
\[T_j = 125 \ ^\circ C \]
\[V_{GS} \text{ from 7 V to 17 V in steps of 1 V} \]

Figure 3 BOOST IGBT
Typical transfer characteristics
\[I_C = f(V_{GE}) \]

Figure 4 BOOST FWD
Typical FWD forward current as a function of forward voltage
\[I_F = f(V_F) \]

At
\[t_p = 250 \ \mu s \]
\[V_{DS} = 10 \ V \]
Figure 5
Typical switching energy losses
as a function of collector current
\[E = f(I_C) \]

With an inductive load at
\[T_J = 25/126 \, ^\circ\mathrm{C} \]
\[V_{DS} = 700 \, \mathrm{V} \]
\[V_{GS} = 15 \, \mathrm{V} \]
\[R_{gon} = 4 \, \Omega \]
\[I_D = 40 \, \mathrm{A} \]

Figure 6
Typical switching energy losses
as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
\[T_J = 25/126 \, ^\circ\mathrm{C} \]
\[V_{DS} = 700 \, \mathrm{V} \]
\[V_{GS} = 15 \, \mathrm{V} \]
\[I_D = 40 \, \mathrm{A} \]

Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
\[E_{\text{rec}} = f(I_C) \]

With an inductive load at
\[T_J = 25/126 \, ^\circ\mathrm{C} \]
\[V_{DS} = 700 \, \mathrm{V} \]
\[V_{GS} = 15 \, \mathrm{V} \]
\[R_{gon} = 4 \, \Omega \]

Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
\[E_{\text{rec}} = f(R_G) \]

With an inductive load at
\[T_J = 25/126 \, ^\circ\mathrm{C} \]
\[V_{DS} = 700 \, \mathrm{V} \]
\[V_{GS} = 15 \, \mathrm{V} \]
\[I_D = 40 \, \mathrm{A} \]
Typical switching times as a function of collector current

\(t = f(I_C) \)

With an inductive load at

- \(T_j = 126 \) °C
- \(V_{DS} = 700 \) V
- \(V_{GS} = 15 \) V
- \(R_{gon} = 4 \) Ω
- \(R_{goff} = 4 \) Ω

Typical reverse recovery time as a function of collector current

\(t_{rr} = f(I_C) \)

At

- \(T_j = 25/126 \) °C
- \(V_{DS} = 700 \) V
- \(V_{GS} = 15 \) V
- \(R_{gsn} = 4 \) Ω
- \(V_{GS} = 15 \) V
- \(I_C = 40 \) A
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At

- \(T_J = 25/126 \, ^\circ\text{C} \)
- \(V_{CE} = 700 \, V \)
- \(V_{GS} = 15 \, V \)
- \(R_{GON} = 4 \, \Omega \)

Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

At

- \(T_J = 25/126 \, ^\circ\text{C} \)
- \(V_{CH} = 700 \, V \)
- \(V_{GS} = 15 \, V \)
- \(R_{GON} = 4 \, \Omega \)

Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{GON}) \]

At

- \(T_J = 25/126 \, ^\circ\text{C} \)
- \(V_{TH} = 700 \, V \)
- \(I_F = 40 \, A \)
- \(V_{GS} = 15 \, V \)

Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{GON}) \]

At

- \(T_J = 25/126 \, ^\circ\text{C} \)
- \(V_{TH} = 700 \, V \)
- \(I_F = 40 \, A \)
- \(V_{GS} = 15 \, V \)
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c)
\]

At
- \(T_j = 25/126 \) °C
- \(V_{CE} = 700 \) V
- \(V_{GE} = 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 19
IGBT/MOSFET transient thermal impedance as a function of pulse width
\(Z_{thJH} = f(t_p) \)

At
- \(D = 0.5 \)
- \(R_{thJH} = 0.65 \) K/W

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.198</td>
<td>0.495</td>
</tr>
<tr>
<td>0.347</td>
<td>0.111</td>
</tr>
<tr>
<td>0.075</td>
<td>0.015</td>
</tr>
<tr>
<td>0.028</td>
<td>0.001</td>
</tr>
<tr>
<td>0.027</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Figure 20
FWD transient thermal impedance as a function of pulse width
\(Z_{thJH} = f(t_p) \)

At
- \(D = 0.5 \)
- \(R_{thJH} = 1.16 \) K/W

FWD thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.041</td>
<td>5.298</td>
</tr>
<tr>
<td>0.115</td>
<td>1.001</td>
</tr>
<tr>
<td>0.447</td>
<td>0.186</td>
</tr>
<tr>
<td>0.324</td>
<td>0.053</td>
</tr>
<tr>
<td>0.154</td>
<td>0.012</td>
</tr>
</tbody>
</table>
Figure 21
BOOST IGBT
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 150 \, ^\circ\text{C} \]

Figure 22
BOOST IGBT
Collector/Drain current as a function of heatsink temperature

\[I_{\text{C}} = f(T_h) \]

At
\[T_j = 150 \, ^\circ\text{C} \]
\[V_{\text{GS}} = 15 \, \text{V} \]

Figure 23
BOOST FWD
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

Figure 24
BOOST FWD
Forward current as a function of heatsink temperature

\[I_{\text{F}} = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]
Figure 25
Safe operating area as a function of drain-source voltage

\[I_C = f(V_{CE}) \]

\[V_{GE} = f(Q_g) \]

At
- \(D = \) single pulse
- \(T_A = 80 \) °C
- \(V_{GS} = 15 \) V
- \(T_J = T_{J\text{max}} \) °C

Figure 26
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At
- \(I_D = 40 \) A

200V
600V

0 0.5 1 1.5 2 2.5
0 50 100 150 200 250

Qg (nC)

0 3 6 9 12 15

V_{GE} (V)
Figure 1: Typical Diode forward current as a function of forward voltage

\[I_f = f(V_f) \]

At
\[t_p = 250 \ \mu s \]

Figure 2: Diode transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

At
\[D = \frac{t_p}{T}, \quad R_{thJH} = 1.705 \ \text{K/W} \]

Figure 3: Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

At
\[T_j = 150 ^\circ C \]

Figure 4: Forward current as a function of heatsink temperature

\[I_f = f(T_h) \]

At
\[T_j = 150 ^\circ C \]
Thermistor

Figure 1

Typical NTC characteristic as a function of temperature

\[R_T = f(T) \]
Switching Definitions BOOST IGBT

General conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_j)</td>
<td>125 °C</td>
</tr>
<tr>
<td>(R_{son})</td>
<td>4 (\Omega)</td>
</tr>
<tr>
<td>(R_{goff})</td>
<td>4 (\Omega)</td>
</tr>
</tbody>
</table>

Figure 1: Boost IGBT

Turn-off Switching Waveforms & definition of \(t_{doff}, t_{Eoff} \)

- \(t_{doff} \) (integrating time for \(E_{off} \))
- \(t_{Eoff} \) (integrating time for \(E_{off} \))

- \(V_{GE} (0\%) = 0 \) V
- \(V_{GE} (100\%) = 15 \) V
- \(V_C (100\%) = 700 \) V
- \(I_C (100\%) = 40 \) A
- \(t_{doff} = 0.20 \) \(\mu \)s
- \(t_{Eoff} = 0.54 \) \(\mu \)s

Figure 2: Boost IGBT

Turn-on Switching Waveforms & definition of \(t_{don}, t_{Eon} \)

- \(t_{don} \) (integrating time for \(E_{on} \))
- \(t_{Eon} \) (integrating time for \(E_{on} \))

- \(V_{GE} (0\%) = 0 \) V
- \(V_{GE} (100\%) = 15 \) V
- \(V_C (100\%) = 700 \) V
- \(I_C (100\%) = 40 \) A
- \(t_{don} = 0.03 \) \(\mu \)s
- \(t_{Eon} = 0.15 \) \(\mu \)s

Figure 3: Boost IGBT

Turn-off Switching Waveforms & definition of \(t_f \)

- \(V_C (100\%) = 700 \) V
- \(I_C (100\%) = 40 \) A
- \(t_f = 0.04 \) \(\mu \)s

Figure 4: Boost IGBT

Turn-on Switching Waveforms & definition of \(t_r \)

- \(V_C (100\%) = 700 \) V
- \(I_C (100\%) = 40 \) A
- \(t_r = 0.01 \) \(\mu \)s
Switching Definitions BOOST IGBT

Figure 5
Boost IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{\text{off}} (100\%) = 27.95 \text{ kW}$
- $E_{\text{off}} (100\%) = 1.87 \text{ mJ}$
- $t_{\text{Eoff}} = 0.54 \mu \text{s}$

Figure 6
Boost IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{\text{on}} (100\%) = 27.95 \text{ kW}$
- $E_{\text{on}} (100\%) = 2.23 \text{ mJ}$
- $t_{\text{Eon}} = 0.15 \mu \text{s}$

Figure 7
Boost IGBT
Gate voltage vs Gate charge (measured)

- $V_{GE\text{off}} = 0 \text{ V}$
- $V_{GE\text{on}} = 15 \text{ V}$
- $V_{C}(100\%) = 700 \text{ V}$
- $I_{d}(100\%) = 40 \text{ A}$
- $Q_{g} = 178.86 \text{ nC}$

Figure 8
Boost FWD
Turn-off Switching Waveforms & definition of t_{Eoff}

- $V_{d}(100\%) = 700 \text{ V}$
- $I_{d}(100\%) = 40 \text{ A}$
- $I_{\text{max}} (100\%) = -117 \text{ A}$
- $t_{\text{on}} = 0.15 \mu \text{s}$

copyright Vincotech
Switching Definitions BOOST FWD

Figure 9

Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

- $I_d(100\%) = 40$ A
- $Q_{rr}(100\%) = 7.08 \mu C$
- $t_{Qrr} = 1.00 \mu s$

Figure 10

Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

- $P_{rec}(100\%) = 27.95$ kW
- $E_{rec}(100\%) = 3.68$ mJ
- $t_{Erec} = 1.00 \mu s$
PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Status</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Final</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
</tbody>
</table>

DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.