flow BOOST 0

Features
- High efficiency dual boost
- Ultra fast switching frequency
- Low Inductance Layout
- 650V IGBT and 650V Stealth Si boost diode
- Antiparallel IGBT protection diode with high current

Target Applications
- Solar inverter

Types
- V23990-P623-L82-PM

Maximum Ratings

* TJ = 25°C, unless otherwise specified *

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass Diode (D7, D8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>Forward average current</td>
<td>I_{FAV}</td>
<td>T_j=T_{max}</td>
<td>32</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{FSM}</td>
<td>T_j=80°C</td>
<td>43</td>
<td>A</td>
</tr>
<tr>
<td>I2t-value</td>
<td>I_{t}</td>
<td>T_j=10ms</td>
<td>220</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{ms}</td>
<td>T_j=T_{max}</td>
<td>42</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost IGBT (T1, T2)				
Collector-emitter break down voltage	V_{CES}		650	V
DC collector current	I_{C}	T_j=T_{max}	43	A
Pulsed collector current	I_{Pulse}	I_{p} limited by T_{jmax}	57	A
Turn off safe operating area	T_j≤175°C, V_{CES}≤650		150	A
Power dissipation per IGBT	P_{ext}	T_j=T_{max}	128	W
Gate-emitter peak voltage	V_{GE}	T_j=T_{max}	±20	V
Maximum Junction Temperature	T_{jmax}		175	°C
Maximum Ratings

Parameter	**Symbol**	**Condition**	**Value**	**Unit**
Boost FWD (D1, D4)

Peak Repetitive Reverse Voltage	\(V_{\text{RMM}} \)	\(T_j=25^\circ\text{C} \)	650	V	
Forward average current	\(I_{\text{FAV}} \)	\(T_j=T_{\text{max}} \)	\(T_c=80^\circ\text{C} \)	51	A
Surge forward current	\(I_{\text{SM}} \)	\(I_{\text{SM}}=10\text{ms} \)	\(T_j=25^\circ\text{C} \)	225	A
\(I^2t \)-value	\(I^2t \)	\(T_j=25^\circ\text{C} \)	250	\(\text{A}^2\text{s} \)	
Repetitive peak forward current	\(I_{\text{RPM}} \)	\(I_p \text{ limited by } T_j\text{max} \)	100	A	
Power dissipation per Diode	\(P_{\text{tot}} \)	\(T_j=T_{\text{max}} \)	\(T_c=80^\circ\text{C} \)	88	W
Maximum Junction Temperature	\(T_{\text{jmax}} \)	\(T_c=25^\circ\text{C} \)	175	°C	

Boost Inverse Diode (D9, D10)

Peak Repetitive Reverse Voltage	\(V_{\text{RMM}} \)	\(T_j=25^\circ\text{C} \)	650	V	
Forward average current	\(I_{\text{FAV}} \)	\(T_j=T_{\text{max}} \)	\(T_c=80^\circ\text{C} \)	21	A
Surge forward current	\(I_{\text{SM}} \)	\(I_{\text{SM}}=10\text{ms} \)	\(T_j=25^\circ\text{C} \)	50	A
\(I^2t \)-value	\(I^2t \)	\(T_j=25^\circ\text{C} \)	12.5	\(\text{A}^2\text{s} \)	
Repetitive peak forward current	\(I_{\text{RPM}} \)	\(I_p \text{ limited by } T_j\text{max} \)	20	A	
Power dissipation per Diode	\(P_{\text{tot}} \)	\(T_j=T_{\text{max}} \)	\(T_c=80^\circ\text{C} \)	42	W
Maximum Junction Temperature	\(T_{\text{jmax}} \)	\(T_c=25^\circ\text{C} \)	175	°C	

Thermal Properties

| Storage temperature | \(T_{\text{stg}} \) | \(-40...+125\) | °C |
| Operation temperature under switching condition | \(T_{\text{op}} \) | \(-40...+(T_{\text{jmax}} - 25)\) | °C |

Insulation Properties

Insulation voltage	\(I=2s \)	DC voltage	4000	V
Creepage distance	\(\text{min 12.7} \)	mm		
Clearance	\(\text{min 12.7} \)	mm		
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_{F}</td>
<td>25</td>
<td>0.8</td>
<td>1.21</td>
</tr>
<tr>
<td>Threshold voltage</td>
<td>V_{th}</td>
<td>25</td>
<td>0.92</td>
<td>1.19</td>
</tr>
<tr>
<td>Slope resistance</td>
<td>r_s</td>
<td>25</td>
<td>0.012</td>
<td>0.015</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_{R}</td>
<td>1500</td>
<td>3.3</td>
<td>4</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>R_{th}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{L}</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{PK}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>Q_{rec}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>di/dt_{max}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>R_{th}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boost IGBT (T1, T2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>V_{th}</td>
<td>$V_{CE(sat)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CE}</td>
<td>15</td>
<td>1</td>
<td>2.9</td>
</tr>
<tr>
<td>Collector-emitter cut-off</td>
<td>I_{CS}</td>
<td>0</td>
<td>0.04</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GS}</td>
<td>20</td>
<td>200</td>
<td>nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{int}</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td></td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td>mWs</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>$1=1MHz$</td>
<td>3000</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>0</td>
<td>50</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{oss}</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gate}</td>
<td>15</td>
<td>120</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>R_{th}</td>
<td></td>
<td></td>
<td>$K\Omega$</td>
</tr>
</tbody>
</table>

Boost FWD (D1, D4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_{F}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{L}</td>
<td>650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{PK}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>Q_{rec}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>di/dt_{max}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>R_{th}</td>
<td></td>
<td></td>
<td>$K\Omega$</td>
</tr>
</tbody>
</table>

Notes:

- All values are given for $T_{j}=25^\circ\text{C}$ and $T_{j}=125^\circ\text{C}$.
- Thermal resistance values are given for Phase-Change Material.
- All units are as indicated in the table.

Copyright by Vincotech
Boost Inverse Diode (D9, D10)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_d</td>
<td>$T_j=25^\circ C$</td>
<td>1.00</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=125^\circ C$</td>
<td>1.87</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.54</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.00</td>
<td>V</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Phase-Change Material</td>
<td>2.28</td>
<td>kW</td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td>$T=25^\circ C$</td>
<td>21511</td>
<td>Ω</td>
</tr>
<tr>
<td>Deviation of R100</td>
<td>$\Delta R/R$</td>
<td>$T=100^\circ C$</td>
<td>-4.5</td>
<td>%</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>$T=25^\circ C$</td>
<td>210</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td>$T=25^\circ C$</td>
<td>3.5</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>$B(25/50)$</td>
<td>$T=25^\circ C$</td>
<td>3884</td>
<td>K</td>
</tr>
<tr>
<td>B-value</td>
<td>$B(25/100)$</td>
<td>$T=25^\circ C$</td>
<td>3964</td>
<td>K</td>
</tr>
</tbody>
</table>

Vincother NTC Reference
Boost Inverse Diode (D9, D10)

Figure 25
Typical diode forward current as a function of forward voltage
\[I_F = f(V_F) \]

<table>
<thead>
<tr>
<th>(V_F) (V)</th>
<th>(I_F) (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

At
\[t_p = 250 \mu s \]

Figure 26
Diode transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

<table>
<thead>
<tr>
<th>(D)</th>
<th>(Z_{thJH}) (K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>10^4</td>
</tr>
<tr>
<td>0.005</td>
<td>10^5</td>
</tr>
<tr>
<td>0.01</td>
<td>10^6</td>
</tr>
<tr>
<td>0.02</td>
<td>10^7</td>
</tr>
<tr>
<td>0.05</td>
<td>10^8</td>
</tr>
<tr>
<td>0.1</td>
<td>10^9</td>
</tr>
<tr>
<td>0.2</td>
<td>10^10</td>
</tr>
</tbody>
</table>

At
\[D = \frac{t_p}{T} \]
\[R_{thJH} = 2.28 \text{ K/W} \]

Figure 27
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

<table>
<thead>
<tr>
<th>(T_h) (°C)</th>
<th>(P_{tot}) (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>150</td>
<td>15</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
</tr>
</tbody>
</table>

At
\[T_j = 175 \text{ °C} \]

Figure 28
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

<table>
<thead>
<tr>
<th>(T_h) (°C)</th>
<th>(I_F) (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>150</td>
<td>15</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
</tr>
</tbody>
</table>

At
\[T_j = 175 \text{ °C} \]
Figure 1

Typical output characteristics

\[I_D = f(V_{DS}) \]

At

\[t_p = 250 \mu s \]

\[T_j = 25 \degree C \]

\[V_{GS} \text{ from 8 V to 18 V in steps of 1 V} \]

Figure 2

Typical output characteristics

\[I_D = f(V_{GS}) \]

At

\[t_p = 250 \mu s \]

\[T_j = 125 \degree C \]

\[V_{GS} \text{ from 8 V to 18 V in steps of 1 V} \]

Figure 3

Typical transfer characteristics

\[I_D = f(V_{GS}) \]

At

\[t_p = 100 \mu s \]

\[V_{DS} = 10 \text{ V} \]

Figure 4

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

\[t_p = 250 \mu s \]
Figure 5: Typical switching energy losses as a function of collector current

\[E = f(I_D) \]

With an inductive load at

- \(T_j = 25/126 \) °C
- \(V_{DS} = 400 \) V
- \(V_{GS} = 15 \) V
- \(R_{gon} = 8 \) Ω
- \(R_{goff} = 8 \) Ω

Figure 6: Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_j = 25/126 \) °C
- \(V_{DS} = 400 \) V
- \(V_{GS} = 15 \) V
- \(I_D = 30 \) A

Figure 7: Typical reverse recovery energy loss as a function of collector (drain) current

\[E_{rec} = f(I_c) \]

With an inductive load at

- \(T_j = 25/126 \) °C
- \(V_{DS} = 400 \) V
- \(V_{GS} = 15 \) V
- \(R_{gon} = 8 \) Ω
- \(R_{goff} = 8 \) Ω

Figure 8: Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

- \(T_j = 25/126 \) °C
- \(V_{DS} = 400 \) V
- \(V_{GS} = 15 \) V
- \(I_D = 30 \) A
Figure 9
Typical switching times as a function of collector current

\[t = f(I_c) \]

With an inductive load at

\[T_j = 126 \, ^\circ C \]
\[V_{DS} = 400 \, V \]
\[V_{GS} = 15 \, V \]
\[R_{gon} = 8 \, \Omega \]
\[R_{gof} = 8 \, \Omega \]

Figure 10
Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at

\[T_j = 126 \, ^\circ C \]
\[V_{DS} = 400 \, V \]
\[V_{GS} = 15 \, V \]
\[I_c = 30 \, A \]

Figure 11
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_c) \]

At

\[T_j = 25/126 \, ^\circ C \]
\[V_{DS} = 400 \, V \]
\[V_{GS} = 15 \, V \]
\[R_{gon} = 8 \, \Omega \]

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At

\[T_j = 25/126 \, ^\circ C \]
\[V_{DS} = 400 \, V \]
\[V_{GS} = 15 \, V \]
\[I_t = 30 \, A \]
\[V_{GS} = 15 \, V \]
INPUT BOOST (T1, T2 / D1, D4)

Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

At
\[T_J = 25/126 ^\circ C \]
\[V_{CE} = 400 \text{ V} \]
\[V_{CE} = 15 \text{ V} \]
\[R_{gon} = 8 \Omega \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

At
\[T_J = 25/126 ^\circ C \]
\[V_{INP} = 400 \text{ V} \]
\[I_F = 30 \text{ A} \]
\[V_{GS} = 15 \text{ V} \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

At
\[T_J = 25/126 ^\circ C \]
\[V_{INP} = 400 \text{ V} \]
\[I_F = 30 \text{ A} \]
\[V_{GS} = 15 \text{ V} \]

Copyright by Vincotech
INPUT BOOST (T1, T2 / D1, D4)

Figure 17
BOOST FWD

Typical rate of fall of forward and reverse recovery current as a function of collector current

\[\frac{dI_c}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At

- \(T_j = 25/126 \) °C
- \(V_{CE} = 400 \) V
- \(V_{GE} = 15 \) V
- \(R_{gon} = 8 \) Ω

Figure 18
BOOST FWD

Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[\frac{dI_c}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

At

- \(T_j = 25/126 \) °C
- \(V_{GE} = 15 \) V
- \(I_F = 30 \) A
- \(V_{GS} = 15 \) V

Figure 19
BOOST IGBT

IGBT/MOSFET transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

At

- \(D = 0.5 \)
- \(R_{thJH} = 1.13 \) K/W
- \(\frac{t_p}{T} \)
- \(R_{thJH} = 1.08 \) K/W

Figure 20
BOOST FWD

FWD transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

At

- \(D = 0.5 \)
- \(R_{thJH} = 1.08 \) K/W
- \(\frac{t_p}{T} \)

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R) (C/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,12E-02</td>
<td>8,15E+00</td>
</tr>
<tr>
<td>1,29E-01</td>
<td>6,00E-01</td>
</tr>
<tr>
<td>4,31E-01</td>
<td>9,13E-02</td>
</tr>
<tr>
<td>3,15E-01</td>
<td>2,59E-02</td>
</tr>
<tr>
<td>1,31E-01</td>
<td>5,80E-03</td>
</tr>
<tr>
<td>5,02E-02</td>
<td>8,53E-04</td>
</tr>
</tbody>
</table>

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (C/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,58E-02</td>
<td>4,07E+00</td>
</tr>
<tr>
<td>1,01E-01</td>
<td>6,75E-01</td>
</tr>
<tr>
<td>4,35E-01</td>
<td>9,24E-02</td>
</tr>
<tr>
<td>2,93E-01</td>
<td>2,59E-02</td>
</tr>
<tr>
<td>1,10E-01</td>
<td>4,04E-03</td>
</tr>
<tr>
<td>8,25E-02</td>
<td>8,42E-04</td>
</tr>
</tbody>
</table>
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

Figure 21

At

\[T_j = 175 \degree C \]

Collector/Drain current as a function of heatsink temperature

\[I_{C} = f(T_h) \]

Figure 22

At

\[T_j = 175 \degree C \]

\[V_{GS} = 15 \text{ V} \]

Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

Figure 23

At

\[T_j = 175 \degree C \]

Forward current as a function of heatsink temperature

\[I_{F} = f(T_h) \]

Figure 24

At

\[T_j = 175 \degree C \]
Figure 25
BOOST IGBT

Safe operating area as a function of drain-source voltage

\[I_D = f(V_{DS}) \]

<table>
<thead>
<tr>
<th>(V_{GS})</th>
<th>(Q_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

At
- \(D = \) single pulse
- \(T_0 = \) 80°C
- \(V_{GS} = \) 15 V
- \(T_j = T_{j,max} \) °C

Figure 26
BOOST IGBT

Gate voltage vs Gate charge

\[V_{GS} = f(Q_g) \]

At
- \(I_C = 50 \) A
- 130V
- 520V

Figure 29
IGBT

Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

<table>
<thead>
<tr>
<th>(V_{CE})</th>
<th>(I_C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

At
- \(T_j = T_{j,max} - 25 \) °C
- \(R_{PD} = 8 \) Ω
- \(U_{COMAX} = U_{ELPLUS} \)
- \(R_{PDH} = 8 \) Ω

Switching mode: 3 level switching
Bypass Diode (D7, D8)

Figure 1
Typical diode forward current as a function of forward voltage

$I_F = f(V_F)$

![Graph](image)

At

$\tau_p = 250 \mu s$

Figure 2
Diode transient thermal impedance as a function of pulse width

$Z_{thJH} = f(t_p)$

![Graph](image)

At

$D = \frac{\tau_p}{T}$

$R_{thJH} = 1.67 \text{ K/W}$

Figure 3
Power dissipation as a function of heatsink temperature

$P_{tot} = f(T_h)$

![Graph](image)

At

$T_j = 150 ^\circ C$

Figure 4
Forward current as a function of heatsink temperature

$I_F = f(T_h)$

![Graph](image)

At

$T_j = 150 ^\circ C$

Copyright by Vincotech

Revision: 2.1
Figure 1

Thermistor

Typical NTC characteristic as a function of temperature

$R_T = f(T)$
Switching Definitions INPUT BOOST

General conditions

\[
\begin{align*}
T_{J} & = 125 \, ^{\circ}\text{C} \\
R_{\text{on}} & = 8 \, \Omega \\
R_{\text{off}} & = 8 \, \Omega
\end{align*}
\]

Figure 1: Input Boost IGBT

Turn-off Switching Waveforms & definition of \(t_{\text{off}}, t_{\text{on}} \)

\((t_{\text{off}} = \text{integrating time for } E_{\text{off}}) \)

\[
\begin{align*}
V_{\text{GE}} (0\%) & = 0 \, \text{ V} \\
V_{\text{GE}} (100\%) & = 15 \, \text{ V} \\
V_{\text{CE}} (100\%) & = 400 \, \text{ V} \\
l_{\text{C}} (100\%) & = 30 \, \text{ A} \\
t_{\text{off}} & = 0.168 \, \mu\text{s} \\
t_{\text{on}} & = 0.215 \, \mu\text{s}
\end{align*}
\]

Figure 2: Input Boost IGBT

Turn-on Switching Waveforms & definition of \(t_{\text{on}}, t_{\text{on}} \)

\((t_{\text{on}} = \text{integrating time for } E_{\text{on}}) \)

\[
\begin{align*}
V_{\text{GE}} (0\%) & = 0 \, \text{ V} \\
V_{\text{GE}} (100\%) & = 15 \, \text{ V} \\
V_{\text{CE}} (100\%) & = 400 \, \text{ V} \\
l_{\text{C}} (100\%) & = 30 \, \text{ A} \\
t_{\text{on}} & = 0.022 \, \mu\text{s} \\
t_{\text{on}} & = 0.113 \, \mu\text{s}
\end{align*}
\]

Figure 3: Input Boost IGBT

Turn-off Switching Waveforms & definition of \(t_{f} \)

\[
\begin{align*}
V_{\text{CE}} (100\%) & = 400 \, \text{ V} \\
l_{\text{C}} (100\%) & = 30 \, \text{ A} \\
t_{f} & = 0.007 \, \mu\text{s}
\end{align*}
\]

Figure 4: Input Boost IGBT

Turn-on Switching Waveforms & definition of \(t_{r} \)

\[
\begin{align*}
V_{\text{CE}} (100\%) & = 400 \, \text{ V} \\
l_{\text{C}} (100\%) & = 30 \, \text{ A} \\
t_{r} & = 0.007 \, \mu\text{s}
\end{align*}
\]

Copyright by Vincotech

Revision: 2.1
Switching Definitions INPUT BOOST

Figure 5 Input Boost IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- P_{off} (100%) = 12.00 kW
- E_{off} (100%) = 0.29 mJ
- t_{Eoff} = 0.22 µs

Figure 6 Input Boost IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- P_{on} (100%) = 12.00 kW
- E_{on} (100%) = 0.60 mJ
- t_{Eon} = 0.11 µs

Figure 7 Input Boost IGBT
Gate voltage vs Gate charge (measured)

- V_{GEoff} = 0 V
- V_{GEon} = 15 V
- $V_{c}(100\%)$ = 400 V
- $I_{c}(100\%)$ = 30 A
- Q_{g} = 101 nC

Figure 8 Input Boost FWD
Turn-off Switching Waveforms & definition of t_{f}

- $V_{d}(100\%)$ = 400 V
- $I_{d}(100\%)$ = 30 A
- $I_{\text{final }}$ (100%) = -56 A
- t_{f} = 0.056 µs
Switching Definitions INPUT BOOST

Figure 9

Input Boost FWD

Turn-on Switching Waveforms & definition of t_{Qrr}

(t_{Qrr} = integrating time for Q_{rr})

$I_d (100\%) = 30$ A

$Q_{rr} (100\%) = 1.46$ μC

$t_{Qrr} = 0.11$ μs

Figure 10

Input Boost FWD

Turn-on Switching Waveforms & definition of t_{Erec}

(t_{Erec} = integrating time for E_{rec})

$P_{rec} (100\%) = 12.00$ kW

$E_{rec} (100\%) = 0.28$ mJ

$t_{Erec} = 0.11$ μs
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12mm housing</td>
<td>V23990-P623-L82-PM</td>
<td>P623L82</td>
<td>P623L82</td>
</tr>
<tr>
<td>with thermal paste 12mm housing</td>
<td>V23990-P623-L82/-3/-PM</td>
<td>P623L82</td>
<td>P623L82</td>
</tr>
</tbody>
</table>

Outline

![Outline Diagram](image)

Pinout

![Pinout Diagram](image)

Copyright by Vincotech

Revision: 2.1
DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.