V23990-P589-*4*-PM datasheet

flow PIM 1
1200 V / 25 A

Features
- Three-phase rectifier, optional BRC, Inverter, NTC
- Very compact housing, easy to route
- IGBT4 / EmCon4 technology for low saturation losses and improved EMC behaviour

Target Applications
- Industrial drives
- Embedded Drives

Types
- V23990-P589-A41-PM
- V23990-P589-A41Y-PM
- V23990-P589-A418-PM
- V23990-P589-A418Y-PM
- V23990-P589-C41-PM
- V23990-P589-C418-PM

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{FSD}</td>
<td></td>
<td>35</td>
<td>A</td>
</tr>
<tr>
<td>Surge (non-repetitive) forward current</td>
<td>I_{FSM}</td>
<td>f_{FSM} = 10 ms, T_{j} = 150°C</td>
<td>280</td>
<td>A</td>
</tr>
<tr>
<td>1st-value</td>
<td>I_{1st}</td>
<td>half sine wave</td>
<td>390</td>
<td>A/s</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{pwm}</td>
<td>T_{j} = T_{j max}, T_{s} = 80 °C</td>
<td>56</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{j max}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Inverter Switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>V_{CE}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_{C}</td>
<td>T_{j} = T_{j max}, T_{s} = 80 °C</td>
<td>32</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CRM}</td>
<td>T_{j} limited by T_{j max}</td>
<td>75</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>V_{CE}</td>
<td>V_{CE} ≤ 1200V, T_{j} ≤ T_{j max}</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{pwm}</td>
<td>T_{j} = T_{j max}, T_{s} = 80 °C</td>
<td>94</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>I_{SC}</td>
<td>T_{j} ≤ 150 °C</td>
<td>10</td>
<td>µs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{j max}</td>
<td>V_{GE} = 15 V</td>
<td>800</td>
<td>V</td>
</tr>
</tbody>
</table>

copyright Vincotech

11 Jul. 2018 / Revision 5
Maximum Ratings

$T_j = 25\, ^\circ C$, unless otherwise specified

Inverter Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_D</td>
<td>$T_j = T_{jmax}$, $T_s = 80, ^\circ C$</td>
<td>29</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{P dissociation}$</td>
<td>I_j limited by T_{jmax}</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>$P_{dissociation}$</td>
<td>$T_j = T_{jmax}$, $T_s = 80, ^\circ C$</td>
<td>60</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Brake Switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>V_{ce}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_{C}</td>
<td>$T_j = T_{jmax}$, $T_s = 80, ^\circ C$</td>
<td>21</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CPEAK}</td>
<td>I_j limited by T_{jmax}</td>
<td>45</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>V_{CE}</td>
<td>$V_{CE} \leq 1200, V$, $T_j \leq T_{jmax}$</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>$P_{dissociation}$</td>
<td>$T_j = T_{jmax}$, $T_s = 80, ^\circ C$</td>
<td>71</td>
<td>W</td>
</tr>
<tr>
<td>Gate–emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>240</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>V_{CC}</td>
<td>$V_{CC} = 15, V$</td>
<td>10</td>
<td>µs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Brake Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_D</td>
<td>$T_j = T_{jmax}$, $T_s = 80, ^\circ C$</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{P dissociation}$</td>
<td>I_j limited by T_{jmax}</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>$P_{dissociation}$</td>
<td>$T_j = T_{jmax}$, $T_s = 80, ^\circ C$</td>
<td>46</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40…+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40…+(T_{jmax} - 25)</td>
<td>°C</td>
</tr>
</tbody>
</table>

Isolation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation voltage</td>
<td>V_{is}</td>
<td>$t = 2, s$</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td>12mm housing</td>
<td>8,06</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17mm housing</td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>CTI</td>
<td></td>
<td>>200</td>
<td></td>
</tr>
</tbody>
</table>

copyright Vincotech
Characteristic Values

Rectifier Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_{FS}</td>
<td>30</td>
<td>1.6</td>
</tr>
<tr>
<td>Threshold voltage (for power loss calc. only)</td>
<td>V_{FM}</td>
<td>30</td>
<td>0.78</td>
</tr>
<tr>
<td>Slope resistance (for power loss calc. only)</td>
<td>r_s</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_{rr}</td>
<td>1600</td>
<td>2</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>1.65</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Inverter Switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GSS}</td>
<td>20</td>
<td>nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gon}</td>
<td>32</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>±15</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td>600</td>
<td>128</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>25</td>
<td>128</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td>25</td>
<td>128</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td>25</td>
<td>4.4</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td>25</td>
<td>1.4</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>25</td>
<td>1400</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>0</td>
<td>115</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rr}</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>phase-change material $= 3.4$ W/mK</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Inverter Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td>25</td>
<td>1.6</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RRM}</td>
<td>25</td>
<td>0.0024</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>25</td>
<td>128</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>25</td>
<td>1.6</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$I_{di/dt}^{(100)}$</td>
<td>25</td>
<td>1722</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{on}</td>
<td>25</td>
<td>4.81</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>phase-change material $= 3.4$ W/mK</td>
<td>K/W</td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Unit</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{ce}</td>
<td>[V]</td>
<td></td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{cesat}</td>
<td>[V]</td>
<td></td>
</tr>
<tr>
<td>Collector-emitter cut-off voltage</td>
<td>V_{ces}</td>
<td>[V]</td>
<td></td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{ge}</td>
<td>[V]</td>
<td></td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{ge}</td>
<td>[A]</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>[nC]</td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>[pF]</td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>[pF]</td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{ies}</td>
<td>[pF]</td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>[ns]</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>[ns]</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>[ns]</td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>[ns]</td>
<td></td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gint}</td>
<td>[Ω]</td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>[ns]</td>
<td></td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{r}</td>
<td>[nC]</td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>dI_{rr}/dt</td>
<td>[mA/μs]</td>
<td></td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td>[mJ]</td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>[ns]</td>
<td></td>
</tr>
<tr>
<td>Reversal current</td>
<td>I_{r}</td>
<td>[μA]</td>
<td></td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{rr}</td>
<td>[μA]</td>
<td></td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{ge}</td>
<td>[μA]</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>[nC]</td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>[pF]</td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>[pF]</td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{ies}</td>
<td>[pF]</td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>[ns]</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>[ns]</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>[ns]</td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>[ns]</td>
<td></td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gint}</td>
<td>[Ω]</td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>[ns]</td>
<td></td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{r}</td>
<td>[nC]</td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>dI_{rr}/dt</td>
<td>[mA/μs]</td>
<td></td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td>[mJ]</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>R_{j-s}</td>
<td>[°C/W]</td>
<td></td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td>[Ω]</td>
<td></td>
</tr>
<tr>
<td>Deviation of R_{on}</td>
<td>A_{4K}</td>
<td>-5 %</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>[mW]</td>
<td></td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>P_{on}</td>
<td>[mW/K]</td>
<td></td>
</tr>
<tr>
<td>B-value</td>
<td>B_{4K}</td>
<td>0.63 %</td>
<td></td>
</tr>
<tr>
<td>B-value</td>
<td>B_{25}</td>
<td>0.63 %</td>
<td></td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td>[Ω]</td>
</tr>
<tr>
<td>Deviation of R_{on}</td>
<td>A_{4K}</td>
<td>-5 %</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>[mW]</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>P_{on}</td>
<td>[mW/K]</td>
</tr>
<tr>
<td>B-value</td>
<td>B_{4K}</td>
<td>0.63 %</td>
</tr>
<tr>
<td>B-value</td>
<td>B_{25}</td>
<td>0.63 %</td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td>[°C/W]</td>
</tr>
<tr>
<td>Deviation of R_{on}</td>
<td>A_{4K}</td>
<td>-5 %</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>[mW]</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>P_{on}</td>
<td>[mW/K]</td>
</tr>
<tr>
<td>B-value</td>
<td>B_{4K}</td>
<td>0.63 %</td>
</tr>
<tr>
<td>B-value</td>
<td>B_{25}</td>
<td>0.63 %</td>
</tr>
</tbody>
</table>

Vincotech NTC Reference

B
Inverter Characteristics

Figure 1
Typical output characteristics

\[I_C = f(V_{CE}) \]

At
- \(t_p = 250 \ \mu s \)
- \(T_j = 25 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics

\[I_C = f(V_{CE}) \]

At
- \(t_p = 250 \ \mu s \)
- \(T_j = 150 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics

\[I_C = f(V_{GE}) \]

At
- \(t_p = 250 \ \mu s \)
- \(V_{CE} = 10 \ \text{V} \)

Figure 4
Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At
- \(t_p = 250 \ \mu s \)
Inverter Characteristics

Figure 5 Inverter IGBT
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]

With an inductive load at
- \(T_j = 25/150 \) °C
- \(V_{CE} = 600 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 32 \) Ω
- \(I_C = 25 \) A

Figure 6 Inverter IGBT
Typical switching energy losses as a function of gate resistor
\[E = f(R_{G}) \]

With an inductive load at
- \(T_j = 25/150 \) °C
- \(V_{CE} = 600 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 25 \) A

Figure 7 Inverter FWD
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_C) \]

With an inductive load at
- \(T_j = T_{jmax} - 25 \) °C
- \(V_{CE} = 600 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{goff} = 32 \) Ω

Figure 8 Inverter FWD
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_{G}) \]

With an inductive load at
- \(T_j = T_{jmax} - 25 \) °C
- \(V_{CE} = 600 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 25 \) A
Inverter Characteristics

Figure 9
Typical switching times as a function of collector current
$t = f(I_C)$

With an inductive load at
$T_J = 150 \, ^\circ C$
$V_{CE} = 600 \, V$
$V_{GE} = \pm 15 \, V$
$R_{gon} = 32 \, \Omega$

Figure 10
Typical switching times as a function of gate resistor
$t = f(R_g)$

With an inductive load at
$T_J = 150 \, ^\circ C$
$V_{CE} = 600 \, V$
$V_{GE} = \pm 15 \, V$
$I_C = 25 \, A$

Figure 11
Typical reverse recovery time as a function of collector current
$t_{rr} = f(I_C)$

At
$T_J = 25/150 \, ^\circ C$
$V_{CE} = 600 \, V$
$V_{GE} = \pm 15 \, V$
$R_{gon} = 32 \, \Omega$

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
$t_{rr} = f(R_{gon})$

At
$T_J = 25/150 \, ^\circ C$
$V_s = 600 \, V$
$I_f = 25 \, A$
$V_{GE} = \pm 15 \, V$
Inverter Characteristics

Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

![Graph showing typical reverse recovery charge as a function of collector current.](image)

At
- \(T_j = 25/150 \) °C
- \(V_{CE} = 600 \) V
- \(V_{GE} = \pm15 \) V
- \(R_{gon} = 32 \) Ω

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

![Graph showing typical reverse recovery charge as a function of gate resistor.](image)

At
- \(T_j = 25/150 \) °C
- \(V_s = 600 \) V
- \(I_f = 25 \) A
- \(V_{GE} = \pm15 \) V

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

![Graph showing typical reverse recovery current as a function of collector current.](image)

At
- \(T_j = 25/150 \) °C
- \(V_{CE} = 600 \) V
- \(V_{GE} = \pm15 \) V
- \(R_{gon} = 32 \) Ω

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

![Graph showing typical reverse recovery current as a function of gate resistor.](image)

At
- \(T_j = 25/150 \) °C
- \(V_s = 600 \) V
- \(I_f = 25 \) A
- \(V_{GE} = \pm15 \) V
Inverter Characteristics

Figure 17 Inverter FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI}{dt} = f(I) \]

At
\[T_j = 25/150 \degree C \]
\[V_{CE} = 600 \ V \]
\[V_{GE} = \pm 15 \ V \]
\[R_{gon} = 32 \ \Omega \]

Figure 18 Inverter FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI}{dt} = f(R_{gon}) \]

At
\[T_j = 25/150 \degree C \]
\[V_{GS} = 600 \ V \]
\[I_F = 25 \ A \]
\[V_{GE} = \pm 15 \ V \]

Figure 19 Inverter IGBT
IGBT transient thermal impedance as a function of pulse width
\[Z_{th(j-s)} = f(t_p) \]

At
\[D = t_p / T \]
\[R_{th(j-s)} = 1.01 \ K/W \]

Table: IGBT thermal model values

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.44E-02</td>
<td>1.03E+00</td>
</tr>
<tr>
<td>2.46E-01</td>
<td>1.79E-01</td>
</tr>
<tr>
<td>4.48E-01</td>
<td>5.38E-02</td>
</tr>
<tr>
<td>1.38E-01</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>5.48E-02</td>
<td>1.66E-03</td>
</tr>
<tr>
<td>3.85E-02</td>
<td>8.73E-04</td>
</tr>
</tbody>
</table>

Figure 20 Inverter FWD
FWD transient thermal impedance as a function of pulse width
\[Z_{th(j-s)} = f(t_p) \]

At
\[D = t_p / T \]
\[R_{th(j-s)} = 1.59 \ K/W \]

Table: FWD thermal model values

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.80E-02</td>
<td>2.61E+00</td>
</tr>
<tr>
<td>3.11E-01</td>
<td>2.04E-01</td>
</tr>
<tr>
<td>6.92E-01</td>
<td>4.64E-02</td>
</tr>
<tr>
<td>2.79E-01</td>
<td>8.74E-03</td>
</tr>
<tr>
<td>9.99E-02</td>
<td>1.79E-03</td>
</tr>
<tr>
<td>1.35E-01</td>
<td>3.39E-04</td>
</tr>
</tbody>
</table>
Inverter Characteristics

Figure 21
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]

Figure 22
Collector current as a function of heatsink temperature

\[I_C = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]
\[V_{CE} = 15 \, V \]

Figure 23
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]

Figure 24
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]
Inverter Characteristics

Figure 25
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

At
\[D = \text{single pulse} \]
\[T_n = 80 \degree C \]
\[V_{GE} = \pm 15 \text{ V} \]
\[T_j = T_{j_{max}} \]

Figure 26
Gate voltage vs Gate charge

\[V_{GE} = f(Q_{GE}) \]

At
\[I_C = 25 \text{ A} \]

Figure 27
Short circuit withstand time as a function of gate-emitter voltage

\[t_{sc} = f(V_{GE}) \]

At
\[V_{CE} = 1200 \text{ V} \]
\[T_j \leq 175 \degree C \]

Figure 28
Typical short circuit collector current as a function of gate-emitter voltage

\[I_C = f(V_{CE}) \]

At
\[V_{CE} \leq 1200 \text{ V} \]
\[T_j = 175 \degree C \]
Figure 29 Inverter IGBT
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At
\[T_j = T_{jmax} - 25 \, ^\circ C \]
Brake Characteristics

Figure 1
Brake IGBT
Typical output characteristics
$I_C = f(V_{CE})$

![Graph showing typical output characteristics with $I_C = f(V_{CE})$](image1)

At
$t_p = 250 \ \mu s$
$T_j = 25 ^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2
Brake IGBT
Typical output characteristics
$I_C = f(V_{CE})$

![Graph showing typical output characteristics with $I_C = f(V_{CE})$](image2)

At
$t_p = 250 \ \mu s$
$T_j = 150 ^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3
Brake IGBT
Typical transfer characteristics
$I_C = f(V_{GE})$

![Graph showing typical transfer characteristics with $I_C = f(V_{GE})$](image3)

At
$t_p = 250 \ \mu s$
$V_{CE} = 10 \ \text{V}$

Figure 4
Brake FWD
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$

![Graph showing typical diode forward current as a function of forward voltage with $I_F = f(V_F)$](image4)

At
$t_p = 250 \ \mu s$
Brake Characteristic

Figure 5 Brake IGBT
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]

With an inductive load at
- \(T_J = 25/150 \) °C
- \(V_{CE} = 600 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 32 \) Ω
- \(I_C = 15 \) A

Figure 6 Brake IGBT
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
- \(T_J = 25/150 \) °C
- \(V_{CE} = 600 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 15 \) A

Figure 7 Brake FWD
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_C) \]

With an inductive load at
- \(T_J = 25/150 \) °C
- \(V_{CE} = 600 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 32 \) Ω

Figure 8 Brake FWD
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_J = 25/150 \) °C
- \(V_{CE} = 600 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 15 \) A
Brake Characteristics

Figure 9
Typical switching times as a function of collector current

\[t = f(I_c) \]

With an inductive load at

- \(T_j = 25/150 \) °C
- \(V_{CE} = 600 \) V
- \(V_{CE} = \pm 15 \) V
- \(R_{gon} = 32 \) Ω
- \(R_{goff} = 32 \) Ω

Figure 10
Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at

- \(T_j = 25/150 \) °C
- \(V_{CE} = 600 \) V
- \(V_{CE} = \pm 15 \) V
- \(I_c = 15 \) A

Figure 11
IGBT transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

At

- \(D = 0.5 \)
- \(0.2 \)
- \(0.1 \)
- \(0.05 \)
- \(0.02 \)
- \(0.01 \)
- \(0.005 \)
- \(0.000 \)

\[R_{th(j-s)} = 1.35 \text{ K/W} \]

Figure 12
FWD transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

At

- \(D = 0.5 \)
- \(0.2 \)
- \(0.1 \)
- \(0.05 \)
- \(0.02 \)
- \(0.01 \)
- \(0.005 \)
- \(0.000 \)

\[R_{th(j-s)} = 2.07 \text{ K/W} \]
Brake Characteristics

Figure 13 Brake IGBT
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_s) \]

![Graph showing power dissipation as a function of heatsink temperature](image)

At
\[T_j = 175 \, ^\circ C \]

Figure 14 Brake IGBT
Collector current as a function of heatsink temperature
\[I_C = f(T_s) \]

![Graph showing collector current as a function of heatsink temperature](image)

At
\[T_j = 175 \, ^\circ C \]
\[V_{CE} = 15 \, V \]

Figure 15 Brake FWD
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_s) \]

![Graph showing power dissipation as a function of heatsink temperature](image)

At
\[T_j = 175 \, ^\circ C \]

Figure 16 Brake FWD
Forward current as a function of heatsink temperature
\[I_F = f(T_s) \]

![Graph showing forward current as a function of heatsink temperature](image)

At
\[T_j = 175 \, ^\circ C \]
Rectifier Diode Characteristics

Figure 1
Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

![Graph showing forward current (IF) as a function of forward voltage (VF).](image)

At
\[t_p = 250 \mu s \]

Figure 2
Diode transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

![Graph showing transient thermal impedance (Zth) as a function of pulse width (tp).](image)

At
\[D = \frac{t_p}{T} \quad R_{n(j-s)} = 1.25 \text{ K/W} \]

Figure 3
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_s) \]

![Graph showing power dissipation (Ptot) as a function of heatsink temperature (Ts).](image)

At
\[T_j = 150 \degree C \]

Figure 4
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

![Graph showing forward current (IF) as a function of heatsink temperature (Ts).](image)

At
\[T_j = 150 \degree C \]
Thermistor Characteristics

Figure 1

Typical NTC characteristic as a function of temperature
\[R_T = f(T) \]
Switching Definitions Inverter

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>150 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>32 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>32 Ω</td>
</tr>
</tbody>
</table>

Figure 1

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

- $V_{GE}(0\%) = -15$ V
- $V_{GE}(100\%) = 15$ V
- $I_C(100\%) = 25$ A
- $t_{doff} = 0.28 \mu$s
- $t_{Eoff} = 0.66 \mu$s

Figure 2

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

- $V_{CE}(0\%) = -15$ V
- $V_{CE}(100\%) = 15$ V
- $I_C(100\%) = 25$ A
- $t_{don} = 0.13 \mu$s
- $t_{Eon} = 0.43 \mu$s

Figure 3

Turn-off Switching Waveforms & definition of t_i

- $V_C(100\%) = 600$ V
- $I_C(100\%) = 25$ A
- $t_i = 0.10 \mu$s

Figure 4

Turn-on Switching Waveforms & definition of t_r

- $V_C(100\%) = 600$ V
- $I_C(100\%) = 25$ A
- $t_r = 0.03 \mu$s
Switching Definitions Inverter

Figure 5
Inverter Switch
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off} (100\%) = 15.01$ kW
- $E_{off} (100\%) = 2.17$ mJ
- $t_{Eoff} = 0.66$ μs

Figure 6
Inverter Switch
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on} (100\%) = 15.01$ kW
- $E_{on} (100\%) = 2.53$ mJ
- $t_{Eon} = 0.43$ μs

Figure 7
Inverter Switch
Turn-off Switching Waveforms & definition of t_{rr}

- $V_d (100\%) = 600$ V
- $I_d (100\%) = 25$ A
- $I_{RRM} (100\%) = 10$ A
- $t_{rr} = 0.10$ μs
Switching Definitions Inverter

Figure 8
Inverter FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

![Waveform Chart](image)

$I_d (100\%) = 25 \text{ A}$
$Q_{rr} (100\%) = 4.81 \text{ μC}$
$t_{Qrr} = 1.00 \text{ μs}$

Figure 9
Inverter FWD
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

![Waveform Chart](image)

$P_{rec} (100\%) = 15.01 \text{ kW}$
$E_{rec} (100\%) = 1.94 \text{ mJ}$
$t_{Erec} = 1.00 \text{ μs}$
Ordering Code and Marking - Outline - Pinout

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 17mm housing solder pins</td>
<td>V23990-P589-A41-PM</td>
</tr>
<tr>
<td>with thermal paste 17mm housing solder pins</td>
<td>V23990-P589-A41J-PM</td>
</tr>
<tr>
<td>with thermal paste 17mm housing Press-fit pins</td>
<td>V23990-P589-A41V-PM</td>
</tr>
<tr>
<td>without thermal paste 12mm housing solder pins</td>
<td>V23990-P589-A41B-PM</td>
</tr>
<tr>
<td>without thermal paste 12mm housing Press-fit</td>
<td>V23990-P589-A41BY-PM</td>
</tr>
<tr>
<td>without thermal paste 17mm housing solder pins without brake</td>
<td>V23990-P589-C41-PM</td>
</tr>
<tr>
<td>with thermal paste 12mm housing solder pins without brake</td>
<td>V23990-P589-C41B-PM</td>
</tr>
</tbody>
</table>

Outline

<table>
<thead>
<tr>
<th>Pin table</th>
<th>module</th>
<th>without pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS89-C41</td>
<td>1, 31, 32</td>
<td></td>
</tr>
</tbody>
</table>

12mm housing, Press-fit pins

17mm housing, solder pins

17mm housing, Press-fit pins

Pin X Y Function
1 52,55 0 BrG
2 47,7 0 DC-
3 44,8 0 DC-
4 37,8 0 DC+
5 35 0 Inv+
6 35 2,8 Inv+
7 28 0 R1
8 25,2 0 R2
9 22,4 0 N6
10 19,6 0 G6
11 16,8 0 S6
12 14 0 N4
13 11,2 0 G4
14 8,4 0 S4
15 5,6 0 N2
16 2,8 0 G2
17 0 0 S2
18 0 28,5 U
19 2,8 28,5 G1
20 2,8 28,5 S1
21 14,5 28,5 V
22 17,2 28,5 G3
23 22 28,5 S3
24 29 28,5 W
25 31,8 28,5 G5
26 36,5 28,5 S5
27 43,5 28,5 L1
28 52,55 25 L2
29 52,55 16,9 L3
30 52,55 8,6 BrC
31 52,55 2,8 BrE
Ordering Code and Marking - Outline - Pinout

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>D8, D9, D10</td>
<td>Diode</td>
<td>1600 V</td>
<td>35 A</td>
<td>Rectifier Diode</td>
<td></td>
</tr>
<tr>
<td>D11, D12, D13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1, T2, T3, T4, T5, T6</td>
<td>IGBT</td>
<td>1200 V</td>
<td>25 A</td>
<td>Inverter Switch</td>
<td></td>
</tr>
<tr>
<td>D1, D2, D3, D4, D5, D6</td>
<td>FWD</td>
<td>1200 V</td>
<td>25 A</td>
<td>Inverter Diode</td>
<td></td>
</tr>
<tr>
<td>T7</td>
<td>IGBT</td>
<td>1200 V</td>
<td>15 A</td>
<td>Brake Switch</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>FWD</td>
<td>1200 V</td>
<td>10 A</td>
<td>Brake Diode</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>NTC</td>
<td></td>
<td></td>
<td></td>
<td>Thermistor</td>
</tr>
</tbody>
</table>

Copyright Vincotech 23 11 Jul. 2018 / Revision 5
DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.