<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>V_{RRM}</td>
<td>$I_f = I_{pos}$</td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>$I_{f,DC}$</td>
<td>$T_s = 80 , ^\circ C$</td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td>Surge (non-repetitive) forward current</td>
<td>I_{VM}</td>
<td>$T_s = 10 , ms$</td>
<td>230</td>
<td>A</td>
</tr>
<tr>
<td>I2t-value</td>
<td>$I_{f,t}$</td>
<td>$T_s = 80 , ^\circ C$</td>
<td>260</td>
<td>A²s</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_s = 80 , ^\circ C$</td>
<td>51</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j,max}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Inverter Switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>V_{CE}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_s = 80 , ^\circ C$</td>
<td>21</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CRM}</td>
<td>I_f limited by I_{pos}</td>
<td>45</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_s = 80 , ^\circ C$</td>
<td>59</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j,max}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_j = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RSM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_f</td>
<td>$T_j = T_{pass}$, $T_s = 80 , ^\circ C$</td>
<td>21</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{pass}$, $T_s = 80 , ^\circ C$</td>
<td>58</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Brake Switch				
Collector-emitter breakdown voltage	V_{DC}		1200	V
DC collector current	I_c	$T_j = T_{pass}$, $T_s = 80 \, ^\circ C$	11	A
Repetitive peak collector current	I_{CEM}	T_j limited by T_{pass}	24	A
Power dissipation	P_{tot}	$T_j = T_{pass}$, $T_s = 80 \, ^\circ C$	46	W
Gate-emitter peak voltage	V_{GE}		820	V
Maximum Junction Temperature	T_{jmax}		150	°C

Brake Diode				
Peak Repetitive Reverse Voltage	V_{RSM}		1200	V
DC forward current	I_f	$T_j = T_{pass}$, $T_s = 80 \, ^\circ C$	8	A
Power dissipation	P_{tot}	$T_j = T_{pass}$, $T_s = 80 \, ^\circ C$	28	W
Maximum Junction Temperature	T_{jmax}		175	°C

Thermal Properties				
Storage temperature	T_{stg}		-40...+125	°C
Operation temperature under switching condition	T_{op}		-40...+(T_{pass} - 25)	°C

Isolation Properties				
Isolation voltage	V_{i}	$t = 2 \, s$, DC Test Voltage	4000	V
Creepage distance			min 12,7	mm
Clearance			min 12,7	mm
Comparative tracking index	CTI		>200	

\[\text{copyright Vincotech} \]
Rectifier Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>(V_F)</td>
<td>25</td>
<td>30 (Min)</td>
</tr>
<tr>
<td>Threshold voltage (for power loss calc.)</td>
<td>(V_{br})</td>
<td>25, 125</td>
<td>1.23 (Min)</td>
</tr>
<tr>
<td>Slope resistance (for power loss calc.)</td>
<td>(r_v)</td>
<td>25</td>
<td>30 (Min)</td>
</tr>
<tr>
<td>Reverse current</td>
<td>(I_v)</td>
<td>15</td>
<td>16 (Typ)</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{th(j-s)})</td>
<td>phase-change material (s = 3.4 , \text{W/mK})</td>
<td>1.36 (Max)</td>
</tr>
</tbody>
</table>

Inverter Switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>(V_{GEMI})</td>
<td>0.0005</td>
<td>0 (Min)</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>(V_{CEsat})</td>
<td>15</td>
<td>16 (Typ)</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl. Diode</td>
<td>(I_{COSS})</td>
<td>0</td>
<td>1200 (Max)</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>(I_{EISS})</td>
<td>20</td>
<td>0 (Max)</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>(R_{PN})</td>
<td>none</td>
<td>Ω (Max)</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{on})</td>
<td>25</td>
<td>600 (Min)</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{off})</td>
<td>15</td>
<td>15 (Max)</td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_{r})</td>
<td>±15</td>
<td>600 (Max)</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_{f})</td>
<td>15</td>
<td>125 (Max)</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>(E_{on})</td>
<td>5</td>
<td>5 (Min)</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>(E_{off})</td>
<td>1.35</td>
<td>6.5 (Max)</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{in})</td>
<td>15</td>
<td>1.69 (Max)</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{oss})</td>
<td>25</td>
<td>58 (Max)</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{rss})</td>
<td>0</td>
<td>48 (Max)</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{th(j-s)})</td>
<td>phase-change material (s = 3.4 , \text{W/mK})</td>
<td>1.19 (Max)</td>
</tr>
</tbody>
</table>

Inverter Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>(V_D)</td>
<td>15</td>
<td>25 (Min)</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>(I_{RRC})</td>
<td>25</td>
<td>30 (Max)</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{rr})</td>
<td>±15</td>
<td>600 (Max)</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>(Q_{rr})</td>
<td>25</td>
<td>15 (Max)</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(f_{RRC}(V_{ds}=0))</td>
<td>2.57</td>
<td>μC (Max)</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>(E_{on})</td>
<td>2.37</td>
<td>2.48 (Max)</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{th(j-s)})</td>
<td>phase-change material (s = 3.4 , \text{W/mK})</td>
<td>1.64 (Max)</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>(V_{GE(th)})</td>
<td></td>
<td>(V_{CE} = V_{GE})</td>
<td>0.0003</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>(V_{CE sat})</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>(I_{CBO})</td>
<td>0</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>(I_{GON})</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>(R_{gon})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{ON})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_{r})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{OFF})</td>
<td>(R_{pay} = 81 \ \Omega)</td>
<td>15</td>
<td>600</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_{f})</td>
<td>(R_{pay} = 81 \ \Omega)</td>
<td>15</td>
<td>600</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>(E_{on})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>(E_{off})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{iss})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{oss})</td>
<td></td>
<td>(f = 1 \ \text{MHz})</td>
<td>0</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{rss})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{th(j-s)})</td>
<td>phase-change material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>(V_{F})</td>
<td></td>
<td>25</td>
<td>240,8</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(I_{R})</td>
<td>(R_{pay} = 81 \ \Omega)</td>
<td>1200</td>
<td>25</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>(I_{RRM})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{rr})</td>
<td>(R_{pay} = 81 \ \Omega)</td>
<td>15</td>
<td>600</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>(Q_{rr})</td>
<td>(R_{pay} = 81 \ \Omega)</td>
<td>15</td>
<td>600</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(\left(\frac{dI_{RRM}}{dt} \right)_{max})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>(E_{off})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{th(j-s)})</td>
<td>phase-change material</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

copyright Vincotech

24 Aug. 2016 / Revision 2
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V_{GE} [V]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{GS} [V]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{r} [V]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CE} [V]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{DS} [V]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_C [A]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_S [A]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_D [A]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_J [°C]</td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
</tbody>
</table>

Thermistor

- **Rated resistance**
 - R
 - 25
 - 22000
 - Ω

- **Deviation of R_{TH}**
 - $\Delta R/R_{TH} = 1484 \Omega$
 - 100
 - -5
 - 5
 - $\%$

- **Power dissipation**
 - P
 - 25
 - 5
 - mW

- **Power dissipation constant**
 - P_{DC}
 - 25
 - 1.5
 - mW/K

- **B-value**
 - $R_{(25/50)}$
 - 25
 - 3962
 - K

- **B-value**
 - $R_{(25/100)}$
 - 25
 - 4000
 - K

Vincotech NTC Reference
Inverter Characteristics

figure 1.
Typical output characteristics

$I_C = f(V_{CE})$

- At $t_p = 250\ \mu s$
- $T_j = 25\ ^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

figure 2.
Typical output characteristics

$I_C = f(V_{CE})$

- At $t_p = 250\ \mu s$
- $T_j = 125\ ^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

figure 3.
Typical transfer characteristics

$I_C = f(V_{GE})$

- At $t_p = 250\ \mu s$
- $T_j = 25\ ^\circ C$
- $T_j = T_{jmax} - 25\ ^\circ C$

figure 4.
Typical diode forward current as a function of forward voltage

$I_F = f(V_F)$

- At $t_p = 250\ \mu s$
- $T_j = 25\ ^\circ C$
- $T_j = T_{jmax} - 25\ ^\circ C$
Inverter Characteristics

Figure 5. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_c) \]

With an inductive load at

- \(T_j = 125 \, ^\circ C \)
- \(V_{ce} = 600 \, V \)
- \(V_{ce} = \pm 15 \, V \)
- \(R_{gon} = 54 \, \Omega \)
- \(R_{goff} = 54 \, \Omega \)

Figure 6. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at

- \(T_j = 125 \, ^\circ C \)
- \(V_{ce} = 600 \, V \)
- \(V_{ce} = \pm 15 \, V \)
- \(I_c = 15 \, A \)

Figure 7. FWD
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_c) \]

With an inductive load at

- \(T_j = 125 \, ^\circ C \)
- \(V_{ce} = 600 \, V \)
- \(V_{ce} = \pm 15 \, V \)
- \(R_{gon} = 54 \, \Omega \)

Figure 8. FWD
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at

- \(T_j = 125 \, ^\circ C \)
- \(V_{ce} = 600 \, V \)
- \(V_{ce} = \pm 15 \, V \)
- \(I_c = 15 \, A \)
Inverter Characteristics

Figure 9. IGBT

Typical switching times as a function of collector current

$t = f(I_C)$

With an inductive load at

- $T_J = 125 \degree C$
- $V_{CE} = 600 \text{ V}$
- $V_{GE} = \pm 15 \text{ V}$
- $R_{gon} = 54 \Omega$
- $R_{goff} = 54 \Omega$

Figure 10. IGBT

Typical switching times as a function of gate resistor

$t = f(R_G)$

With an inductive load at

- $T_J = 125 \degree C$
- $V_{CE} = 600 \text{ V}$
- $V_{GE} = \pm 15 \text{ V}$
- $I_C = 15 \text{ A}$

Figure 11. FWD

Typical reverse recovery time as a function of collector current

$t_{rr} = f(I_C)$

At

- $T_J = 125 \degree C$
- $V_{CE} = 600 \text{ V}$
- $V_{GE} = \pm 15 \text{ V}$
- $R_{gon} = 54 \Omega$

Figure 12. FWD

Typical reverse recovery time as a function of IGBT turn on gate resistor

$t_{rr} = f(R_{gon})$

At

- $T_J = T_{J_{max}} - 25 \degree C$
- $V_{CE} = 600 \text{ V}$
- $V_{GE} = \pm 15 \text{ V}$
Inverter Characteristics

figure 13. FWD
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

At
\[T_j = 125 \, ^\circ\text{C} \]
\[V_{CE} = 600 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 54 \, \Omega \]

figure 14. FWD
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

At
\[T_j = 125 \, ^\circ\text{C} \]
\[V_{CE} = 600 \, \text{V} \]
\[I_F = 15 \, \text{A} \]
\[V_{GE} = \pm 15 \, \text{V} \]

figure 15. FWD
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

At
\[T_j = 125 \, ^\circ\text{C} \]
\[V_{CE} = 600 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 54 \, \Omega \]

figure 16. FWD
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

At
\[T_j = 125 \, ^\circ\text{C} \]
\[V_{CE} = 600 \, \text{V} \]
\[I_F = 15 \, \text{A} \]
\[V_{GE} = \pm 15 \, \text{V} \]
Typical rate of fall of forward and reverse recovery current as a function of collector current:

\[
\frac{di_f}{dt}, \frac{di_{rec}}{dt} = f(I_C)
\]

At

\[
T_j = 125 \, ^\circ\text{C},
\]
\[
V_{CE} = 600 \, \text{V},
\]
\[
V_{GE} = \pm 15 \, \text{V},
\]
\[
I_F = 15 \, \text{A},
\]
\[
R_{gon} = 54 \, \Omega.
\]

IGBT transient thermal impedance as a function of pulse width:

\[
Z_{th(J-H)} = f(t_p)
\]

At

\[
D = \frac{t_p}{T},
\]
\[
R_{th(J-H)} = 1.19 \, \text{K/W}
\]

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>8.9E+00</td>
</tr>
<tr>
<td>0.19</td>
<td>7.5E-01</td>
</tr>
<tr>
<td>0.53</td>
<td>1.8E-01</td>
</tr>
<tr>
<td>0.24</td>
<td>3.2E-02</td>
</tr>
<tr>
<td>0.12</td>
<td>6.7E-03</td>
</tr>
<tr>
<td>0.07</td>
<td>6.0E-04</td>
</tr>
</tbody>
</table>

FWD transient thermal impedance as a function of pulse width:

\[
Z_{th(J-H)} = f(t_p)
\]

At

\[
D = \frac{t_p}{T},
\]
\[
R_{th(J-H)} = 1.64 \, \text{K/W}
\]

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>5.4E+01</td>
</tr>
<tr>
<td>0.18</td>
<td>1.6E+00</td>
</tr>
<tr>
<td>0.66</td>
<td>2.1E-01</td>
</tr>
<tr>
<td>0.62</td>
<td>5.1E-02</td>
</tr>
<tr>
<td>0.48</td>
<td>1.1E-02</td>
</tr>
<tr>
<td>0.24</td>
<td>1.9E-03</td>
</tr>
</tbody>
</table>
Inverter Characteristics

figure 21. IGBT
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At
\[T_j = 150 \degree C \]

figure 22. IGBT
Collector current as a function of heatsink temperature

\[I_C = f(T_s) \]

At
\[T_j = 150 \degree C \]
\[V_{GE} = 15 \text{ V} \]

figure 23. FWD
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At
\[T_j = 175 \degree C \]

figure 24. FWD
Forward current as a function of heatsink temperature

\[I_f = f(T_s) \]

At
\[T_j = 175 \degree C \]
Inverter Characteristics

figure 25. IGBT

Reverse bias safe operating area

\[I_C = f(V_{ce}) \]

At \[T_j = 125 \, ^\circ C \]
\[R_{gon} = 54 \, \Omega \]
\[R_{goff} = 54 \, \Omega \]
Brake Characteristics

figure 1. IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 250 \ \mu s \)
- \(T_j = 25 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

figure 2. IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 250 \ \mu s \)
- \(T_j = 125 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

figure 3. IGBT

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

At

- \(t_p = 250 \ \mu s \)
- \(V_{CE} = 10 \ \text{V} \)

figure 4. FWD

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

- \(t_p = 250 \ \mu s \)
- \(T_j = T_{jmax} - 25 \ ^\circ C \)
Brake Characteristics

figure 5. IGBT

Figure 5.

Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

\(T_j = 125 \, ^\circ \text{C} \)
\(V_{CE} = 600 \, \text{V} \)
\(V_{GE} = \pm 15 \, \text{V} \)
\(R_{gon} = 81 \, \Omega \)
\(I_C = 8 \, \text{A} \)

figure 6. IGBT

Figure 6.

Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

\(T_j = 125 \, ^\circ \text{C} \)
\(V_{CE} = 600 \, \text{V} \)
\(V_{GE} = \pm 15 \, \text{V} \)
\(I_C = 8 \, \text{A} \)

figure 7. FWD

Figure 7.

Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

\(T_j = 125 \, ^\circ \text{C} \)
\(V_{CE} = 600 \, \text{V} \)
\(V_{GE} = \pm 15 \, \text{V} \)
\(R_{gon} = 81 \, \Omega \)

figure 8. FWD

Figure 8.

Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

\(T_j = 125 \, ^\circ \text{C} \)
\(V_{CE} = 600 \, \text{V} \)
\(V_{GE} = \pm 15 \, \text{V} \)
\(I_C = 8 \, \text{A} \)
Brake Characteristics

figure 9.
IGBT

Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(T_j = 125 \, ^\circ C \)
- \(V_{CE} = 600 \, V \)
- \(V_{GS} = \pm 15 \, V \)
- \(R_{gon} = 81 \, \Omega \)
- \(R_{goff} = 81 \, \Omega \)

figure 10.
IGBT

Typical switching times as a function of gate resistor

\[t = f(R_G) \]

With an inductive load at

- \(T_j = 125 \, ^\circ C \)
- \(V_{CE} = 600 \, V \)
- \(V_{GS} = \pm 15 \, V \)
- \(I_C = 8 \, A \)

figure 11.
IGBT

IGBT transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

At

\[D = \frac{t_p}{T} \]

\[R_{th(j-q)} = 1.51 \, \text{K/W} \]

figure 12.
FWD

FWD transient thermal impedance as a function of pulse width

\[Z_{th(j-q)} = f(t_p) \]

At

\[D = \frac{t_p}{T} \]

\[R_{th(j-q)} = 2.10 \, \text{K/W} \]
Brake Characteristics

figure 13. IGBT
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

- At \(T_j = 150 \ ^\circ\text{C} \)

figure 14. IGBT
Collector current as a function of heatsink temperature

\[I_C = f(T_s) \]

- At \(T_j = 150 \ ^\circ\text{C} \)
- \(V_{\text{GE}} = 15 \ \text{V} \)

figure 15. FWD
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

- At \(T_j = 175 \ ^\circ\text{C} \)

figure 16. FWD
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

- At \(T_j = 175 \ ^\circ\text{C} \)
Rectifier Diode Characteristics

figure 1. Rectifier Diode
Typical diode forward current as a function of forward voltage
\[I_F = f(V_F) \]

![Graph 1](image1)

At
\[t_p = 250 \ \mu s \]

figure 2. Rectifier Diode
Diode transient thermal impedance as a function of pulse width
\[Z_{th(j-s)} = f(t_p) \]

![Graph 2](image2)

At
\[D = \frac{t_p}{T_R} \]
\[R_{th(j-s)} = 1,36 \ \text{K/W} \]

figure 3. Rectifier Diode
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

![Graph 3](image3)

At
\[T_j = 150 \ \degree C \]

figure 4. Rectifier Diode
Forward current as a function of heatsink temperature
\[I_F = f(T_j) \]

![Graph 4](image4)

At
\[T_j = 150 \ \degree C \]
figure 1. Thermistor

Typical NTC characteristic as a function of temperature $R_T = f(T)$

![NTC-typical temperature characteristic graph](image)
Switching Definitions Inverter

General conditions
- \(T_j = 125 \, ^\circ C \)
- \(R_{\text{gon}} = 54 \, \Omega \)
- \(R_{\text{goff}} = 54 \, \Omega \)

figure 1. IGBT

Turn-Off Switching Waveforms & definition of \(t_{\text{doff}} \) \(t_{\text{Eoff}} \)

\((t_{\text{Eoff}} = \text{integrating time for } E_{\text{off}}) \)

figure 2. IGBT

Turn-On Switching Waveforms & definition of \(t_{\text{don}} \) \(t_{\text{Eon}} \)

\((t_{\text{Eon}} = \text{integrating time for } E_{\text{on}}) \)

figure 3. IGBT

Turn-Off Switching Waveforms & definition of \(t_{f} \)

\(\)
Switching Definitions Inverter

Figure 5. IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off} (100\%) = 8.97 \text{ kW}$
- $E_{off} (100\%) = 1.67 \text{ mJ}$
- $t_{Eoff} = 0.70 \mu\text{s}$

Figure 6. IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on} (100\%) = 8.97 \text{ kW}$
- $E_{on} (100\%) = 1.69 \text{ mJ}$
- $t_{Eon} = 0.47 \mu\text{s}$

Figure 7. FWD
Turn-off Switching Waveforms & definition of t_{rr}

- $V_{d} (100\%) = 600 \text{ V}$
- $I_{d} (100\%) = 15 \text{ A}$
- $I_{RRM} (100\%) = 32 \text{ A}$
- $t_{rr} = 0.29 \mu\text{s}$
Switching Definitions Inverter

figure 8. FWD
Turn-on Switching Waveforms & definition of t_{Qr}
(t_{Qr} = integrating time for Q_{rr})

$I_d (100\%) = 15 \text{ A}$
$Q_{rr} (100\%) = 2,57 \text{ µC}$
$t_{Qrr} = 0,48 \text{ µs}$

figure 9. FWD
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

$P_{rec} (100\%) = 8,97 \text{ kW}$
$E_{rec} (100\%) = 0,79 \text{ mJ}$
$t_{Erec} = 0,48 \text{ µs}$
Ordering Code & Outline

Pin table [mm]

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52,55</td>
<td>0</td>
<td>BrG</td>
</tr>
<tr>
<td>2</td>
<td>47,7</td>
<td>0</td>
<td>DC-</td>
</tr>
<tr>
<td>3</td>
<td>44,8</td>
<td>0</td>
<td>DC+</td>
</tr>
<tr>
<td>4</td>
<td>37,8</td>
<td>0</td>
<td>DC+</td>
</tr>
<tr>
<td>5</td>
<td>37,8</td>
<td>2,8</td>
<td>DC+</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
<td>0</td>
<td>Inv+</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>2,8</td>
<td>Inv+</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>0</td>
<td>R1</td>
</tr>
<tr>
<td>9</td>
<td>25,2</td>
<td>0</td>
<td>R2</td>
</tr>
<tr>
<td>10</td>
<td>22,4</td>
<td>0</td>
<td>N6</td>
</tr>
<tr>
<td>11</td>
<td>19,6</td>
<td>0</td>
<td>G6</td>
</tr>
<tr>
<td>12</td>
<td>16,8</td>
<td>0</td>
<td>S6</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>0</td>
<td>N4</td>
</tr>
<tr>
<td>14</td>
<td>11,2</td>
<td>0</td>
<td>G4</td>
</tr>
<tr>
<td>15</td>
<td>8,4</td>
<td>0</td>
<td>S4</td>
</tr>
<tr>
<td>16</td>
<td>5,6</td>
<td>0</td>
<td>N2</td>
</tr>
<tr>
<td>17</td>
<td>2,8</td>
<td>0</td>
<td>G2</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
<td>S2</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>28,5</td>
<td>U</td>
</tr>
<tr>
<td>20</td>
<td>2,8</td>
<td>28,5</td>
<td>G1</td>
</tr>
<tr>
<td>21</td>
<td>7,5</td>
<td>28,5</td>
<td>S1</td>
</tr>
<tr>
<td>22</td>
<td>14,5</td>
<td>28,5</td>
<td>V</td>
</tr>
<tr>
<td>23</td>
<td>17,3</td>
<td>28,5</td>
<td>G3</td>
</tr>
<tr>
<td>24</td>
<td>22</td>
<td>28,5</td>
<td>S3</td>
</tr>
<tr>
<td>25</td>
<td>29</td>
<td>28,5</td>
<td>W</td>
</tr>
<tr>
<td>26</td>
<td>31,8</td>
<td>28,5</td>
<td>G5</td>
</tr>
<tr>
<td>27</td>
<td>36,5</td>
<td>28,5</td>
<td>S5</td>
</tr>
<tr>
<td>28</td>
<td>43,5</td>
<td>28,5</td>
<td>L1</td>
</tr>
<tr>
<td>29</td>
<td>52,55</td>
<td>25</td>
<td>L2</td>
</tr>
<tr>
<td>30</td>
<td>52,55</td>
<td>16,9</td>
<td>L3</td>
</tr>
<tr>
<td>31</td>
<td>52,55</td>
<td>8,6</td>
<td>BrC</td>
</tr>
<tr>
<td>32</td>
<td>52,55</td>
<td>2,8</td>
<td>BrE</td>
</tr>
</tbody>
</table>

Outline

![Outline Diagram]

Notes:
- Tolerance of proportions ±0.25mm at the end of pins.
- Dimension of coordinate pins is only offset without tolerance.
Pinout & Identification

Pinout

![Pinout Diagram](image)

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, T2, T3, T4, T5, T6</td>
<td>IGBT</td>
<td>1200 V</td>
<td>15 A</td>
<td>Inverter Diode</td>
<td></td>
</tr>
<tr>
<td>D1, D2, D3, D4, D5, D6</td>
<td>FWD</td>
<td>1200 V</td>
<td>15 A</td>
<td>Inverter Diode</td>
<td></td>
</tr>
<tr>
<td>T7</td>
<td>IGBT</td>
<td>1200 V</td>
<td>8 A</td>
<td>Brake Switch</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>FWD</td>
<td>1200 V</td>
<td>10 A</td>
<td>Brake Diode</td>
<td></td>
</tr>
<tr>
<td>D8, D9, D10</td>
<td>Diode</td>
<td>1200 V</td>
<td>10 A</td>
<td>Rectifier Diode</td>
<td></td>
</tr>
<tr>
<td>D11, D12, D13</td>
<td>Diode</td>
<td>1200 V</td>
<td>30 A</td>
<td>Rectifier Diode</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>Thermistor</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.