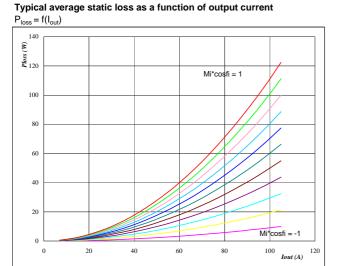


flow1

Output Inverter Application

600V/75A

General conditions

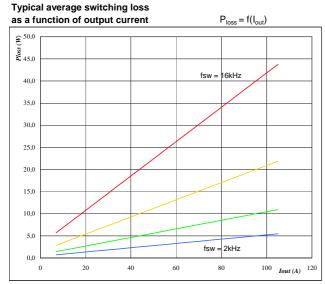

3phase SPWM

15 V V_{GEon} = V_{GEoff} -15 V

 R_{gon} 8Ω =

 R_{goff} 8Ω

Figure 1

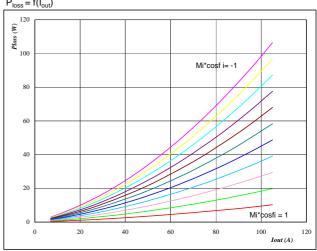


 \mathbf{At} $T_j =$

125 \mathcal{C}

Mi*cosφ from -1 to 1 in steps of 0,2

IGBT Figure 3


Αt

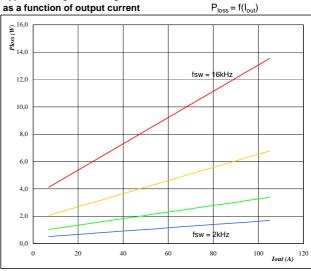
 $T_j =$ 125 \mathcal{C} DC link = 320 ٧

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Typical average static loss as a function of output current

 $P_{loss} = f(I_{out})$

 \mathbf{At} $T_j =$


Figure 4

125 ${\mathfrak C}$

 $Mi^*cos\phi$ from -1 to 1 in steps of 0,2

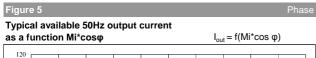
Typical average switching loss

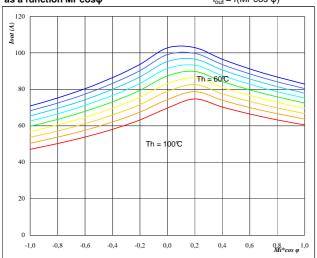
as a function of output current

 $\begin{array}{l} \textbf{At} \\ \textbf{T}_{j} = \end{array}$

125 \mathcal{C}

DC link = 320 ٧

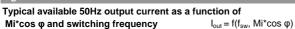

 $f_{\rm sw}$ from 2 kHz to 16 kHz in steps of factor 2

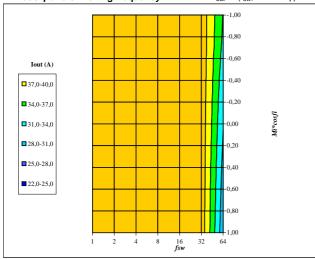


flow1

Output Inverter Application

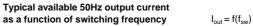
600V/75A

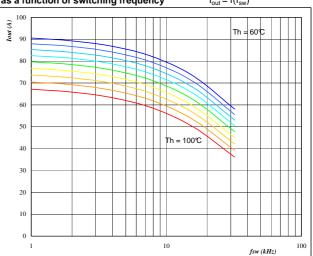




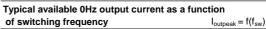
Αt

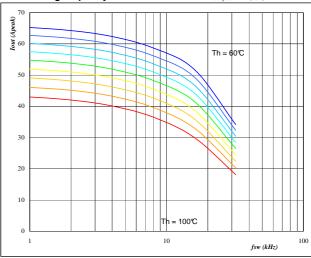
 ${\mathfrak C}$ $T_j =$ 125 DC link = V 320 kHz $f_{sw} =$


60 °C to 100 °C in steps of 5 °C T_h from



Αt		
$T_j =$	125	\mathcal{C}
DC link =	320	V
$T_h =$	80	$\mathcal C$




At

 ${\mathbb C}$ $T_j =$ 125 DC link = 320 ٧

 $Mi^*\cos \varphi = 0.8$

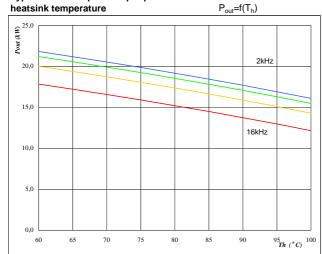
 T_h from 60 ℃ to 100 ℂ in steps of 5 ℂ

Αt

 $T_j =$ 125 \mathcal{C} DC link = 320

 T_h from 60 ${\mathbb C}$ to 100 ${\mathbb C}$ in steps of 5 ${\mathbb C}$

Mi = 0

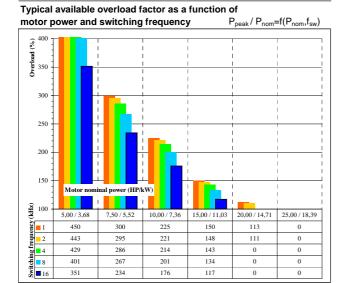


flow1

Output Inverter Application

600V/75A

At T_j =


125 ℃ link = 320 V

DC link = 320 Mi = 1

 $\cos \phi = 0.80$

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

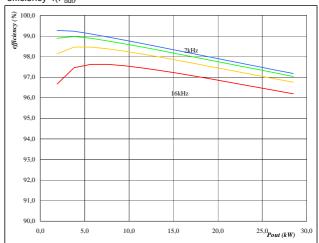
igure 11 Inverte

Αt

 $T_j = 125$ \mathbb{C} DC link = 320 \mathbb{V}

Mi = 1

cos φ= 0,8


f_{sw} from 1 kHz to 16kHz in steps of factor 2

 $T_h = 80$

Motor eff = 0.85

Typical efficiency as a function of output power efficiency= $f(P_{\text{out}})$

Αt

 $T_j = 125$ °C

DC link = 320 V

Mi = 1 cos φ = 0.80

f_{sw} from 2 kHz to 16 kHz in steps of factor 2