

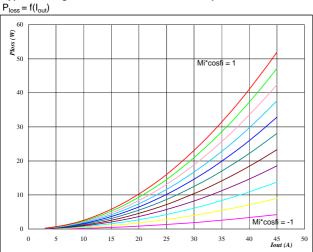
flow1

Output Inverter Application

600V/30A

3phase SPWM

 $V_{GEon} = 15 V$ $V_{GEoff} = -15 V$

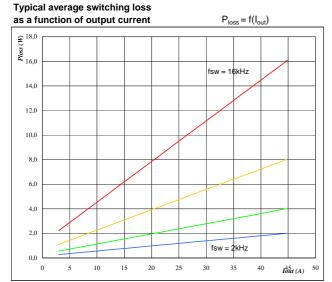

 $R_{gon} = 16 \Omega$

 $R_{goff} = 16 \Omega$

Figure 1

IGRT

Typical average static loss as a function of output current



 $\begin{array}{l} \textbf{At} \\ \textbf{T}_j = \end{array}$

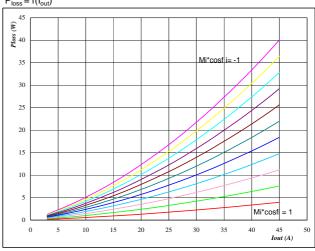
= 125 ℃

Mi*cosφ from -1 to 1 in steps of 0,2

Figure 3 IGBT

Αt

 $T_j =$ 125 \mathbb{C} DC link = 320 \mathbb{V}

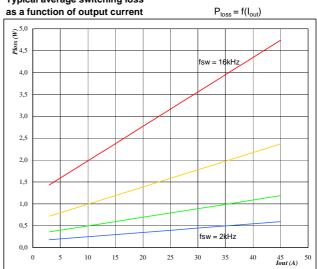

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

iqure 2

FWD

Typical average static loss as a function of output current

 $P_{loss} = f(I_{out})$



At T_j =

j = 125 ℃

Figure 4 Typical average switching loss

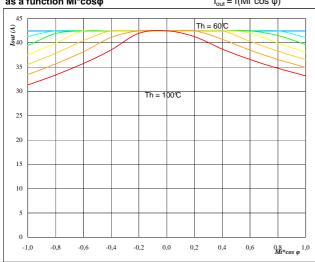
 $\mbox{Mi*}\mbox{cos}\phi$ from -1 to 1 in steps of 0,2

 $\begin{array}{l} \textbf{At} \\ \textbf{T}_j = \end{array}$

 $T_j = 125$ °C

DC link = 320 V

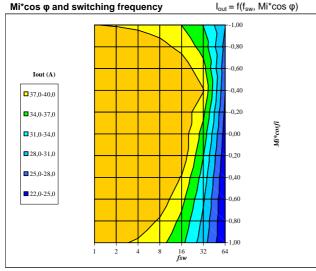
 f_{sw} from 2 kHz to 16 kHz in steps of factor 2


flow1

Output Inverter Application

Phase

600V/30A



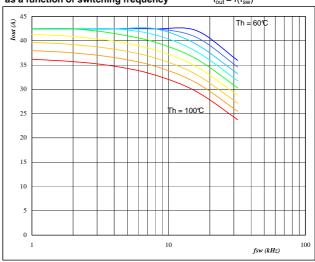
Αt

 ${\mathfrak C}$ $T_j =$ 125 DC link = V 320 kHz $f_{sw} =$

60 °C to 100 °C in steps of 5 °C T_h from

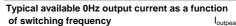
Typical available 50Hz output current as a function of

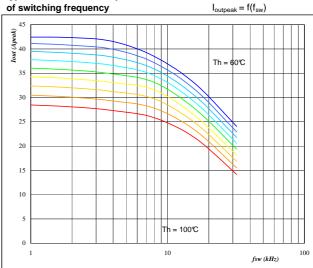
 $T_h =$


AL .		
$T_j =$	125	C
DC link =	320	V
$T_h =$	80	°C

 ${\mathfrak C}$

Typical available 50Hz output current as a function of switching frequency




At

 ${\mathbb C}$ $T_j =$ 125 DC link = 320

 $Mi^*\cos \varphi = 0.8$

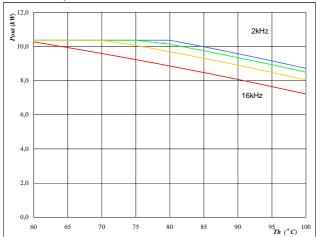
 T_h from 60 ℃ to 100 ℂ in steps of 5 ℂ

Αt

 $T_j =$ 125 \mathcal{C} DC link = 320

 T_h from 60 ${\mathbb C}$ to 100 ${\mathbb C}$ in steps of 5 ${\mathbb C}$

Mi = 0


flow1

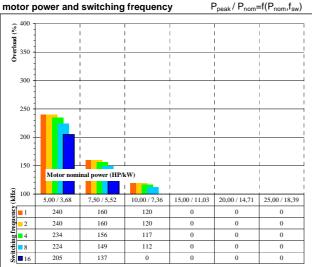
Output Inverter Application

600V/30A

Typical available peak output power as a function of heatsink temperature $P_{\text{out}} \! = \! f(T_h$

Αt

 $T_j =$ 125 $^{\circ}$ DC link = 320 $^{\circ}$ V


DC link = 320 Mi = 1

 $\cos \phi = 0.80$

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

igure 11 Inverte

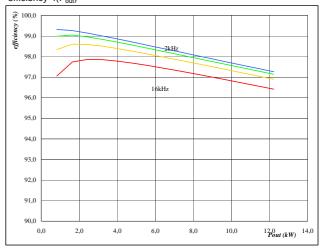
Typical available overload factor as a function of

A

 $T_j =$ 125 \mathbb{C} DC link = 320 V

Mi = 1

 $\cos \phi = 0.8$


 f_{sw} from 1 kHz to 16kHz in steps of factor 2

 $T_h = 80$ °C

Motor eff = 0.85

Typical efficiency as a function of output power efficiency= $f(P_{\text{out}})$

-	
Αī	

 $T_j = 125$ °C

DC link = 320 V

Mi = 1 cos φ = 0.80

f_{sw} from 2 kHz to 16 kHz in steps of factor 2