flow PIM 1

Output Inverter Application

General conditions

- **3phase SPWM**
 - $V_{dc_{on}} = 15$ V
 - $V_{dc_{off}} = -15$ V
 - $R_{g_{on}} = 16$ Ω
 - $R_{g_{off}} = 16$ Ω

figure 1. IGBT

Typical average static loss as a function of output current

$$P_{loss} = f(I_{out})$$

At

- $T_j = 150$ °C
- $M_i \cos \phi$ from -1 to 1 in steps of 0.2

figure 2. FWD

Typical average static loss as a function of output current

$$P_{loss} = f(I_{out})$$

At

- $T_j = 150$ °C
- $M_i \cos \phi$ from -1 to 1 in steps of 0.2

figure 3. IGBT

Typical average switching loss as a function of output current

$$P_{loss} = f(I_{out})$$

At

- $T_j = 150$ °C
- DC-link = 600 V
- f_{sw} from 2 kHz to 16 kHz in steps of factor 2

figure 4. FWD

Typical average switching loss as a function of output current

$$P_{loss} = f(I_{out})$$

At

- $T_j = 150$ °C
- DC-link = 600 V
- f_{sw} from 2 kHz to 16 kHz in steps of factor 2
flow PIM 1 Output Inverter Application 1200 V / 35 A

figure 5.
Typical available 50Hz output current as a function of $M_i \times \cos \varphi$

$I_{\text{out}} = f(M_i \times \cos \varphi)$

At
- $T_j = 150 \, ^\circ\text{C}$
- DC-link = 600 V
- $f_{\text{sw}} = 4 \, \text{kHz}$
- T_s from 60 °C to 100 °C in steps of 5 °C

figure 6.
Typical available 50Hz output current as a function of switching frequency

$I_{\text{out}} = f(f_{\text{sw}})$

At
- $T_j = 150 \, ^\circ\text{C}$
- DC-link = 600 V
- $M_i \cos \varphi = 0.8$
- T_s from 60 °C to 100 °C in steps of 5 °C

figure 7.
Typical available 50Hz output current as a function of $M_i \cos \varphi$ and switching frequency

$I_{\text{out}} = f(f_{\text{sw}}, M_i \cos \varphi)$

At
- $T_j = 150 \, ^\circ\text{C}$
- DC-link = 600 V
- $T_s = 80 \, ^\circ\text{C}$
- T_s from 60 °C to 100 °C in steps of 5 °C
- $M_i = 0$

figure 8.
Typical available 0Hz output current as a function of switching frequency

$I_{\text{out,peak}} = f(f_{\text{sw}})$

At
- $T_j = 150 \, ^\circ\text{C}$
- DC-link = 600 V
- T_s from 60 °C to 100 °C in steps of 5 °C
- $M_i = 0$
Output Inverter Application
1200 V / 35 A

figure 9. Inverter
Typical available peak output power as a function of heatsink temperature
\[P_{\text{out}} = f(T_s) \]

At
\[T_s = 150 \, ^\circ C \]

DC-link = 600 V
Mi = 1
\[\cos \phi = 0,80 \]

\[f_{\text{sw}} \text{ from } 2 \text{ kHz to } 16 \text{ kHz in steps of factor 2} \]

figure 10. Inverter
Typical efficiency as a function of output power
\[\text{efficiency} = f(P_{\text{out}}) \]

At
\[T_s = 150 \, ^\circ C \]

DC-link = 600 V
Mi = 1
\[\cos \phi = 0,80 \]

\[f_{\text{sw}} \text{ from } 2 \text{ kHz to } 16 \text{ kHz in steps of factor 2} \]

figure 11. Inverter
Typical available overload factor as a function of motor power and switching frequency
\[P_{\text{peak}} / P_{\text{nom}} = f(P_{\text{nom}}, f_{\text{sw}}) \]

At
\[T_s = 80 \, ^\circ C \]

DC-link = 600 V
Mi = 1
\[\cos \phi = 0,8 \]

\[f_{\text{sw}} \text{ from } 1 \text{ kHz to } 16 \text{ kHz in steps of factor 2} \]

Motor eff: 0,85