Vincotech

$V_{\text {GEon }}=15 \mathrm{~V}$
$V_{\text {GEoff }}=-15 \mathrm{~V}$
$R_{\text {gon }}=16 \Omega$
$R_{\text {goff }}=16 \Omega$
figure 1.
IGBT
Typical average static loss as a function of output current
$P_{\text {loss }}=\mathrm{f}\left(I_{\text {out }}\right)$

At
$T_{\mathrm{j}}=150 \quad{ }^{\circ} \mathrm{C}$
$M i^{*} \cos \varphi$ from -1 to 1 in steps of 0,2

Typical average switching loss
as a function of output current $\quad P_{\text {loss }}=f\left(I_{\text {out }}\right)$

At
$T_{j}=150 \quad{ }^{\circ} \mathrm{C}$
DC-link $=600 \quad \mathrm{~V}$
$f_{\text {sw }}$ from $\quad 2 \mathrm{kHz}$ to 16 kHz in steps of factor 2
figure 2.
Typical average static loss as a function of output current

At
$T_{j}=150 \quad{ }^{\circ} \mathrm{C}$
$\mathrm{Mi}{ }^{*} \cos \varphi$ from -1 to 1 in steps of 0,2
$\begin{array}{ll}\text { figure } 4 . & \text { FWD } \\ \text { Typical average switching loss }\end{array}$
as a function of output current $\quad P_{\text {loss }}=f\left(I_{\text {out }}\right)$

At
$T_{j}=150 \quad{ }^{\circ} \mathrm{C}$
DC-link $=600 \quad \mathrm{~V}$
$f_{\text {sw }}$ from $\quad 2 \mathrm{kHz}$ to 16 kHz in steps of factor 2

V23990-P580-*4*-PM application sheet

Vincotech

At		
$T_{j}=$	150	${ }^{\circ} \mathrm{C}$
DC-link $=$	600	V
$f_{\text {sw }}=$	4	kHz

T_{s} from $60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in steps of $5^{\circ} \mathrm{C}$

Typical available 50 Hz output current as a function of Mi* $\cos \boldsymbol{\varphi}$ and switching frequency $\quad I_{\text {out }}=\mathrm{f}\left(f_{\text {sw }}, \mathrm{Mi} * \cos \varphi\right)$

At		
$T_{\mathrm{j}}=$	150	${ }^{\circ} \mathrm{C}$
DC-link $=600$	V	
$T_{\mathrm{s}}=$	80	${ }^{\circ} \mathrm{C}$

figure $6 . \quad$ Phase
Typical available 50 Hz output current as a function of switching frequency $\quad I_{\text {out }}=\mathrm{f}\left(f_{\text {sw }}\right)$

At
$T_{\mathrm{j}}=150 \quad{ }^{\circ} \mathrm{C}$
DC-link $=600 \quad \mathrm{~V}$
$M i * \cos \varphi=0,8$
$T_{\text {s }}$ from $60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in steps of $5^{\circ} \mathrm{C}$
figure $8 . \quad$ Phase
Typical available $\mathbf{0 H z}$ output current as a function

At
$T_{j}=150 \quad{ }^{\circ} \mathrm{C}$
DC-link $=600 \quad \mathrm{~V}$
$T_{\text {s }}$ from $60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in steps of $5^{\circ} \mathrm{C}$
$\mathrm{Mi}=0$
figure 9.
Inverter
Typical available peak output power as a function of heatsink temperature $P_{\text {out }}=\mathrm{f}\left(T_{\mathrm{s}}\right)$

At
$T_{\mathrm{j}}=150 \quad{ }^{\circ} \mathrm{C}$
DC-link $=600 \quad \mathrm{~V}$
$\mathrm{Mi}=1$
$\cos \varphi=\quad 0,80$
$f_{\text {sw }}$ from 2 kHz to 16 kHz in steps of factor 2
figure 11.
Typical available overload factor as a function of motor power and switching frequency $P_{\text {peak }} / P_{\text {nom }}=\mathrm{f}\left(P_{\text {nom, }}, \mathrm{fsw}\right)$

At
$T_{j}=150 \quad{ }^{\circ} \mathrm{C}$
DC-link $=600 \quad \mathrm{~V}$
$\mathrm{Mi}=1$
$\cos \varphi=\quad 0,8$
$f_{\text {sw }}$ from 1 kHz to 16 kHz in steps of factor 2
$T_{\mathrm{s}}=80 \quad{ }^{\circ} \mathrm{C}$
Motor eff $=0,85$
figure 10.
Inverter
Typical efficiency as a function of output power efficiency $=f\left(P_{\text {out }}\right)$

At
$T_{j}=150 \quad{ }^{\circ} \mathrm{C}$
DC-link $=600 \quad \mathrm{~V}$
$\mathrm{Mi}=1$
$\cos \varphi=\quad 0,80$
$f_{\text {sw }}$ from $\quad 2 \mathrm{kHz}$ to 16 kHz in steps of factor 2

