

flowPIM 0

Output Inverter Application

600V/30A

I out (A)

 $\begin{array}{lll} \mbox{3phase SPWM} \\ \mbox{V}_{\mbox{GEon}} &= & 15 \ \mbox{V} \\ \mbox{V}_{\mbox{GEoff}} &= & 0 \ \mbox{V} \\ \mbox{R}_{\mbox{gon}} &= & 8 \ \mbox{\Omega} \\ \mbox{R}_{\mbox{goff}} &= & 4 \ \mbox{\Omega} \end{array}$

igure 1 IGBT

Typical average static loss as a function of output current $P_{loss} = f(I_{out})$

 $T_j = 125$ \mathbb{C} $Mi^*cos\phi$ from -1 to 1 in steps of 0,2

 $\begin{array}{lll} \textbf{At} & & & \\ T_j = & 125 & \heartsuit \\ \text{DC link} = & 320 & V \\ f_{sw} \, \text{from} & 2 \, \text{kHz to 16 kHz in steps of factor 2} \end{array}$

igure 2

Typical average static loss as a function of output current $P_{\text{cur}} = f(I_{\text{cur}})$

30

At $T_i = 125$ °C

 $\mbox{Mi*}\mbox{cos}\phi$ from -1 to 1 in steps of 0,2

Figure 4

f_{sw} from 2 kHz to 16 kHz in steps of factor 2

flowPIM 0

Output Inverter Application

600V/30A

 $\begin{tabular}{lll} \textbf{At} & & & & & \\ T_j = & & 125 & & & \\ DC \ link = & 320 & & V \\ f_{sw} = & 4 & & kHz \\ \end{tabular}$

T_h from 60 ℃ to 100 ℃ in steps of 5 ℃

Figure 7 Phase

Typical available 0Hz output current as a function of switching frequency

I outpeak = f(f_{sw})

 $\begin{array}{lll} \textbf{At} & & & & \\ T_j = & & 125 & & \mathbb{C} \\ \text{DC link} = & 320 & & \text{V} \\ T_h \text{ from} & 60 \ \mathbb{C} \text{ to } 100 \ \mathbb{C} \text{ in steps of } 5 \ \mathbb{C} \\ \text{Mi} = & & 0 & & \end{array}$

flowPIM 0

Output Inverter Application

600V/30A

Revision: 3

 $\begin{array}{lll} \textbf{At} & & & \\ T_j = & 125 & & \heartsuit \\ \text{DC link} = & 320 & & V \\ \text{Mi} = & 1 & & \\ \cos \phi = & 0,80 & & & \end{array}$

f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Figure 11 Inverte

At T_i =

 $T_j =$ 125 $^{\circ}$ DC link = 320 $^{\circ}$ V

Mi = 1

 $\cos \phi$ = 0,8 f_{sw} from 1 kHz to 16kHz in steps of factor 2

 $L_p = 80$

Motor eff = 0.85

copyright Vincotech

Typical efficiency as a function of output power efficiency= $f(P_{out})$

2 kHz to 16 kHz in steps of factor 2

3