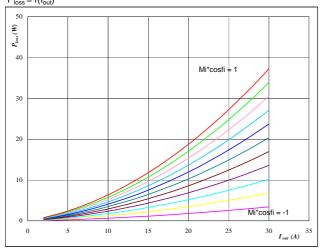


flowPIM 0

Output Inverter Application

600 V/15 A

General conditions

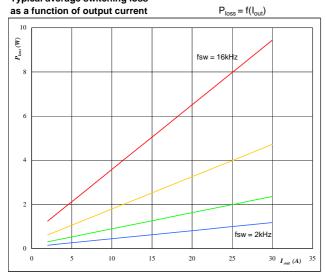

3phase SPWM 15 V V_{GEon} =

 V_{GEoff} 0 V 16 Ω R_{gon} R_{goff} 8Ω

Figure 1

IGBT

Typical average static loss as a function of output current $P_{loss} = f(I_{out})$

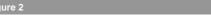


Αt $T_j =$

125 \mathcal{C}

Mi*cosφ from -1 to 1 in steps of 0,2

Figure 3 Typical average switching loss



Αt

DC link =

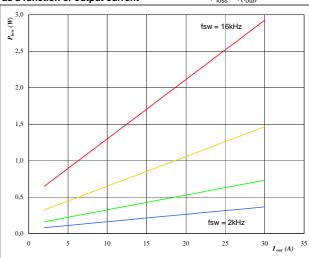
 $T_j =$ 125 \mathcal{C} 320

٧ f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Typical average static loss as a function of output current

 $P_{loss} = f(I_{out})$

 \mathbf{At} $T_j =$


125 ${\mathfrak C}$

 $\mbox{Mi*}\mbox{cos}\phi$ from -1 to 1 in steps of 0,2

Figure 4 Typical average switching loss

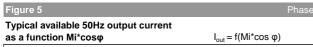
as a function of output current

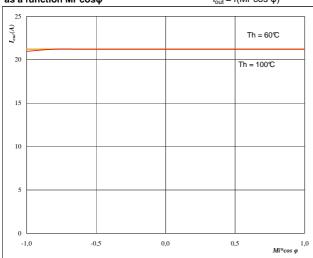
 $P_{loss} = f(I_{out})$

 $\begin{array}{l} \textbf{At} \\ \textbf{T}_j = \end{array}$

125 ${\mathfrak C}$

DC link = 320 ٧

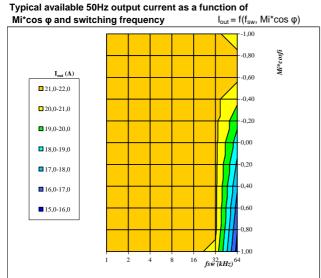

 $f_{\rm sw}$ from 2 kHz to 16 kHz in steps of factor 2



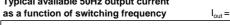
flowPIM 0

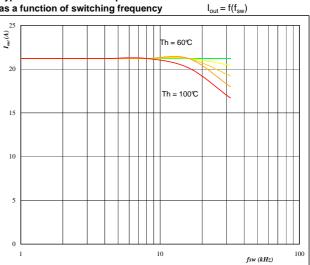
Output Inverter Application

600 V/15 A

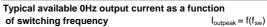


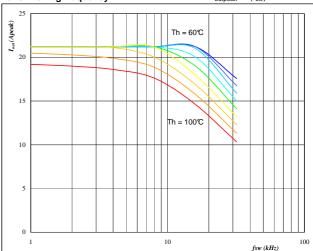
Αt


 ${\mathfrak C}$ $T_j =$ 125 DC link = V 320 kHz $f_{sw} =$


 T_h from 60 $^{\circ}$ to 100 $^{\circ}$ in steps of 5 $^{\circ}$

At		
$T_j =$	125	\mathcal{C}
DC link =	320	V
$T_h =$	80	${\mathfrak C}$




Αt

 $T_j =$ 125 ${\mathfrak C}$ DC link = 320

 $Mi^*\cos \varphi = 0.8$

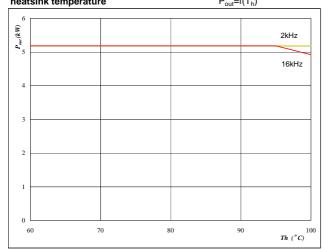
 T_h from 60 ${\mathbb C}$ to 100 ${\mathbb C}$ in steps of 5 ${\mathbb C}$

Αt

 $T_j =$ 125 \mathcal{C} DC link = 320

 T_h from 60 ${\mathbb C}$ to 100 ${\mathbb C}$ in steps of 5 ${\mathbb C}$

Mi = 0



flowPIM 0

Output Inverter Application

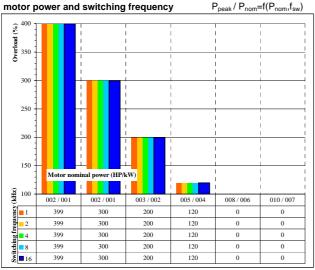
600 V/15 A

Figure 9 Invex Typical available peak output power as a function of heatsink temperature $P_{out} = f(T_h)$

 $At T_j =$

125

DC link = 320 V


Mi = 1 cos φ = 0,80

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Figure 11 Inverte

Typical available overload factor as a function of motor power and switching frequency Ppe

 \mathcal{C}

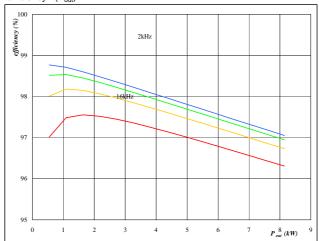
Αt

 $T_j = 125$ °C

DC link = 320 V

Mi = 1

 $\cos \phi = 0.8$


 f_{sw} from 1 kHz to 16kHz in steps of factor 2

 $T_h = 80$ °C

Motor eff = 0.85

Typical efficiency as a function of output power efficiency= $f(P_{\text{out}})$

At $T_j =$

125 ℃

DC link = 320 V

Mi = 1 cos φ = 0,80

f_{sw} from 2 kHz to 16 kHz in steps of factor 2