Features
- 1500 V NPC-topology
- High power screw interface
- Low inductive interface for external DC-capacitors and paralleling on component level
- Snubber diode for optional asymmetrical inductance
- High speed buck IGBT’s
- Temperature sensor

Target Applications
- Solar inverter
- Wind Power
- Motor Drive

Types
- 70-W424NIA800SH-M800F

VINco NPC X8 housing

VINcoNPC X8
1500 V / 800 A

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snubber Diode (D61, D62)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Forward average current</td>
<td>I_{FAM}</td>
<td>$T_j = T_{jmax}$</td>
<td>181</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{FSM}</td>
<td>$T_s = 10 ms$, sin 180°</td>
<td>1080</td>
<td>A</td>
</tr>
<tr>
<td>$i't$-value</td>
<td>$j't$</td>
<td></td>
<td>5832</td>
<td>A/s</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{jmax}$</td>
<td>323</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Buck IGBT (T11, T12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_j = T_{jmax}$</td>
<td>651</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CRM}</td>
<td>T_j limited by T_{jmax}</td>
<td>2400</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{jmax}$</td>
<td>1759</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>420</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td></td>
<td>$T_j \leq 150 ^\circ C$</td>
<td>10</td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CC}</td>
<td>800</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_j = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Diode (D11, D12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{BSM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_d</td>
<td>$T_j = T_{max}$, $T_s = 80 , ^\circ C$</td>
<td>540</td>
<td>A</td>
</tr>
<tr>
<td>Surge Forward Current</td>
<td>I_{DSH}</td>
<td>$r_s = 10 , \mu s$, sin 180°</td>
<td>4400</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{max}$, $T_s = 80 , ^\circ C$</td>
<td>1131</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Boost IGBT (T13, T14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_j = T_{max}$</td>
<td>689</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CM}</td>
<td>I_{s} limited by T_{max}</td>
<td>2400</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{max}$, $T_s = 80 , ^\circ C$</td>
<td>1652</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>$T_j \leq 150 , ^\circ C$</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>$V_{DC} = 15 , V$</td>
<td>10</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 800 , V$</td>
<td>800</td>
<td>µs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Boost Inverse Diode (D15, D16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{BSM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_d</td>
<td>$T_j = T_{max}$, $T_s = 80 , ^\circ C$</td>
<td>680</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive Forward Current</td>
<td>I_{DSM}</td>
<td>I_{s} limited by T_{max}</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{max}$, $T_s = 80 , ^\circ C$</td>
<td>1759</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Boost Diode (D14, D13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{BSM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_d</td>
<td>$T_j = T_{max}$, $T_s = 80 , ^\circ C$</td>
<td>514</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{DSM}</td>
<td>I_{s} limited by T_{max}</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{max}$, $T_s = 80 , ^\circ C$</td>
<td>905</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_j = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op} for power part</td>
<td></td>
<td>-40...+(T$_{jmax}$ - 25)</td>
<td>°C</td>
</tr>
</tbody>
</table>

Insulation Properties				
Insulation voltage	V_{isol}	DC Test Voltage* $\tau_p = 2 \, s$	4000	V
AC Voltage	$\tau_p = 1 \, min$	2500	V	
Creepage distance		min 12,7	mm	
Clearance		min 12,7	mm	
Comparative Tracking Index	CTI		>200	

*100% tested in production
Characteristic values

Snubber Diode (D61, D62)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>VGE</td>
<td>Min</td>
<td>25</td>
<td>1.91</td>
</tr>
<tr>
<td>Threshold voltage (for power loss calc. only)</td>
<td>Vres</td>
<td>25</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>Slope resistance (for power loss calc. only)</td>
<td>rsa</td>
<td>25</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>Reverse current</td>
<td>is</td>
<td>Min</td>
<td>25</td>
<td>0.003</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>Rth(j-s)</td>
<td>Min</td>
<td>25</td>
<td>0.294</td>
</tr>
<tr>
<td>Thermal resistance chip to case</td>
<td>Rth(j-c)</td>
<td>Min</td>
<td>25</td>
<td>0.194</td>
</tr>
</tbody>
</table>

Buck IGBT (T11, T12)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>VGE</td>
<td>Min</td>
<td>15</td>
<td>0.2272</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>VCEsat</td>
<td>Min</td>
<td>25</td>
<td>5.2</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>Is</td>
<td>Min</td>
<td>25</td>
<td>5.8</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>Ioss</td>
<td>Min</td>
<td>25</td>
<td>6.4</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>Rgs</td>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t(on)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>tr</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t(off)</td>
<td></td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>Fall time</td>
<td>tf</td>
<td></td>
<td></td>
<td>824</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>Eon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>Eoff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>Ciss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>Coss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>Coss</td>
<td></td>
<td></td>
<td>44220</td>
</tr>
<tr>
<td>Gate charge</td>
<td>VGE</td>
<td></td>
<td></td>
<td>2600</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>Rth(j-s)</td>
<td>Min</td>
<td>25</td>
<td>6880</td>
</tr>
<tr>
<td>Thermal resistance chip to case</td>
<td>Rth(j-c)</td>
<td>Min</td>
<td>25</td>
<td>0.052</td>
</tr>
</tbody>
</table>

Buck Diode (D11, D12)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>VFS</td>
<td>Min</td>
<td>25</td>
<td>800</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>IFR</td>
<td>Min</td>
<td>25</td>
<td>2.34</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>IFR</td>
<td>Min</td>
<td>25</td>
<td>2.32</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>IFR</td>
<td>Min</td>
<td>25</td>
<td>960</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Qrr</td>
<td>Min</td>
<td>25</td>
<td>2.34</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(di/dt)RRM</td>
<td>Min</td>
<td>25</td>
<td>115</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>Erec</td>
<td>Min</td>
<td>25</td>
<td>1660</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>Rth(j-s)</td>
<td>Min</td>
<td>25</td>
<td>0.081</td>
</tr>
<tr>
<td>Thermal resistance chip to case</td>
<td>Rth(j-c)</td>
<td>Min</td>
<td>25</td>
<td>0.054</td>
</tr>
</tbody>
</table>
Characteristic values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT (T13, T14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{BE(th)}$</td>
<td>$V_{BE} = V_{CE}$</td>
<td>0,0304</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td>15</td>
<td>800</td>
<td>600</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>I_{CE}</td>
<td>25</td>
<td>1,55</td>
<td>2,14</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GE}</td>
<td>20</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{Gon}</td>
<td></td>
<td></td>
<td>0,0373</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td></td>
<td></td>
<td>290</td>
</tr>
<tr>
<td>Rise time</td>
<td>r_{r}</td>
<td></td>
<td></td>
<td>301</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{f(off)}$</td>
<td>$E_{on} = 0,5 , \Omega$</td>
<td>60</td>
<td>455</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{r}</td>
<td></td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td>25</td>
<td>40</td>
<td>65</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td>25</td>
<td>40</td>
<td>76</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td></td>
<td></td>
<td>49200</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td></td>
<td>2240</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{diss}</td>
<td></td>
<td></td>
<td>2760</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{G}</td>
<td>15</td>
<td>960</td>
<td>800</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td>$\lambda_{PSX} = 3,4 , W/mK$</td>
<td>0,058</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to case</td>
<td>$R_{th(j-c)}$</td>
<td>$\lambda_{PSX} = 3,4 , W/mK$</td>
<td>25</td>
<td>0,038</td>
</tr>
<tr>
<td>Boost Inverse Diode (D15, D16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td></td>
<td>600</td>
<td>25</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{θj-H}$</td>
<td>$\lambda_{PSX} = 3,4 , W/mK$</td>
<td>0,054</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to case</td>
<td>$R_{θj-C}$</td>
<td>$\lambda_{PSX} = 3,4 , W/mK$</td>
<td>0,036</td>
<td>K/W</td>
</tr>
<tr>
<td>Boost Diode (D14, D13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td></td>
<td>600</td>
<td>25</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{F}</td>
<td></td>
<td>1100</td>
<td>25</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RRM}</td>
<td>$E_{on} = 0,5 , \Omega$</td>
<td>±15</td>
<td>600</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{f}</td>
<td></td>
<td></td>
<td>271</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{max}</td>
<td></td>
<td></td>
<td>341</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$(dI_{diode}/dt)_{max}$</td>
<td></td>
<td></td>
<td>341</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{θj-H}$</td>
<td>$\lambda_{PSX} = 3,4 , W/mK$</td>
<td>0,102</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to case</td>
<td>$R_{θj-C}$</td>
<td>$\lambda_{PSX} = 3,4 , W/mK$</td>
<td>0,067</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>[V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td></td>
<td></td>
<td>2401</td>
<td>Ω</td>
</tr>
<tr>
<td>Deviation of R_{on}</td>
<td>ΔR_{on}</td>
<td>$R_{\text{on}} = 1486 , \Omega$</td>
<td>25</td>
<td>±5</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>P</td>
<td></td>
<td>25</td>
<td>±5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>25</td>
<td>±5</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/100)}$</td>
<td>Tol. ±3%</td>
<td>25</td>
<td>3950</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/100)}$</td>
<td>Tol. ±3%</td>
<td>25</td>
<td>3996</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module Properties

<table>
<thead>
<tr>
<th>Module Properties</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module inductance (from chips to PCB)</td>
<td>L_{in}</td>
<td>Buck</td>
<td>9</td>
<td>nH</td>
</tr>
<tr>
<td>Module inductance (from PCB to PCB using Intercon board)</td>
<td>L_{out}</td>
<td>Boost</td>
<td>17</td>
<td>nH</td>
</tr>
<tr>
<td>Resistance of Intercon boards (from PCB to PCB using Intercon board)</td>
<td>$R_{\text{Deviation}}$</td>
<td>5</td>
<td>nH</td>
<td></td>
</tr>
<tr>
<td>Mounting torque</td>
<td>M</td>
<td>Screw M4 - mounting according to valid application note VINcoX-*-HI</td>
<td>2</td>
<td>2,2</td>
</tr>
<tr>
<td>Mounting torque</td>
<td>M</td>
<td>Screw M5 - mounting according to valid application note VINcoX-*-HI</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Terminal connection torque</td>
<td>M</td>
<td>Screw M6 - mounting according to valid application note VINcoX-*-HI</td>
<td>2,5</td>
<td>5</td>
</tr>
<tr>
<td>Weight</td>
<td>G</td>
<td></td>
<td>1300</td>
<td>g</td>
</tr>
</tbody>
</table>

copyright Vincotech 2019 / Revision 6
Buck

Buck IGBT and Buck FWD

figure 1. IGBT

Typical output characteristics

$I_C = f(V_{CE})$

At

$t_p = 350 \ \mu s$

$T_j = 25 \ ^\circ C$

V_{CE} from 7 V to 17 V in steps of 1 V

figure 2. IGBT

Typical output characteristics

$I_C = f(V_{CE})$

At

$t_p = 350 \ \mu s$

$T_j = 125 \ ^\circ C$

V_{CE} from 7 V to 17 V in steps of 1 V

figure 3. IGBT

Typical transfer characteristics

$I_C = f(V_{GE})$

At

$t_p = 350 \ \mu s$

$T_j = 25 \ ^\circ C$

$V_{CE} = 10 \ \text{V}$

figure 4. FWD

Typical FWD forward current as a function of forward voltage

$I_F = f(V_{F})$

At

$t_p = 350 \ \mu s$

$T_j = 25 \ ^\circ C$

$T_j = 125 \ ^\circ C$
Buck

Buck IGBT and Buck FWD

figure 5. IGBT

Typical switching energy losses

as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 600 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 0.5 \, \Omega \)
- \(R_{goff} = 0.5 \, \Omega \)

figure 6. IGBT

Typical switching energy losses

as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_J = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 600 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 824 \, \text{A} \)

figure 7. FWD

Typical reverse recovery energy loss

as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 600 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 0.5 \, \Omega \)

figure 8. FWD

Typical reverse recovery energy loss

as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

- \(T_J = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 600 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 824 \, \text{A} \)
figure 9. IGBT
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
\[T_J = 125 ^\circ C \]
\[V_{CE} = 600 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[R_{gon} = 0.5 \text{ } \Omega \]
\[R_{goff} = 0.5 \text{ } \Omega \]

figure 10. IGBT
Typical switching times as a function of gate resistor
\[t = f(R_G) \]

With an inductive load at
\[T_J = 125 ^\circ C \]
\[V_{CE} = 600 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[I_C = 824 \text{ A} \]

figure 11. FWD
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
\[T_J = 25/125 ^\circ C \]
\[V_{CE} = 600 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[R_{gon} = 0.5 \text{ } \Omega \]

figure 12. FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{gon}) \]

At
\[T_J = 25/125 ^\circ C \]
\[V_s = 600 \text{ V} \]
\[I_F = 824 \text{ A} \]
\[V_{GE} = \pm 15 \text{ V} \]
Typical reverse recovery charge as a function of collector current

$$Q_{rr} = f(I_C)$$

Figure 13.

Figure 14.

Typical reverse recovery charge as a function of IGBT turn on gate resistor

$$Q_{rr} = f(R_{gon})$$

Figure 15.

Figure 16.

Typical reverse recovery current as a function of collector current

$$I_{RRM} = f(I_C)$$

Typical reverse recovery current as a function of IGBT turn on gate resistor

$$I_{RRM} = f(R_{gon})$$

At

- $T_j = 25/125\, ^\circ \text{C}$
- $V_{CE} = 600\, \text{V}$
- $V_{GE} = \pm 15\, \text{V}$
- $R_{gon} = 0.5\, \Omega$

At

- $T_j = 25/125\, ^\circ \text{C}$
- $V_{CE} = 600\, \text{V}$
- $V_{GE} = \pm 15\, \text{V}$
- $I_F = 824\, \text{A}$
- $V_{GE} = \pm 15\, \text{V}$
Buck

Buck IGBT and Buck FWD

Figure 17.
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
\frac{dI}{dt} \text{ and } \frac{dI_{rec}}{dt} = f(I_C)
\]

At

\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 600 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 0.5 \, \Omega \]

Figure 18.
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[
\frac{dI}{dt} \text{ and } \frac{dI_{rec}}{dt} = f(R_{gon})
\]

At

\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 600 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[I_F = 824 \, A \]

Figure 19.
IGBT transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

At

\[D = \frac{t_p}{T} \]
\[R_{th(j-s)} = 0.035 \, K/W \]

Figure 20.
FWD transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

At

\[D = \frac{t_p}{T} \]
\[R_{th(j-s)} = 0.054 \, K/W \]

IGBT thermal model values

- With phase change interface
 - \(R \) (K/W) \(\tau \) (s)
 - 2.17E-02 3.38E+00
 - 9.75E-03 6.30E-01
 - 6.36E-03 1.08E-01
 - 1.02E-02 3.09E-02
 - 1.99E-03 4.92E-03
 - 2.38E-03 4.72E-04

FWD thermal model values

- With phase change interface
 - \(R \) (K/W) \(\tau \) (s)
 - 8.86E-03 8.79E+00
 - 1.52E-02 1.88E+00
 - 1.55E-02 3.42E-01
 - 2.08E-02 7.47E-02
 - 1.61E-02 2.42E-02
 - 5.04E-03 2.16E-03
Buck
Buck IGBT and Buck FWD

figure 21.
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

figure 22.
Collector current as a function of heatsink temperature

\[I_C = f(T_s) \]

At

\[T_j = 175 \degree C \]

figure 23.
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

figure 24.
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At

\[T_j = 175 \degree C \]

\[V_{GE} = 15 \text{ V} \]
Buck

Buck IGBT and Buck FWD

figure 25.
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

figure 26.
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At

- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{GE} = 15 \) V
- \(T_j = T_{j_{max}} \)

figure 27.
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At

- \(V_{CE} = V_{CE_{max}} - 25 \) °C
- \(U_{C_{max}} = U_{C_{plus}} \)
- Switching mode: 3 level switching
Boost

Boost IGBT and Boost FWD

figure 1.

IGBT

Typical output characteristics

$I_C = f(V_{CE})$

At

- $t_p = 350 \, \mu s$
- $T_j = 25 \, ^\circ C$

V_{CE} from 7 V to 17 V in steps of 1 V

figure 2.

IGBT

Typical output characteristics

$I_C = f(V_{CE})$

At

- $t_p = 350 \, \mu s$
- $T_j = 125 \, ^\circ C$

V_{CE} from 7 V to 17 V in steps of 1 V

figure 3.

IGBT

Typical transfer characteristics

$I_C = f(V_{GE})$

At

- $t_p = 350 \, \mu s$
- $T_j = 25 ^\circ C$

$V_{CE} = 10 \, V$

figure 4.

FWD

Typical FWD forward current as a function of forward voltage

$I_F = f(V_F)$

At

- $t_p = 350 \, \mu s$
- $T_j = 25 ^\circ C$

V_F from 7 V to 17 V in steps of 1 V
Boost
Boost IGBT and Boost FWD

Figure 5.
Typical switching energy losses
as a function of collector current

\[E = f(I_c) \]

With an inductive load at
- \(T_j = 25/125 \degree C \)
- \(V_{CE} = 600 \) V
- \(V_{CE} = \pm 15 \) V
- \(R_{on} = 0.5 \) Ω
- \(R_{off} = 0.5 \) Ω

Figure 6.
Typical switching energy losses
as a function of gate resistor

\[E = f(R_{G}) \]

With an inductive load at
- \(T_j = 25/125 \degree C \)
- \(V_{CE} = 600 \) V
- \(V_{CE} = \pm 15 \) V
- \(I_C = 796 \) A

Figure 7.
Typical reverse recovery energy loss
as a function of collector current

\[E_{rec} = f(I_c) \]

With an inductive load at
- \(T_j = 25/125 \degree C \)
- \(V_{CE} = 600 \) V
- \(V_{CE} = \pm 15 \) V
- \(R_{ons} = 0.5 \) Ω

Figure 8.
Typical reverse recovery energy loss
as a function of gate resistor

\[E_{rec} = f(R_{G}) \]

With an inductive load at
- \(T_j = 25/125 \degree C \)
- \(V_{CE} = 600 \) V
- \(V_{CE} = \pm 15 \) V
- \(I_C = 796 \) A
figure 9.
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
\[T_J = 125 \, ^\circ\text{C} \]
\[V_{CE} = 600 \, \text{V} \]
\[V_{SC} = \pm 15 \, \text{V} \]
\[R_{gos} = 0.5 \, \Omega \]
\[R_{goff} = 0.5 \, \Omega \]

figure 10.
Typical switching times as a function of gate resistor
\[t = f(R_G) \]

With an inductive load at
\[T_J = 125 \, ^\circ\text{C} \]
\[V_{CE} = 600 \, \text{V} \]
\[V_{SC} = \pm 15 \, \text{V} \]
\[I_C = 796 \, \text{A} \]

figure 11.
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
\[T_J = 25/125 \, ^\circ\text{C} \]
\[V_{CE} = 600 \, \text{V} \]
\[V_{SC} = \pm 15 \, \text{V} \]
\[R_{gos} = 0.5 \, \Omega \]

figure 12.
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{gos}) \]

At
\[T_J = 25/125 \, ^\circ\text{C} \]
\[V_S = 600 \, \text{V} \]
\[I_F = 796 \, \text{A} \]
\[V_{GE} = \pm 15 \, \text{V} \]
Boost

Boost IGBT and Boost FWD

figure 13.

Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At

- \(T_j = 25/125 \ ^\circ\text{C} \)
- \(V_{CE} = 600 \ \text{V} \)
- \(V_{GE} = \pm 15 \ \text{V} \)
- \(R_{gon} = 0.5 \ \Omega \)

figure 14.

Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

At

- \(T_j = 25/125 \ ^\circ\text{C} \)
- \(V_s = 600 \ \text{V} \)
- \(I_f = 796 \ \text{A} \)
- \(V_{GE} = \pm 15 \ \text{V} \)

figure 15.

Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

At

- \(T_j = 25/125 \ ^\circ\text{C} \)
- \(V_{CE} = 600 \ \text{V} \)
- \(V_{GE} = \pm 15 \ \text{V} \)
- \(I_f = 796 \ \text{A} \)
- \(R_{gon} = 0.5 \ \Omega \)

figure 16.

Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

At

- \(T_j = 25/125 \ ^\circ\text{C} \)
- \(V_s = 600 \ \text{V} \)
- \(I_f = 796 \ \text{A} \)
- \(V_{GE} = \pm 15 \ \text{V} \)
figure 17. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_C) \]

At
\[T_J = \begin{cases} 25/125 \degree C \end{cases} \]
\[V_{CE} = 600 \ \text{V} \]
\[V_{GE} = \pm 15 \ \text{V} \]
\[R_{gon} = 0.5 \ \Omega \]

figure 18. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

At
\[T_J = \begin{cases} 25/125 \degree C \end{cases} \]
\[V_R = 600 \ \text{V} \]
\[I_F = 796 \ \text{A} \]
\[V_{GE} = \pm 15 \ \text{V} \]

figure 19. IGBT
IGBT transient thermal impedance as a function of pulse width
\[Z_{th(j-s)} = f(t_p) \]

At
\[D = \frac{t_p}{T} \]
\[R_{Alx} = 0.058 \ \text{K/W} \]
\[R_{HJC} = 0.038 \]

1.07E-01 1.07E-02 1.07E-03 1.07E-04 1.07E-05
\[10^7 10^8 10^9 10^{10} 10^{11} \]
\[t_p \ (\text{s}) \]
\[Z_{th(j-s)} \ (\text{K/W}) \]

IGBT thermal model values
With phase change interface
R (K/W) Tau (s)
2,31E-02 2,75E+00
1,00E-02 6,14E-01
6,38E-03 1,36E-01
9,68E-03 3,02E-02
8,61E-04 3,49E-03

figure 20. FWD
FWD transient thermal impedance as a function of pulse width
\[Z_{th(j-s)} = f(t_p) \]

At
\[D = \frac{t_p}{T} \]
\[R_{Alx} = 0.105 \ \text{K/W} \]
\[R_{HJC} = 0.067 \]

1.07E-01 1.07E-02 1.07E-03 1.07E-04 1.07E-05
\[10^7 10^8 10^9 10^{10} 10^{11} \]
\[t_p \ (\text{s}) \]
\[Z_{th(j-s)} \ (\text{K/W}) \]

FWD thermal model values
With phase change interface
R (K/W) Tau (s)
1,01E-02 8,27E+00
3,26E-02 1,88E+00
2,33E-02 4,66E-01
2,66E-02 4,79E-02
6,01E-03 1,19E-02
3,24E-03 1,20E-03
Boost

Boost IGBT and Boost FWD

figure 21.

Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

![Graph showing power dissipation](image)

At

\[T_j = 175 \text{ °C} \]

figure 22.

Collector current as a function of heatsink temperature

\[I_c = f(T_s) \]

![Graph showing collector current](image)

At

\[T_j = 175 \text{ °C} \]

figure 23.

Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

![Graph showing power dissipation](image)

At

\[T_j = 175 \text{ °C} \]

figure 24.

Forward current as a function of heatsink temperature

\[I_f = f(T_s) \]

![Graph showing forward current](image)

At

\[T_j = 175 \text{ °C} \]

Boost

Boost IGBT

figure 25. IGBT

Reverse bias safe operating area

$I_C = f(V_{CE})$

At

$T_J = T_{jmax} - 25 \degree C$

$V_{ccminus} = V_{ccplus}$

Switching mode : 3 level switching
Boost Inverse Diode

figure 25. Boost Inverse Diode
Typical FWD forward current as a function of forward voltage
\[I_F = f(V_F) \]

![Graph showing FWD forward current as a function of forward voltage.](image)

At
\[t_p = 250 \ \mu s \]

figure 26. Boost Inverse Diode
FWD transient thermal impedance as a function of pulse width
\[Z_{th(j-s)} = f(t_p) \]

![Graph showing FWD transient thermal impedance as a function of pulse width.](image)

At
\[D = \frac{t_p}{T_{R th(j-s)}} \]
[\[R_{th(j-s)} = 0,054 \ \text{K/W} \]

figure 27. Boost Inverse Diode
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_s) \]

![Graph showing power dissipation as a function of heatsink temperature.](image)

At
\[T_j = 175 \ \degree C \]

figure 28. Boost Inverse Diode
Forward current as a function of heatsink temperature
\[I_F = f(T_s) \]

![Graph showing forward current as a function of heatsink temperature.](image)

At
\[T_j = 175 \ \degree C \]
Snubber Diode

figure 1. Snubber Diode

Typical thyristor forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

\[t_p = 250 \ \mu s \]

figure 2. Snubber Diode

Thyristor transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

At

\[D = \frac{t_p}{T} \]

\[R_{th(j-s)} = 0.294 \ \text{K/W} \]

figure 3. Snubber Diode

Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_s) \]

At

\[T_j = 175 \ \degree C \]

figure 4. Snubber Diode

Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At

\[T_j = 175 \ \degree C \]
figure 1. Typical NTC characteristic as a function of temperature

\[R_T = f(T) \]
Buck switching definitions

General conditions

\[
\begin{align*}
T_j &= 125 ^\circ C \\
R_{on} &= 0,5 \Omega \\
R_{off} &= 0,5 \Omega
\end{align*}
\]

Test setup inductance: 9mH

figure 1. IGBT Turn-off Switching Waveforms & definition of \(t_{doff} \), \(t_{Eoff} \)

\(t_{Eoff} = \) integrating time for \(E_{off} \)

figure 2. IGBT Turn-on Switching Waveforms & definition of \(t_{don} \), \(t_{Eon} \)

\(t_{Eon} = \) integrating time for \(E_{on} \)

figure 3. IGBT Turn-off Switching Waveforms & definition of \(t_f \)

figure 4. IGBT Turn-on Switching Waveforms & definition of \(t_r \)

\[
\begin{align*}
V_{CE} (0\%) &= -8 \text{ V} \\
V_{CE} (100\%) &= 15 \text{ V} \\
V_C (100\%) &= 600 \text{ V} \\
i_C (100\%) &= 804 \text{ A} \\
t_{doff} &= 0,23 \mu s \\
t_{Eoff} &= 0,61 \mu s \\
i_C (100\%) &= 600 \text{ V} \\
i_C (100\%) &= 804 \text{ A} \\
t_{don} &= 0,10 \mu s \\
t_{Eon} &= 0,29 \mu s \\
V_C (100\%) &= 600 \text{ V} \\
i_C (100\%) &= 804 \text{ A} \\
t_f &= 0,046 \mu s \\
t_r &= 0,04 \mu s
\end{align*}
\]
Buck switching definitions

Figure 5. IGBT
Turn-off Switching Waveforms & definition of \(t_{\text{Eoff}} \)

- \(P_{\text{off}} \) (100\%) = 483 kW
- \(E_{\text{off}} \) (100\%) = 38.21 mJ
- \(t_{\text{Eoff}} \) = 0.58 μs

Figure 6. IGBT
Turn-on Switching Waveforms & definition of \(t_{\text{Eon}} \)

- \(P_{\text{on}} \) (100\%) = 483 kW
- \(E_{\text{on}} \) (100\%) = 13.39 mJ
- \(t_{\text{Eon}} \) = 0.38 μs

Figure 7. FWD
Turn-off Switching Waveforms & definition of \(t_{\text{rr}} \)

- \(V_{d} \) (100\%) = 600 V
- \(I_{d} \) (100\%) = 804 A
- \(I_{\text{RRM}} \) (100\%) = -1215 A
- \(t_{\text{rr}} \) = 0.26 μs
Buck switching definitions

Figure 8. Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

- I_d (100%) = 804 A
- Q_{rr} (100%) = 132,40 μC
- t_{Qrr} = 0,33 μs

Figure 9. Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

- P_{rec} (100%) = 482,56 kW
- E_{rec} (100%) = 63,38 mJ
- t_{Erec} = 0,33 μs

Copyright Vincotech
Boost switching definitions

General conditions

$T_J = 125 \, ^\circ\text{C}$
$R_{on} = 0.5 \, \Omega$
$R_{off} = 0.5 \, \Omega$

Test setup inductance: 9nH

figure 1. Boost IGBT

Turn-off Switching Waveforms & definition of t_{doff} t_{Eoff}

$t_{Eoff} = \text{integrating time for } E_{off}$

$t_{doff} = 0.34 \, \mu s$
$t_{Eoff} = 0.70 \, \mu s$

$V_{CE}(0\%) = -8 \, V$
$V_{CE}(100\%) = 600 \, V$
$I_C(100\%) = 827 \, A$

$V_{GE}(0\%) = -8 \, V$
$V_{GE}(100\%) = 15 \, V$
$I_C(100\%) = 600 \, V$

figure 2. Boost IGBT

Turn-on Switching Waveforms & definition of t_{don} t_{Eon}

$t_{Eon} = \text{integrating time for } E_{on}$

$t_{don} = 0.18 \, \mu s$
$t_{Eon} = 0.47 \, \mu s$

$V_{CE}(0\%) = -8 \, V$
$V_{CE}(100\%) = 600 \, V$
$I_C(100\%) = 827 \, A$

$V_{GE}(0\%) = -8 \, V$
$V_{GE}(100\%) = 15 \, V$
$I_C(100\%) = 600 \, V$

figure 3. Boost IGBT

Turn-off Switching Waveforms & definition of t_f

$V_{CE}(100\%) = 600 \, V$
$I_C(100\%) = 827 \, A$

$t_f = 0.079 \, \mu s$

figure 4. Boost IGBT

Turn-on Switching Waveforms & definition of t_r

$V_{CE}(100\%) = 600 \, V$
$I_C(100\%) = 827 \, A$

$t_r = 0.072 \, \mu s$
Boost switching definitions

figure 5. Boost IGBT

Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off} (100\%) = 496$ kW
- $E_{off} (100\%) = 75$ mJ
- $t_{Eoff} = 0,70$ μs

figure 6. Boost IGBT

Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on} (100\%) = 496$ kW
- $E_{on} (100\%) = 40$ mJ
- $t_{Eon} = 0,47$ μs

figure 7. Boost FWD

Turn-off Switching Waveforms & definition of t_{rr}

- $V_d (100\%) = 600$ V
- $I_d (100\%) = 827$ A
- $I_{SRM} (100\%) = 396$ A
- $t_{rr} = 0,47$ μs
Boost switching definitions

Figure 8. Boost FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
($t_{Qrr} =$ integrating time for Q_{rr})

\[I_d (100\%) = 827 \text{ A} \]
\[Q_{rr} (100\%) = 83.52 \mu\text{C} \]
\[t_{Qrr} = 1.17 \mu\text{s} \]

Figure 9. Boost FWD
Turn-on Switching Waveforms & definition of t_{Erec}
($t_{Erec} =$ integrating time for E_{rec})

\[P_{rec} (100\%) = 496,41 \text{ kW} \]
\[E_{rec} (100\%) = 44.13 \text{ mJ} \]
\[t_{Erec} = 1.17 \mu\text{s} \]
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste</td>
<td>70-W424NIA800SH-M800F</td>
</tr>
<tr>
<td>with thermal paste</td>
<td>70-W424NIA800SH-M800F-/3/</td>
</tr>
</tbody>
</table>

Date code UL & VIN Lot Serial

Name

Vincotech

UL & VIN

WWYY UL VIN LLLLL SSSS

Type & Ver Lot number Serial Date code

TTTTTTTVV LLLLL SSSS WWYY

Pin table [mm]

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
<th>M6 screw</th>
<th>X2</th>
<th>Y2</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>-2,15</td>
<td>81,95</td>
<td>S11-a-1</td>
<td>2.1</td>
<td>0</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>1.2</td>
<td>-2,15</td>
<td>84,85</td>
<td>G11-a-1</td>
<td>2.2</td>
<td>22</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>1.3</td>
<td>46,15</td>
<td>81,95</td>
<td>S11-a-2</td>
<td>2.3</td>
<td>44</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>1.4</td>
<td>46,15</td>
<td>84,85</td>
<td>G11-a-2</td>
<td>2.4</td>
<td>0</td>
<td>110,4 DC+</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>19,45</td>
<td>93,05</td>
<td>DC+ (desat)</td>
<td>2.5</td>
<td>22</td>
<td>110,4 GND</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>24,55</td>
<td>93,05</td>
<td>DC+ (desat)</td>
<td>2.6</td>
<td>44</td>
<td>110,4 DC-</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>-7,65</td>
<td>67,15</td>
<td>S13-a-1</td>
<td>2.7</td>
<td>101</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>1.8</td>
<td>-7,65</td>
<td>70,05</td>
<td>G13-a-1</td>
<td>2.8</td>
<td>123</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>1.9</td>
<td>51,65</td>
<td>67,15</td>
<td>S13-a-2</td>
<td>2.9</td>
<td>145</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>1.10</td>
<td>51,65</td>
<td>70,05</td>
<td>G13-a-2</td>
<td>2.10</td>
<td>110,4 DC+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td>-5,45</td>
<td>28</td>
<td>S14-a-1</td>
<td>2.11</td>
<td>123</td>
<td>110,4 GND</td>
<td></td>
</tr>
<tr>
<td>1.12</td>
<td>-2,55</td>
<td>28</td>
<td>G14-a-1</td>
<td>2.12</td>
<td>145</td>
<td>110,4 DC-</td>
<td></td>
</tr>
<tr>
<td>1.13</td>
<td>46,55</td>
<td>28</td>
<td>G14-a-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.14</td>
<td>49,45</td>
<td>28</td>
<td>S14-a-2</td>
<td></td>
<td></td>
<td></td>
<td>Low current connections</td>
</tr>
<tr>
<td>1.15</td>
<td>-4,87</td>
<td>50,05</td>
<td>G12-a-1</td>
<td>3.1</td>
<td>-39,1</td>
<td>89,8</td>
<td>TR+</td>
</tr>
<tr>
<td>1.16</td>
<td>-1,61</td>
<td>49,05</td>
<td>S12-a-1</td>
<td>3.2</td>
<td>184,1</td>
<td>89,8</td>
<td>TR+</td>
</tr>
<tr>
<td>1.17</td>
<td>45,6</td>
<td>49,05</td>
<td>S12-a-2</td>
<td>3.3</td>
<td>-39,1</td>
<td>65,2</td>
<td>DC+</td>
</tr>
<tr>
<td>1.18</td>
<td>48,85</td>
<td>50,05</td>
<td>G12-a-2</td>
<td>3.4</td>
<td>184,1</td>
<td>65,2</td>
<td>DC+</td>
</tr>
<tr>
<td>1.19</td>
<td>16,75</td>
<td>75,35</td>
<td>GND (desat)</td>
<td>3.5</td>
<td>-39,1</td>
<td>45,2</td>
<td>DC-</td>
</tr>
<tr>
<td>1.20</td>
<td>27,25</td>
<td>75,35</td>
<td>GND (desat)</td>
<td>3.6</td>
<td>184,1</td>
<td>45,2</td>
<td>DC-</td>
</tr>
<tr>
<td>1.21</td>
<td>67,65</td>
<td>86,7</td>
<td>Therm12</td>
<td>3.7</td>
<td>-39,1</td>
<td>20,6</td>
<td>TR-</td>
</tr>
<tr>
<td>1.22</td>
<td>67,65</td>
<td>89,8</td>
<td>Therm11</td>
<td>3.8</td>
<td>184,1</td>
<td>20,6</td>
<td>TR-</td>
</tr>
<tr>
<td>1.23</td>
<td>96,45</td>
<td>81,95</td>
<td>S11-b-1</td>
<td>3.9</td>
<td>-39,1</td>
<td>89,8</td>
<td>GND</td>
</tr>
<tr>
<td>1.24</td>
<td>98,85</td>
<td>84,85</td>
<td>G11-b-1</td>
<td>3.10</td>
<td>184,1</td>
<td>89,8</td>
<td>GND</td>
</tr>
<tr>
<td>1.25</td>
<td>147,15</td>
<td>81,95</td>
<td>S11-b-2</td>
<td>3.11</td>
<td>-39,1</td>
<td>45,2</td>
<td>GND</td>
</tr>
<tr>
<td>1.26</td>
<td>147,15</td>
<td>84,85</td>
<td>G11-b-2</td>
<td>3.12</td>
<td>184,1</td>
<td>45,2</td>
<td>GND</td>
</tr>
<tr>
<td>1.27</td>
<td>120,45</td>
<td>93,05</td>
<td>DC+ (desat)</td>
<td>3.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.28</td>
<td>125,55</td>
<td>93,05</td>
<td>DC+ (desat)</td>
<td>3.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.29</td>
<td>93,35</td>
<td>67,15</td>
<td>S13-b-1</td>
<td>3.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>93,35</td>
<td>70,05</td>
<td>G13-b-1</td>
<td>3.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.31</td>
<td>152,65</td>
<td>67,15</td>
<td>S13-b-2</td>
<td>3.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.32</td>
<td>152,65</td>
<td>70,05</td>
<td>G13-b-2</td>
<td>3.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.33</td>
<td>95,55</td>
<td>28</td>
<td>S14-b-1</td>
<td>3.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.34</td>
<td>98,45</td>
<td>28</td>
<td>G14-b-1</td>
<td>3.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.35</td>
<td>147,55</td>
<td>28</td>
<td>G14-b-2</td>
<td>3.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.36</td>
<td>150,45</td>
<td>28</td>
<td>S14-b-2</td>
<td>3.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.37</td>
<td>96,2</td>
<td>50,85</td>
<td>G12-b-1</td>
<td>3.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.38</td>
<td>99,4</td>
<td>49,05</td>
<td>S12-b-1</td>
<td>3.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.39</td>
<td>146,6</td>
<td>49,05</td>
<td>S12-b-2</td>
<td>3.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.40</td>
<td>149,8</td>
<td>50,85</td>
<td>G12-b-2</td>
<td>3.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.41</td>
<td>117,75</td>
<td>75,35</td>
<td>GND (desat)</td>
<td>3.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.42</td>
<td>128,25</td>
<td>75,35</td>
<td>GND (desat)</td>
<td>3.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.43</td>
<td>168,65</td>
<td>86,7</td>
<td>Therm22</td>
<td>3.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.44</td>
<td>168,65</td>
<td>89,8</td>
<td>Therm21</td>
<td>3.30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power connections

Phase

DC+ (desat) GND (desat) DC-

Low current connections

TR+ TR- TR+

Power connections

- DC+
- GND
- DC-

Function

- S
- G
- T

with thermal paste

<table>
<thead>
<tr>
<th>Name</th>
<th>Date code</th>
<th>Lot Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vincotech</td>
<td>UL</td>
<td></td>
</tr>
</tbody>
</table>

Ordering Code & Marking

Date code UL & VIN Lot Serial

Datasheet

Type & Ver Lot number Serial Date code

Tolerance of pin positions: ±0.5mm at the end of pins

PCB holes and connection parameters of pins see in the handling instruction document

Image: Diagram of the component with pin numbers and connections.

Copyright: Vincotech
Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11 , T12</td>
<td>IGBT</td>
<td>1200 V</td>
<td>800 A</td>
<td>Buck IGBT</td>
<td>Parallel devices with separate control. Values apply to complete device.</td>
</tr>
<tr>
<td>D11 , D12</td>
<td>FWD</td>
<td>1200 V</td>
<td>800 A</td>
<td>Buck Diode</td>
<td>Parallel devices with separate control. Values apply to complete device.</td>
</tr>
<tr>
<td>T13 , T14</td>
<td>IGBT</td>
<td>1200 V</td>
<td>800 A</td>
<td>Boost IGBT</td>
<td>Parallel devices with separate control. Values apply to complete device.</td>
</tr>
<tr>
<td>D13 , D14</td>
<td>FWD</td>
<td>1200 V</td>
<td>600 A</td>
<td>Boost Diode</td>
<td>Parallel devices with separate control. Values apply to complete device.</td>
</tr>
<tr>
<td>D15 , D16</td>
<td>Diode</td>
<td>1200 V</td>
<td>60 A</td>
<td>Boost Inverse Diode</td>
<td>Parallel devices with separate control. Values apply to complete device.</td>
</tr>
<tr>
<td>D61 , D62</td>
<td>Diode</td>
<td>1200 V</td>
<td>100 A</td>
<td>Snubber Diode</td>
<td>Parallel devices with separate control. Values apply to complete device.</td>
</tr>
<tr>
<td>Rt-1 , Rt-2</td>
<td>NTC</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Driver pins for parallel devices are not connected inside the module. Gx-1 to Gx-2 and Ex-1 to Ex2 shall be connected on customer PCB. Where x = 1 to 4.
DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.