Features

- 2400 V NPC-topology (2x 1200 V)
- High power screw interface
- Low inductive interface for external DC-capacitors and paralleling on component level
- Snubber diode for optional asymmetrical inductance
- High speed buck IGBT’s
- Temperature sensor

Target Applications

- UPS
- Solar Inverters

Types

- 70-W224NIA400SH-M400P

Maximum Ratings

$T_j = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td>$T_j = T_{j\max}$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_s = 80 , ^\circ C$</td>
<td>326</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>I_{CM}</td>
<td>T_s limited by $T_{j\max}$</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>$V_{CE} \leq 1200 , V$, $T_j \leq T_{j\max}$</td>
<td></td>
<td>800</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j\max}$</td>
<td>881</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>$T_j = T_{j\max}$</td>
<td>± 20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>I_{SC}</td>
<td>$T_j \leq 150 , ^\circ C$</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>V_{CC}</td>
<td>$V_{CC} = 15 , V$</td>
<td>800</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\max}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Buck Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>$T_j = T_{j\max}$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_s = 80 , ^\circ C$</td>
<td>270</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{F\max}$</td>
<td>$t_s = 10 , ms$, sin 180°</td>
<td>800</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j\max}$</td>
<td>565</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\max}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_j = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Booster Switch</td>
<td>$V_C E$</td>
<td>$T_j = T_{\text{min}}$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>I_C</td>
<td>$T_j = T_{\text{max}}$, $T_s = 80 , ^\circ C$</td>
<td>348</td>
<td>A</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_{CSS}</td>
<td>$T_j = T_{\text{min}}$, $T_s = 80 , ^\circ C$</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>V_{CE}</td>
<td>$T_j = T_{\text{min}}$, $T_s = 80 , ^\circ C$</td>
<td>800</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>P_{tot}</td>
<td>$T_j = T_{\text{min}}$, $T_s = 80 , ^\circ C$</td>
<td>826</td>
<td>W</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>V_{GE}</td>
<td>$T_j = T_{\text{min}}$</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>t_{SC}</td>
<td>$T_j = 150 , ^\circ C$, $V_{GE} = 15 , V$</td>
<td>10</td>
<td>µs</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>V_{CC}</td>
<td>$T_j = 150 , ^\circ C$, $V_{GE} = 15 , V$</td>
<td>800</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{max}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost Inverse Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{IRM}</td>
<td>$T_j = T_{\text{min}}$, $T_s = 80 , ^\circ C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j = T_{\text{min}}$</td>
<td>242</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FMAX}</td>
<td>$T_j = T_{\text{min}}$</td>
<td>600</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{\text{min}}$, $T_s = 80 , ^\circ C$</td>
<td>423</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{max}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{IRM}</td>
<td>$T_j = T_{\text{min}}$, $T_s = 80 , ^\circ C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j = T_{\text{min}}$</td>
<td>257</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FMAX}</td>
<td>$T_j = T_{\text{min}}$</td>
<td>600</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{\text{min}}$, $T_s = 80 , ^\circ C$</td>
<td>452</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{max}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_J = 25^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snubber Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>V_{RRM}</td>
<td>$I_{FSM} = I_{FSMx}$, $T_J = 80^\circ C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Forward average current</td>
<td>I_{FSM}</td>
<td>$I_{FSMx} = 80^\circ C$</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{FSM}</td>
<td>$I_{FSMx} = 10 ms, sin 180^\circ$</td>
<td>540</td>
<td>A</td>
</tr>
<tr>
<td>i^2t-value</td>
<td>i^2t</td>
<td>$I_{FSMx} = 150^\circ C$</td>
<td>730</td>
<td>A2s</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_J = 80^\circ C$</td>
<td>162</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td>$T_J = 80^\circ C$</td>
<td>175</td>
<td>$^\circ C$</td>
</tr>
</tbody>
</table>

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>$-40...+125$</td>
<td>$^\circ C$</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>$-40...+(T_{jmax} - 25)$</td>
<td>$^\circ C$</td>
</tr>
</tbody>
</table>

Insulation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation voltage</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>AC Voltage</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td>$min 12,7$</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td>$min 12,7$</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>>200</td>
<td></td>
</tr>
</tbody>
</table>

*100 % tested in production
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{ce} = V_{he}$</td>
<td>0,0136</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td>15</td>
<td>25</td>
<td>0,048</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl. Diode</td>
<td>I_{CES}</td>
<td>0</td>
<td>1200</td>
<td>5,8</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{gas}</td>
<td>20</td>
<td>0</td>
<td>960</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gas}</td>
<td></td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{(on)}$</td>
<td></td>
<td></td>
<td>171</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{(off)}$</td>
<td>$R_{gas} = 1 \Omega$</td>
<td>15</td>
<td>600</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>$R_{gas} = 1 \Omega$</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td></td>
<td>9,03</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td>13,20</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>$f = 1 \text{ MHz}$</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oes}</td>
<td></td>
<td></td>
<td>22160</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td></td>
<td></td>
<td>1280</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>phase-change material $\lambda = 3,4 \text{ W/mK}$</td>
<td>15</td>
<td>960</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td>phase-change material θ = 3,4 W/mK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{f}</td>
<td></td>
<td>400</td>
<td>25</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{r}</td>
<td></td>
<td>1200</td>
<td>25</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RRM}</td>
<td>$R_{gas} = 1 \Omega$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{r}</td>
<td></td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>$R_{gas} = 1 \Omega$</td>
<td></td>
<td>34,86</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>dV_{CES}/dt_{off}</td>
<td></td>
<td></td>
<td>14614</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rr}</td>
<td></td>
<td></td>
<td>15,14</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td>phase-change material θ = 3,4 W/mK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

copyright Vincotech
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{CE} = V_{CE}$</td>
<td>0,0152</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td></td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>I_{rss}</td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{Ges}</td>
<td></td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gon}</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>$R_{goff} = 1 \Omega$</td>
<td>±15</td>
<td>600</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td>25</td>
<td>398</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td>25</td>
<td>398</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{riss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{G}</td>
<td>phase-change material $\lambda = 3,4 W/mK$</td>
<td>±15</td>
<td>600</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td></td>
<td>K/W</td>
</tr>
</tbody>
</table>

Boost Inverse Diode							
Diode forward voltage	V_s		300	25	1.35	1.90	V
Reverse leakage current	I_r		1200	25		56	µA
Thermal resistance chip to heatsink	$R_{th(j-s)}$	phase-change material $\lambda = 3,4 W/mK$				0,204	K/W

Boost Diode							
Diode forward voltage	V_s		300	25	1.35	1.90	V
Reverse leakage current	I_r		1200	25		56	µA
Peak reverse recovery current	I_{RRM}	$R_{goff} = 1 \Omega$	±15	600			
Reverse recovery time	t_{rr}		25	398			
Reverse recovered charge	Q_{rec}	$R_{goff} = 1 \Omega$	±15	600			
Peak rate of fall of recovery current	E_{df}		25	398			
Reverse recovery energy	E_{rec}		25	398			
Thermal resistance chip to heatsink	$R_{th(j-s)}$	phase-change material $\lambda = 3,4 W/mK$				0,204	K/W
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snubber Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_{F}</td>
<td>100</td>
<td>25</td>
<td>1.91</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_{F}</td>
<td>1200</td>
<td>25</td>
<td>0.12</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>R_{R+2}</td>
<td>phase-change material $\lambda = 3.4 \text{ W/mK}$</td>
<td></td>
<td>0.588</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td>25</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Deviation of R_{180}</td>
<td>$\Delta_{R/180}$</td>
<td>$R_{180} = 1484 \Omega$</td>
<td>100</td>
<td>-5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>25</td>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td>25</td>
<td>1.5</td>
</tr>
<tr>
<td>B-value</td>
<td>$R_{(25/100)}$</td>
<td>Tol. ±1%</td>
<td>25</td>
<td>3962</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/100)}$</td>
<td>Tol. ±1%</td>
<td>25</td>
<td>4000</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module inductance (from chips to PCB)</td>
<td>L_{IICV-C}</td>
<td>Buck</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Module inductance (from PCB to PCB using Intercon board)</td>
<td>$L_{IIC-CPB}$</td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Resistance of Intercon boards (from PCB to PCB using Intercon board)</td>
<td>R_{C1-C2}</td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>Weight</td>
<td>G</td>
<td></td>
<td>580</td>
<td>g</td>
</tr>
</tbody>
</table>

copyright Vincotech 6 13 Sep. 2018 / Revision 6
Buck

Buck IGBT and Buck FWD

Figure 1. Typical output characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 350 \ \mu s \)
- \(T_j = 25 ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 2. Typical output characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 350 \ \mu s \)
- \(T_j = 125 ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 3. Typical transfer characteristics

\[I_C = f(V_{GE}) \]

At

- \(t_p = 350 \ \mu s \)
- \(V_{CE} = 10 \ \text{V} \)

Figure 4. Typical FWD forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

- \(t_F = 350 \ \mu s \)

Buck

Buck IGBT and Buck FWD

Figure 5. IGBT

Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

![Graph showing typical switching energy losses as a function of collector current.](image)

With an inductive load at

- \(T_j = 25/125 \) °C
- \(V_{CE} = 600 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω
- \(I_C = 398 \) A

Figure 6. IGBT

Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

![Graph showing typical switching energy losses as a function of gate resistor.](image)

With an inductive load at

- \(T_j = 25/125 \) °C
- \(V_{CE} = 600 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 398 \) A

Figure 7. FWD

Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

![Graph showing typical reverse recovery energy loss as a function of collector current.](image)

With an inductive load at

- \(T_j = 25/125 \) °C
- \(V_{CE} = 600 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1,0 \) Ω

Figure 8. FWD

Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

![Graph showing typical reverse recovery energy loss as a function of gate resistor.](image)

With an inductive load at

- \(T_j = 25/125 \) °C
- \(V_{CE} = 600 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 398 \) A
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
- \(T_j = 125 \, ^\circ\text{C} \)
- \(V_{CE} = 600 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 1 \, \Omega \)
- \(R_{goff} = 1 \, \Omega \)

Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 600 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 1.0 \, \Omega \)
- \(I_F = 398 \, \text{A} \)
- \(V_{LE} = \pm 15 \, \text{V} \)
Buck

Buck IGBT and Buck FWD

Figure 13. Typical reverse recovery charge as a function of collector current $Q_{rr} = f(I_C)$

- $T_j = 25/125 \ ^\circ C$
- $V_{CE} = 600 \ \text{V}$
- $V_{GE} = \pm 15 \ \text{V}$
- $I_F = 398 \ \text{A}$
- $R_{gon} = 1,0 \ \text{Ω}$

- $V_{GE} = \pm 15 \ \text{V}$

Figure 14. Typical reverse recovery charge as a function of IGBT turn on gate resistor $Q_{rr} = f(R_{gon})$

- $T_j = 25/125 \ ^\circ C$
- $V_{CE} = 600 \ \text{V}$
- $V_{GE} = \pm 15 \ \text{V}$

Figure 15. Typical reverse recovery current as a function of collector current $I_{RRM} = f(I_C)$

- $T_j = 25/125 \ ^\circ C$
- $V_{CE} = 600 \ \text{V}$
- $V_{GE} = \pm 15 \ \text{V}$
- $I_F = 398 \ \text{A}$
- $R_{gon} = 1,0 \ \text{Ω}$

Figure 16. Typical reverse recovery current as a function of IGBT turn on gate resistor $I_{RRM} = f(R_{gon})$

- $T_j = 25/125 \ ^\circ C$
- $V_{CE} = 600 \ \text{V}$
- $V_{GE} = \pm 15 \ \text{V}$
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c)
\]

At
\[
T_J = 25/125 °C
\]
\[
V_{CE} = 600 \text{ V}
\]
\[
V_{GE} = ±15 \text{ V}
\]
\[
I_F = 398 \text{ A}
\]
\[
R_{gon} = 1.0 \text{ Ω}
\]

IGBT transient thermal impedance as a function of pulse width
\[
Z_{th(j-s)} = f(t_p)
\]

At
\[
D = 0.5
\]
\[
R_{eq(j)} = 0.105 \text{ K/W}
\]

With phase change material
\[
R (\text{K/W}) \quad \text{Tau (s)}
\]
\[
1.04E-02 \quad 5.24E+00
\]
\[
3.34E-02 \quad 1.19E+00
\]
\[
2.40E-02 \quad 2.95E-01
\]
\[
2.73E-02 \quad 1.03E-02
\]
\[
6.18E-03 \quad 7.56E-03
\]
\[
3.33E-03 \quad 7.59E-04
\]

FWD transient thermal impedance as a function of pulse width
\[
Z_{th(j-s)} = f(t_p)
\]

At
\[
D = 0.5
\]
\[
R_{eq(j)} = 0.163 \text{ K/W}
\]

With phase change material
\[
R (\text{K/W}) \quad \text{Tau (s)}
\]
\[
1.77E-02 \quad 7.43E+00
\]
\[
3.03E-02 \quad 1.59E+00
\]
\[
3.09E-02 \quad 2.90E-01
\]
\[
4.17E-02 \quad 6.32E-02
\]
\[
3.22E-02 \quad 2.05E-02
\]
\[
1.01E-02 \quad 1.83E-03
\]
Buck
Buck IGBT and Buck FWD

Figure 21. IGBT
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At
\[T_j = 175 \ ^\circ\text{C} \]

Figure 22. IGBT
Collector current as a function of heatsink temperature

\[I_C = f(T_s) \]

At
\[T_j = 175 \ ^\circ\text{C} \]
\[V_{GE} = 15 \ \text{V} \]

Figure 23. FWD
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At
\[T_j = 175 \ ^\circ\text{C} \]

Figure 24. FWD
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At
\[T_j = 175 \ ^\circ\text{C} \]
Buck

Buck IGBT and Buck FWD

figure 25.
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

figure 26.
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At

- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{CE} = \pm15 \) V
- \(T_j = T_{j\text{max}} \)

figure 27.
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At

- \(U_{\text{cm}} = U_{\text{cgb}} \)

Switching mode:

- 3 level switching
Boost
Boost IGBT and Boost FWD

figure 1. IGBT
Typical output characteristics
$I_C = f(V_{CE})$

At
$t_p = 350 \ \mu s$
$T_J = 25 \ {}^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

figure 2. IGBT
Typical output characteristics
$I_C = f(V_{CE})$

At
$t_p = 350 \ \mu s$
$T_J = 125 \ {}^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

figure 3. IGBT
Typical transfer characteristics
$I_C = f(V_{GE})$

At
$t_p = 350 \ \mu s$
$V_{CE} = 10 \ \text{V}$
$T_J = 25^\circ C \text{ and } 125^\circ C$

figure 4. FWD
Typical FWD forward current as a function of forward voltage
$I_F = f(V_F)$

At
$t_p = 350 \ \mu s$
Boost
Boost IGBT and Boost FWD

figure 5. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at
\[T_j = 25/125 \quad ^\circ C \]
\[V_{CE} = 600 \quad V \]
\[V_{GE} = \pm 15 \quad V \]
\[R_{g(on)} = 1.0 \quad \Omega \]
\[I_C = 398 \quad A \]

figure 6. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at
\[T_j = 25/125 \quad ^\circ C \]
\[V_{CE} = 600 \quad V \]
\[V_{GE} = \pm 15 \quad V \]
\[I_C = 398 \quad A \]

figure 7. FWD
Typical reverse recovery energy loss as a function of collector current

\[E_{rev} = f(I_C) \]

With an inductive load at
\[T_j = 25/125 \quad ^\circ C \]
\[V_{CE} = 600 \quad V \]
\[V_{GE} = \pm 15 \quad V \]
\[R_{g(on)} = 1.0 \quad \Omega \]

figure 8. FWD
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rev} = f(R_G) \]

With an inductive load at
\[T_j = 25/125 \quad ^\circ C \]
\[V_{CE} = 600 \quad V \]
\[V_{GE} = \pm 15 \quad V \]
\[I_C = 398 \quad A \]
Boost IGBT and Boost FWD

figure 9. Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

\[T_j = 125 \] °C
\[V_{CE} = 600 \] V
\[V_{GE} = \pm 15 \] V
\[R_{gon} = 1,0 \] Ω
\[R_{goff} = 1,0 \] Ω

figure 10. Typical switching times as a function of gate resistor

\[t = f(R_G) \]

With an inductive load at

\[T_j = 125 \] °C
\[V_{CE} = 600 \] V
\[V_{GE} = \pm 15 \] V
\[I_C = 398 \] A

figure 11. Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At

\[T_j = 25/125 \] °C
\[V_{CE} = 600 \] V
\[V_{GE} = \pm 15 \] V
\[R_{gon} = 1,0 \] Ω

figure 12. Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At

\[T_j = 25/125 \] °C
\[V_{GE} = \pm 15 \] V
\[I_F = 398 \] A
Boost

Boost IGBT and Boost FWD

figure 13. Typical reverse recovery charge as a function of collector current

\[Q_{RR} = f(I_C) \]

![Graph](image)

At

\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 600 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 1,0 \, \Omega \]

figure 14. Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{RR} = f(R_{gon}) \]

![Graph](image)

At

\[T_J = 25/125 \, ^\circ C \]
\[V_C = 600 \, V \]
\[I_F = 398 \, A \]
\[V_{GE} = \pm 15 \, V \]

figure 15. Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

![Graph](image)

At

\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 600 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 1,0 \, \Omega \]

figure 16. Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

![Graph](image)

At

\[T_J = 25/125 \, ^\circ C \]
\[V_C = 600 \, V \]
\[I_F = 398 \, A \]
\[V_{GE} = \pm 15 \, V \]
Boost

Boost IGBT and Boost FWD

![Figure 17](image1.png)

Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_{C})
\]

At

- \(T_j = 25\,\degree C\)
- \(V_{CE} = 600\, V\)
- \(V_{GE} = \pm 15\, V\)
- \(R_{gon} = 1,0\, \Omega\)

![Figure 18](image2.png)

Typical rate of fall of forward and reverse recovery current as a function of gate resistor

\[
\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon})
\]

At

- \(T_j = 25\,\degree C\)
- \(V_k = 600\, V\)
- \(I_F = 398\, A\)
- \(V_{GE} = \pm 15\, V\)

![Figure 19](image3.png)

IGBT transient thermal impedance as a function of pulse width

\[
Z_{th(j-s)} = f(t_p)
\]

At

- \(D = 0.5\)
- \(R_{DG(j-o)} = 0,112\, \text{K/W}\)

<table>
<thead>
<tr>
<th>(R_{DG(j-o)} (\text{K/W}))</th>
<th>(\tau_p / T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,16E-02</td>
<td>6,35E+00</td>
</tr>
<tr>
<td>4,61E-02</td>
<td>1,77E+00</td>
</tr>
<tr>
<td>2,00E-02</td>
<td>3,94E-01</td>
</tr>
<tr>
<td>1,28E-02</td>
<td>8,72E-02</td>
</tr>
<tr>
<td>1,94E-02</td>
<td>1,94E-02</td>
</tr>
<tr>
<td>1,72E-03</td>
<td>2,24E-03</td>
</tr>
</tbody>
</table>

IGBT thermal model values

With phase change material

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\text{Tau}) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,16E-02</td>
<td>6,35E+00</td>
</tr>
<tr>
<td>4,61E-02</td>
<td>1,77E+00</td>
</tr>
<tr>
<td>2,00E-02</td>
<td>3,94E-01</td>
</tr>
<tr>
<td>1,28E-02</td>
<td>8,72E-02</td>
</tr>
<tr>
<td>1,94E-02</td>
<td>1,94E-02</td>
</tr>
<tr>
<td>1,72E-03</td>
<td>2,24E-03</td>
</tr>
</tbody>
</table>

FWD thermal model values

With phase change material

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\text{Tau}) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,03E-02</td>
<td>5,24E+00</td>
</tr>
<tr>
<td>6,52E-02</td>
<td>1,19E+00</td>
</tr>
<tr>
<td>4,67E-02</td>
<td>2,95E-01</td>
</tr>
<tr>
<td>5,32E-02</td>
<td>3,03E-02</td>
</tr>
<tr>
<td>1,20E-02</td>
<td>7,56E-03</td>
</tr>
<tr>
<td>6,49E-03</td>
<td>7,59E-04</td>
</tr>
</tbody>
</table>

![Figure 20](image4.png)

FWD transient thermal impedance as a function of pulse width

\[
Z_{th(j-s)} = f(t_p)
\]

At

- \(D = 0.5\)
- \(R_{W(j-o)} = 0,204\, \text{K/W}\)

<table>
<thead>
<tr>
<th>(R_{W(j-o)} (\text{K/W}))</th>
<th>(\tau_p / T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,03E-02</td>
<td>5,24E+00</td>
</tr>
<tr>
<td>6,52E-02</td>
<td>1,19E+00</td>
</tr>
<tr>
<td>4,67E-02</td>
<td>2,95E-01</td>
</tr>
<tr>
<td>5,32E-02</td>
<td>3,03E-02</td>
</tr>
<tr>
<td>1,20E-02</td>
<td>7,56E-03</td>
</tr>
<tr>
<td>6,49E-03</td>
<td>7,59E-04</td>
</tr>
</tbody>
</table>
Boost
Boost IGBT and Boost FWD

Figure 21. IGBT
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At

\[T_j = 175 \, ^\circ\text{C} \]

Figure 22. IGBT
Collector current as a function of heatsink temperature

\[I_C = f(T_s) \]

At

\[T_j = 175 \, ^\circ\text{C} \]

\[V_{GE} = 15 \, \text{V} \]

Figure 23. FWD
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At

\[T_j = 175 \, ^\circ\text{C} \]

Figure 24. FWD
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At

\[T_j = 175 \, ^\circ\text{C} \]
Boost IGBT

Reverse bias safe operating area

\[I_C = f(V_{ce}) \]

At

- \(U_{\text{continue}} = U_{\text{cutoff}} \)
- \(L_s = 12 \text{ nH} \)

Switching mode: 3 level switching

Boost

Boost IGBT

Figure 25.

\[V_{ce} \text{ (V)} \]

\[I_C \text{ (A)} \]

\[V_{ce \text{ max}} \]

\[V_{ce \text{ max}} \]

\[V_{ce \text{ max}} \]
Boost Inverse Diode

figure 25. Boost Inverse Diode

Typical FWD forward current as a function of forward voltage

\[I_F = f(V_F) \]

figure 26. Boost Inverse Diode

FWD transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

At

\[t_p = 250 \ \mu s \]

\[D = 0.5 \]

\[R_{th(j-o)} = 0.204 \ \text{K/W} \]

figure 27. Boost Inverse Diode

Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_s) \]

At

\[T_j = 175 \ ^\circ C \]

figure 28. Boost Inverse Diode

Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At

\[T_j = 175 \ ^\circ C \]
Snubber Diode

Figure 1. Snubber Diode

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

\[t_p = 250 \ \mu s \]

Figure 2. Snubber Diode

Diode transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

At

\[D = \frac{t_p}{T} \]

\[R_{th(j-s)} = 0.588 \ \text{K/W} \]

Figure 3. Snubber Diode

Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_s) \]

At

\[T_j = 175 \ ^\circ C \]

Figure 4. Snubber Diode

Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At

\[T_j = 175 \ ^\circ C \]
Thermistor

Figure 1. Thermistor

Typical NTC characteristic as a function of temperature

\[R = f(T) \]
Switching Definitions Buck

General conditions

\[T_j = 125 \, ^\circ\text{C} \]
\[R_{on} = 1 \, \Omega \]
\[R_{off} = 1 \, \Omega \]

Test setup inductance: 9 nH

Figure 1.
Turn-off Switching Waveforms & definition of \(t_{\text{doff}} \), \(t_{\text{Eoff}} \)
(\(t_{\text{Eoff}} \) = integrating time for \(E_{\text{off}} \))

- \(V_{\text{CE}} (0\%) = -15 \, \text{V} \)
- \(V_{\text{CE}} (100\%) = 15 \, \text{V} \)
- \(I_C (100\%) = 402 \, \text{A} \)
- \(t_{\text{doff}} = 0,29 \, \mu\text{s} \)
- \(t_{\text{Eoff}} = 0,45 \, \mu\text{s} \)

Figure 2.
Turn-on Switching Waveforms & definition of \(t_{\text{don}} \), \(t_{\text{Eon}} \)
(\(t_{\text{Eon}} \) = integrating time for \(E_{\text{on}} \))

- \(V_{\text{CE}} (0\%) = -15 \, \text{V} \)
- \(V_{\text{CE}} (100\%) = 15 \, \text{V} \)
- \(I_C (100\%) = 600 \, \text{V} \)
- \(I_C (100\%) = 402 \, \text{A} \)
- \(t_{\text{don}} = 0,17 \, \mu\text{s} \)
- \(t_{\text{Eon}} = 0,30 \, \mu\text{s} \)

Figure 3.
Turn-off Switching Waveforms & definition of \(t_f \)

- \(V_C (100\%) = 600 \, \text{V} \)
- \(I_C (100\%) = 402 \, \text{A} \)
- \(t_f = 0,04 \, \mu\text{s} \)

Figure 4.
Turn-on Switching Waveforms & definition of \(t_r \)

- \(V_C (100\%) = 600 \, \text{V} \)
- \(I_C (100\%) = 402 \, \text{A} \)
- \(t_r = 0,03 \, \mu\text{s} \)
Switching Definitions Buck

Figure 5. IGBT Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off} (100\%) = 241.06$ kW
- $E_{off} (100\%) = 21.33$ mJ
- $t_{Eoff} = 0.45$ µs

Figure 6. IGBT Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on} (100\%) = 241.06$ kW
- $E_{on} (100\%) = 14.33$ mJ
- $t_{Eon} = 0.30$ µs

Figure 7. FWD Turn-off Switching Waveforms & definition of t_{rr}

- $V_d (100\%) = 600$ V
- $i_d (100\%) = 402$ A
- $i_{RRM} (100\%) = -624$ A
- $t_{rr} = 0.12$ µs
Switching Definitions Buck

Figure 8. FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
($t_{Qrr} = \text{integrating time for } Q_{rr}$)

- $I_d (100\%) = 402 \text{ A}$
- $Q_{rr} (100\%) = 57.89 \text{ µC}$
- $t_{Qrr} = 1.00 \text{ µs}$

Figure 10. FWD
Turn-on Switching Waveforms & definition of t_{Erec}
($t_{Erec} = \text{integrating time for } E_{rec}$)

- $P_{rec} (100\%) = 241.06 \text{ kW}$
- $E_{rec} (100\%) = 26.14 \text{ mJ}$
- $t_{Erec} = 1.00 \text{ µs}$
Switching Definitions Boost

General conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>1 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>1 Ω</td>
</tr>
</tbody>
</table>

Test setup inductance: 9 nH

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CE} (0%)</td>
<td>-15 V</td>
</tr>
<tr>
<td>V_{CE} (100%)</td>
<td>15 V</td>
</tr>
<tr>
<td>I_C (100%)</td>
<td>398 A</td>
</tr>
<tr>
<td>t_{doff}</td>
<td>0,40 µs</td>
</tr>
<tr>
<td>t_{Eoff}</td>
<td>0,76 µs</td>
</tr>
</tbody>
</table>

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CE} (0%)</td>
<td>-15 V</td>
</tr>
<tr>
<td>V_{CE} (100%)</td>
<td>15 V</td>
</tr>
<tr>
<td>I_C (100%)</td>
<td>398 A</td>
</tr>
<tr>
<td>t_{don}</td>
<td>0,24 µs</td>
</tr>
<tr>
<td>t_{Eon}</td>
<td>0,48 µs</td>
</tr>
</tbody>
</table>

Turn-off Switching Waveforms & definition of t_f

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CE}</td>
<td>600 V</td>
</tr>
<tr>
<td>I_C</td>
<td>398 A</td>
</tr>
<tr>
<td>t_f</td>
<td>0,099 µs</td>
</tr>
</tbody>
</table>

Turn-on Switching Waveforms & definition of t_r

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CE}</td>
<td>600 V</td>
</tr>
<tr>
<td>I_C</td>
<td>398 A</td>
</tr>
<tr>
<td>t_r</td>
<td>0,049 µs</td>
</tr>
</tbody>
</table>
Switching Definitions Boost

Figure 5. Boost IGBT

Turn-off Switching Waveforms & definition of \(t_{Eoff} \)

\[
\begin{align*}
P_{off} (100\%) &= 238,67 \text{ kW} \\
E_{off} (100\%) &= 37,62 \text{ mJ} \\
t_{Eoff} &= 0,76 \mu\text{s}
\end{align*}
\]

Figure 6. Boost IGBT

Turn-on Switching Waveforms & definition of \(t_{Eon} \)

\[
\begin{align*}
P_{on} (100\%) &= 238,672 \text{ kW} \\
E_{on} (100\%) &= 13,39 \text{ mJ} \\
t_{Eon} &= 0,48 \mu\text{s}
\end{align*}
\]

Figure 7. Boost FWD

Turn-off Switching Waveforms & definition of \(t_{rr} \)

\[
\begin{align*}
V_d (100\%) &= 600 \text{ V} \\
i_d (100\%) &= 398 \text{ A} \\
i_{RRM} (100\%) &= -403 \text{ A} \\
t_{rr} &= 0,34 \mu\text{s}
\end{align*}
\]
Switching Definitions Boost

Figure 8. Boost FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

- $I_d (100\%) = 398$ A
- $Q_{rr}(100\%) = 58,83$ µC
- $t_{Qrr} = 0,69$ µs

Figure 9. Boost FWD
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

- $P_{rec} (100\%) = 238,67$ kW
- $E_{rec} (100\%) = 24,53$ mJ
- $t_{Erec} = 0,69$ µs
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste</td>
<td>70-W224NIA400SH-M400P</td>
</tr>
<tr>
<td>with thermal paste</td>
<td>70-W224NIA400SH-M400P* / 3</td>
</tr>
</tbody>
</table>

Pin table (mm)

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>-2.15</td>
<td>84.85</td>
<td>G1-1</td>
<td>T1</td>
</tr>
<tr>
<td>1.2</td>
<td>-2.15</td>
<td>81.95</td>
<td>E1-1</td>
<td>T1</td>
</tr>
<tr>
<td>1.3</td>
<td>46.15</td>
<td>84.85</td>
<td>G1-2</td>
<td>T1</td>
</tr>
<tr>
<td>1.4</td>
<td>46.15</td>
<td>81.95</td>
<td>E1-2</td>
<td>T1</td>
</tr>
<tr>
<td>1.5</td>
<td>19.45</td>
<td>93.05</td>
<td>DC+ desat</td>
<td>T1</td>
</tr>
<tr>
<td>1.6</td>
<td>24.55</td>
<td>93.05</td>
<td>DC+ desat</td>
<td>T1</td>
</tr>
<tr>
<td>1.7</td>
<td>-7.65</td>
<td>70.05</td>
<td>G2-1</td>
<td>T2</td>
</tr>
<tr>
<td>1.8</td>
<td>-7.65</td>
<td>67.15</td>
<td>E2-1</td>
<td>T2</td>
</tr>
<tr>
<td>1.9</td>
<td>51.65</td>
<td>70.05</td>
<td>G2-2</td>
<td>T2</td>
</tr>
<tr>
<td>1.10</td>
<td>51.65</td>
<td>67.15</td>
<td>E2-2</td>
<td>T2</td>
</tr>
<tr>
<td>1.11</td>
<td>16.75</td>
<td>75.35</td>
<td>GND desat</td>
<td>D5</td>
</tr>
<tr>
<td>1.12</td>
<td>27.25</td>
<td>75.35</td>
<td>GND desat</td>
<td>D5</td>
</tr>
<tr>
<td>1.13</td>
<td>-2.55</td>
<td>28</td>
<td>G3-1</td>
<td>T3</td>
</tr>
<tr>
<td>1.14</td>
<td>-5.45</td>
<td>28</td>
<td>E3-1</td>
<td>T3</td>
</tr>
<tr>
<td>1.15</td>
<td>46.55</td>
<td>28</td>
<td>G3-2</td>
<td>T3</td>
</tr>
<tr>
<td>1.16</td>
<td>49.45</td>
<td>28</td>
<td>E3-2</td>
<td>T3</td>
</tr>
<tr>
<td>1.17</td>
<td>-4.8</td>
<td>50.85</td>
<td>G4-1</td>
<td>T4</td>
</tr>
<tr>
<td>1.18</td>
<td>-1.6</td>
<td>49.05</td>
<td>E4-1</td>
<td>T4</td>
</tr>
<tr>
<td>1.19</td>
<td>46.8</td>
<td>50.85</td>
<td>G4-2</td>
<td>T4</td>
</tr>
<tr>
<td>1.20</td>
<td>45.6</td>
<td>49.05</td>
<td>E4-2</td>
<td>T4</td>
</tr>
<tr>
<td>1.21</td>
<td>67.65</td>
<td>89.8</td>
<td>NTC1</td>
<td></td>
</tr>
<tr>
<td>1.22</td>
<td>67.65</td>
<td>86.7</td>
<td>NTC2</td>
<td></td>
</tr>
</tbody>
</table>

Low current connections

<table>
<thead>
<tr>
<th>M6 screw</th>
<th>X3</th>
<th>Y3</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>-39.1</td>
<td>89.8</td>
<td>TR+</td>
</tr>
<tr>
<td>3.2</td>
<td>-39.1</td>
<td>89.8</td>
<td>GND</td>
</tr>
<tr>
<td>3.3</td>
<td>-39.1</td>
<td>89.8</td>
<td>DC+</td>
</tr>
<tr>
<td>3.4</td>
<td>83.1</td>
<td>89.8</td>
<td>TR+</td>
</tr>
<tr>
<td>3.5</td>
<td>83.1</td>
<td>89.8</td>
<td>GND</td>
</tr>
<tr>
<td>3.6</td>
<td>83.1</td>
<td>89.8</td>
<td>DC+</td>
</tr>
<tr>
<td>3.7</td>
<td>-39.1</td>
<td>65.2</td>
<td>T2C</td>
</tr>
<tr>
<td>3.8</td>
<td>-39.1</td>
<td>65.2</td>
<td>GND</td>
</tr>
<tr>
<td>3.9</td>
<td>-39.1</td>
<td>65.2</td>
<td>Phase</td>
</tr>
<tr>
<td>3.10</td>
<td>83.1</td>
<td>65.2</td>
<td>T2C</td>
</tr>
<tr>
<td>3.11</td>
<td>83.1</td>
<td>65.2</td>
<td>GND</td>
</tr>
<tr>
<td>3.12</td>
<td>83.1</td>
<td>65.2</td>
<td>Phase</td>
</tr>
<tr>
<td>3.13</td>
<td>-39.1</td>
<td>45.2</td>
<td>Phase</td>
</tr>
</tbody>
</table>

Power connections

<table>
<thead>
<tr>
<th>M6 screw</th>
<th>X2</th>
<th>Y2</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.14</td>
<td>-39.1</td>
<td>45.2</td>
<td>GND</td>
</tr>
<tr>
<td>3.15</td>
<td>-39.1</td>
<td>45.2</td>
<td>DK</td>
</tr>
<tr>
<td>3.16</td>
<td>83.1</td>
<td>45.2</td>
<td>Phase</td>
</tr>
<tr>
<td>3.17</td>
<td>83.1</td>
<td>45.2</td>
<td>GND</td>
</tr>
<tr>
<td>3.18</td>
<td>83.1</td>
<td>45.2</td>
<td>DK</td>
</tr>
<tr>
<td>3.19</td>
<td>-39.1</td>
<td>20.6</td>
<td>DC-</td>
</tr>
<tr>
<td>3.20</td>
<td>-39.1</td>
<td>20.6</td>
<td>GND</td>
</tr>
<tr>
<td>3.21</td>
<td>-39.1</td>
<td>20.6</td>
<td>TR-</td>
</tr>
<tr>
<td>3.22</td>
<td>83.1</td>
<td>20.6</td>
<td>DC-</td>
</tr>
<tr>
<td>3.23</td>
<td>83.1</td>
<td>20.6</td>
<td>GND</td>
</tr>
<tr>
<td>3.24</td>
<td>83.1</td>
<td>20.6</td>
<td>TR-</td>
</tr>
</tbody>
</table>

Outline

- **Pin** refers to the physical pin location on the component.
- **Date code** refers to the date the component was manufactured.
- **Lot & Serial** refer to the lot number and serial number, respectively.

Ordering Code & Marking

- **Ordering Code** includes the name of the component, version, and date code.
- **UL & Vinco** identifies the component's compliance with UL and Vinco standards.

Outline Diagram: A detailed diagram of the component's outline, showing the location of each pin and connection point.
Pinout

NOTE: Driver pins for parallel devices are not connected inside the module!

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11, T12</td>
<td>IGBT</td>
<td>1200 V</td>
<td>400 A</td>
<td>Buck Switch</td>
<td></td>
</tr>
<tr>
<td>D11, D12</td>
<td>FWD</td>
<td>1200 V</td>
<td>400 A</td>
<td>Buck Diode</td>
<td></td>
</tr>
<tr>
<td>T13, T14</td>
<td>IGBT</td>
<td>1200 V</td>
<td>400 A</td>
<td>Boost Switch</td>
<td></td>
</tr>
<tr>
<td>D13, D16</td>
<td>FWD</td>
<td>1200 V</td>
<td>300 A</td>
<td>Boost Inverse Diode</td>
<td></td>
</tr>
<tr>
<td>D13, D14</td>
<td>FWD</td>
<td>1200 V</td>
<td>300 A</td>
<td>Boost Diode</td>
<td></td>
</tr>
<tr>
<td>D61, D62</td>
<td>FWD</td>
<td>1200 V</td>
<td>50 A</td>
<td>Snubber Diode</td>
<td></td>
</tr>
<tr>
<td>Rt</td>
<td>NTC</td>
<td></td>
<td></td>
<td></td>
<td>Thermistor</td>
</tr>
</tbody>
</table>
DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.