Vincotech

70-W212NMC400SH01-M709P datasheet

flow MNPC 4w

1200 V / 400 A

Features
- Mixed voltage NPC
- Low inductive
- High power screw interface

Target Applications
- Solar inverter
- UPS
- High speed motor drive

Types
- 70-W212NMC400SH01-M709P

Maximum Ratings

$T_j=25^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{ce}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_c</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>405</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CEM}</td>
<td>t_α limited by $T_{j\text{max}}$</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>1105</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>τ_{SC}</td>
<td>$T_j\leq 150^\circ C$</td>
<td>10</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>V_{CC}</td>
<td>$T_j\leq 150^\circ C$</td>
<td>800</td>
<td>V</td>
</tr>
<tr>
<td>Turn off safe operating area (RBSOA)</td>
<td>I_{FMAX}</td>
<td>V_{CE} max = 1200V $T_{j\text{max}}$</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td>$T_j=25^\circ C$</td>
<td>175</td>
<td>$^\circ$C</td>
</tr>
</tbody>
</table>

neutral point FWD (D2 , D3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{ASUM}</td>
<td>$T_j=25^\circ C$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>282</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FDM}</td>
<td>$t_p=1$ ms $T_{vI}< 150^\circ C$</td>
<td>800</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per FWD</td>
<td>P_{F}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>389</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{F\text{max}}$</td>
<td>$T_j=25^\circ C$</td>
<td>175</td>
<td>$^\circ$C</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_j=25^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td>$T_j=T_{j\max}$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>i_c</td>
<td>$T_j=T_{j\max}$</td>
<td>355</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{Comm}</td>
<td>t_o, limited by $T_{j\max}$</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{j\max}$</td>
<td>645</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>± 20</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>$V_{CC}=15V$</td>
<td>6</td>
<td>μs</td>
</tr>
<tr>
<td>Turn off safe operating area (RBSOA)</td>
<td>I_{cs}</td>
<td>$t_{SC} = 150^\circ C$</td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RMS}</td>
<td>$T_j=25^\circ C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>i_f</td>
<td>$T_j=T_{j\max}$</td>
<td>234</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{tst}</td>
<td>$t_{s}=10\mathrm{ms} \cdot \sin 180^\circ$</td>
<td>1800</td>
<td>A</td>
</tr>
<tr>
<td>t^2-value</td>
<td>t^2</td>
<td>$T_j=150^\circ C$</td>
<td>8100</td>
<td>$\mathrm{A^2s}$</td>
</tr>
<tr>
<td>Power dissipation per FWD</td>
<td>P_{tot}</td>
<td>$T_j=T_{j\max}$</td>
<td>468</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\max}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

half bridge FWD (D1, D4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td>$T_j=25^\circ C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>i_c</td>
<td>$T_j=T_{j\max}$</td>
<td>234</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{j\max}$</td>
<td>468</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\max}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

General Module Properties

- Material of module baseplate: Cu
- Material of internal isolation: Al2O3

Thermal Properties

- Storage temperature: T_{stg}
- Operation temperature under switching condition: T_{op}

Insulation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation voltage</td>
<td>V_u</td>
<td>$t=2s$</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>CTI</td>
<td></td>
<td>>200</td>
<td></td>
</tr>
</tbody>
</table>

copyright Vincotech
Characteristic Values

half bridge IGBT (T1, T4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>V_{GE(th)} = V_{GE}</td>
<td>Tj=25°C, Tj=125°C</td>
<td>5.3</td>
<td>5.8</td>
<td>6.3</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEO}</td>
<td>400 V</td>
<td>Tj=25°C, Tj=125°C</td>
<td>1.78</td>
<td>2.10</td>
<td>2.42</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. FWD</td>
<td>I_{CS}</td>
<td>0, 1200</td>
<td>Tj=25°C, Tj=125°C</td>
<td>0.8</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{PK}</td>
<td>20, 0</td>
<td>Tj=25°C, Tj=125°C</td>
<td>960</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{PK}</td>
<td></td>
<td></td>
<td>0.5</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td></td>
<td></td>
<td>202</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>Rgoff=1 Ω Rgon=1 Ω</td>
<td>15</td>
<td>350</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rec}</td>
<td></td>
<td></td>
<td>0.0136</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td></td>
<td></td>
<td>341</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(d/dt)</td>
<td></td>
<td></td>
<td>342</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{on}</td>
<td>Tj=25°C</td>
<td>8524</td>
<td>4659</td>
<td></td>
<td>μJ</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>R_{th(j-s)}</td>
<td>Phase-Change Material</td>
<td>K = 3.4 W/mK</td>
<td>0.09</td>
<td>K/W</td>
<td></td>
</tr>
</tbody>
</table>

neutral point FWD (D2, D3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWD forward voltage</td>
<td>V_{F}</td>
<td>600 V</td>
<td>Tj=25°C, Tj=125°C</td>
<td>1.2</td>
<td>1.75</td>
<td>1.9</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RMS}</td>
<td></td>
<td></td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{r}</td>
<td></td>
<td></td>
<td>294</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{RR}</td>
<td></td>
<td></td>
<td>242</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(d/dt)</td>
<td></td>
<td></td>
<td>14</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{on}</td>
<td>Tj=25°C</td>
<td>8524</td>
<td>4659</td>
<td></td>
<td>μJ</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>R_{th(j-s)}</td>
<td>Phase-Change Material</td>
<td>K = 3.4 W/mK</td>
<td>0.24</td>
<td>K/W</td>
<td></td>
</tr>
</tbody>
</table>

neutral point IGBT (T2, T3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>V_{GE(th)} = V_{GE}</td>
<td>Tj=25°C, Tj=125°C</td>
<td>5.3</td>
<td>5.8</td>
<td>6.3</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEO}</td>
<td>400 V</td>
<td>Tj=25°C, Tj=125°C</td>
<td>1.78</td>
<td>2.10</td>
<td>2.42</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl. FWD</td>
<td>I_{CS}</td>
<td>0, 600</td>
<td>Tj=25°C, Tj=125°C</td>
<td>0.02</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{PK}</td>
<td>20, 0</td>
<td>Tj=25°C, Tj=125°C</td>
<td>2400</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{PK}</td>
<td></td>
<td></td>
<td>0.5</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td></td>
<td></td>
<td>198</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>Rgoff=1 Ω Rgon=1 Ω</td>
<td>15</td>
<td>350</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rec}</td>
<td></td>
<td></td>
<td>287</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td></td>
<td>28</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{on}</td>
<td>Tj=25°C</td>
<td>11.22</td>
<td>15.22</td>
<td></td>
<td>μJ</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{int}</td>
<td></td>
<td></td>
<td>26640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td></td>
<td></td>
<td>1536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{int}</td>
<td></td>
<td></td>
<td>732</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{0}</td>
<td></td>
<td></td>
<td>2480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>R_{th(j-s)}</td>
<td>Phase-Change Material</td>
<td>K = 3.4 W/mK</td>
<td>0.15</td>
<td>K/W</td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{GE} [V] or V_{GS} [V]</td>
<td></td>
<td>T_{j}=25°C or 125°C</td>
<td>2.18 2.46</td>
<td>V</td>
</tr>
<tr>
<td>V_{r} [V] or V_{CE} [V] or V_{DS} [V]</td>
<td></td>
<td>T_{j}=25°C or 125°C</td>
<td>2.18 380 15</td>
<td>V, µA</td>
</tr>
<tr>
<td>I_{C} [A] or I_{F} [A] or I_{D} [A]</td>
<td></td>
<td>T_{j}=25°C</td>
<td>360 511 75</td>
<td>A, ns</td>
</tr>
<tr>
<td>T_{j}</td>
<td></td>
<td>T_{j}=25°C or 125°C</td>
<td>436 75 15</td>
<td>A, µs</td>
</tr>
<tr>
<td>FWD forward voltage</td>
<td>V_{F}</td>
<td>T_{j}=25°C or 125°C</td>
<td>200 22850 22850</td>
<td>mW</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{r}</td>
<td>T_{j}=25°C or 125°C</td>
<td>15 15</td>
<td>µC</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>If_{rr}</td>
<td>T_{j}=25°C or 125°C</td>
<td>15 15</td>
<td>µA</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>T_{j}=25°C or 125°C</td>
<td>15 15</td>
<td>µs</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>T_{j}=25°C or 125°C</td>
<td>15 15</td>
<td>µC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(dI_{rr}/dt)</td>
<td>T_{j}=25°C or 125°C</td>
<td>15 15</td>
<td>A/µs</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td>T_{j}=25°C or 125°C</td>
<td>15 15</td>
<td>mJ/m²s</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>R_{th(j-s)}</td>
<td>T_{j}=25°C</td>
<td>0.20</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td>T_{j}=25°C</td>
<td>22000</td>
<td>Ω</td>
</tr>
<tr>
<td>Deviation of R_{th}</td>
<td>A_{25}</td>
<td>T_{j}=10°C</td>
<td>±2</td>
<td>%</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>T_{j}=25°C</td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td>T_{j}=25°C</td>
<td>2</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>B_{125°C}</td>
<td>T_{j}=25°C</td>
<td>3950</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>B_{100°C}</td>
<td>T_{j}=25°C</td>
<td>3996</td>
<td>Ω</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td>T_{j}=25°C</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

copyright Vincotech
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)

Figure 1
 Typical output characteristics $V_{ge}=15V$

$I_C = f(V_{ce})$

![Graph showing typical output characteristics for IGBT with $V_{ge}=15V$.]

At
$\tau_p = 350 \ \mu s$
$T_j = 25/125/150 \ ^\circ C$
$V_{ce}= 10 \ \text{V}$

Figure 2
 Typical output characteristics

$I_C = f(V_{ce})$

![Graph showing typical output characteristics for IGBT.]

At
$\tau_p = 350 \ \mu s$
$T_j = 150 \ ^\circ C$
V_{ce} from 7 V to 17 V in steps of 1 V

Figure 3
 Typical transfer characteristics

$I_C = f(V_{ce})$

![Graph showing typical transfer characteristics for IGBT.]

At
$\tau_p = 350 \ \mu s$
$V_{ce} = 10 \ \text{V}$
$T_j = 25/125/150 \ ^\circ C$

Figure 4
 Typical FWD forward current as a function of forward voltage

$I_F = f(V_F)$

![Graph showing typical FWD forward current as a function of forward voltage.]

At
$\tau_p = 350 \ \mu s$
$T_j = 25/125/150 \ ^\circ C$
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)

Figure 5
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]

With an inductive load at
\[T_j = 25/125/150 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GD} = \pm 15 \text{ V} \]
\[R_{gon} = 1.0 \text{ } \Omega \]
\[I_C = 406 \text{ A} \]

Figure 6
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
\[T_j = 25/125/150 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GD} = \pm 15 \text{ V} \]
\[I_C = 406 \text{ A} \]

Figure 7
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_C) \]

With an inductive load at
\[T_j = 25/125/150 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GD} = \pm 15 \text{ V} \]
\[R_{gon} = 1.0 \text{ } \Omega \]

Figure 8
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
\[T_j = 25/125/150 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GD} = \pm 15 \text{ V} \]
\[I_C = 406 \text{ A} \]
Buck operation

half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)

Figure 9

Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(T_j = 124 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 1.0 \, \Omega \)
- \(R_{goff} = 1.0 \, \Omega \)

Figure 10

Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at

- \(T_j = 124 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 406 \, \text{A} \)

Figure 11

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At

- \(T_j = 25/125/150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 1.0 \, \Omega \)

Figure 12

Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At

- \(T_j = 25/125/150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(I_F = 406 \, \text{A} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)

Figure 13
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

![Graph showing typical reverse recovery charge as a function of collector current.](image)

At
- \(T_j = 25/125/150 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 1,0 \, \Omega \)

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

![Graph showing typical reverse recovery charge as a function of gate resistor.](image)

At
- \(T_j = 25/125/150 \, ^\circ C \)
- \(V_R = 350 \, V \)
- \(I_F = 406 \, A \)
- \(V_{GE} = \pm 15 \, V \)

Figure 15
Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

![Graph showing typical reverse recovery current as a function of collector current.](image)

At
- \(T_j = 25/125/150 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_F = 406 \, A \)
- \(R_{gon} = 1,0 \, \Omega \)

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

![Graph showing typical reverse recovery current as a function of gate resistor.](image)

At
- \(T_j = 25/125/150 \, ^\circ C \)
- \(V_R = 350 \, V \)
- \(I_F = 406 \, A \)
- \(V_{GE} = \pm 15 \, V \)
Typical rate of fall of forward and reverse recovery current as a function of collector current:

\[
dI_0/dt, dI_{rec}/dt = f(I_{CO})
\]

At

\[
T_j = 25/125 \, ^\circ C
\]

\[
V_{CE} = 350 \, V
\]

\[
V_{GE} = \pm 15 \, V
\]

\[
R_{gon} = 1.0 \, \Omega
\]

IGBT transient thermal impedance as a function of pulse width:

\[
Z_{thJH} = f(t_p)
\]

At

\[
D = 0.5
\]

\[
R_{\infty} = 0.9 \, \text{K/W}
\]

IGBT thermal model values:

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.037</td>
<td>1.555</td>
</tr>
<tr>
<td>0.019</td>
<td>0.210</td>
</tr>
<tr>
<td>0.023</td>
<td>0.031</td>
</tr>
<tr>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td>0.005</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

FWD transient thermal impedance as a function of pulse width:

\[
Z_{thJH} = f(t_p)
\]

At

\[
D = 0.5
\]

\[
R_{\infty} = 0.24 \, \text{K/W}
\]

FWD thermal model values:

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.046</td>
<td>5.114</td>
</tr>
<tr>
<td>0.048</td>
<td>1.051</td>
</tr>
<tr>
<td>0.046</td>
<td>0.196</td>
</tr>
<tr>
<td>0.074</td>
<td>0.043</td>
</tr>
<tr>
<td>0.018</td>
<td>0.014</td>
</tr>
</tbody>
</table>
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)

Figure 21
IGBT
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

Figure 22
IGBT
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

Figure 23
FWD
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

Figure 24
FWD
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]
Buck operation

half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)

Figure 25
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At:
- \(T_j = 150 \) °C
- \(U_{\text{continua}} = U_{\text{peak}} = U_{cc}/2 \)
- \(V_{CE} = \pm 15 \) V
- \(R_{\text{on}} = 1.0 \) Ω
- Switching mode: 3 level

Figure 26
Gate voltage vs Gate charge

\[V_{GS} = f(Q_g) \]

At:
- \(I_C = 400 \) A

Vcc=240V Vcc=960V
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)

Figure 1
Typical output characteristics $V_{GE}=15V$
$I_C = f(V_{CE})$

At $t_p = 350 \ \mu s$
$T_j = 25/125/150 \ ^\circ C$
V_{CE} = 15 V

Figure 2
Typical output characteristics
$I_C = f(V_{CE})$

At $t_p = 350 \ \mu s$
$T_j = 150 \ ^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics
$I_C = f(V_{CE})$

Figure 4
Typical FWD forward current as a function of forward voltage
$I_F = f(V_F)$

At $t_p = 350 \ \mu s$
$T_j = 25/125/150 \ ^\circ C$
V_{CE} = 10 V
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)

Figure 5
Typical switching energy losses as a function of collector current

\[E = f(I_c) \]

With an inductive load at
- \(T_j = 25/125/150 \) °C
- \(V_{ce} = 350 \) V
- \(V_{gg} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω
- \(R_{goff} = 1 \) Ω

Figure 6
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at
- \(T_j = 25/125/150 \) °C
- \(V_{ce} = 350 \) V
- \(V_{gg} = \pm 15 \) V
- \(I_c = 407 \) A

Figure 7
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_c) \]

With an inductive load at
- \(T_j = 25/125/150 \) °C
- \(V_{ce} = 350 \) V
- \(V_{gg} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω

Figure 8
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at
- \(T_j = 25/125/150 \) °C
- \(V_{ce} = 350 \) V
- \(V_{gg} = \pm 15 \) V
- \(I_c = 407 \) A
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)

Figure 9
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
\[T_j = 125 \ degree\ C \]
\[V_{CE} = 350 \ V \]
\[V_{GE} = \pm 15 \ V \]
\[R_{g_{on}} = 1 \ \Omega \]
\[I_C = 407 \ A \]

Figure 10
Typical switching times as a function of gate resistor
\[t = f(R_g) \]

With an inductive load at
\[T_j = 125 \ degree\ C \]
\[V_{CE} = 350 \ V \]
\[V_{GE} = \pm 15 \ V \]
\[I_C = 407 \ A \]

Figure 11
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
\[T_j = 25/125/150 \ degree\ C \]
\[V_{CE} = 350 \ V \]
\[V_{GE} = \pm 15 \ V \]
\[R_{g_{on}} = 1 \ \Omega \]

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{g_{on}}) \]

At
\[T_j = 25/125/150 \ degree\ C \]
\[V_{CE} = 350 \ V \]
\[I_T = 407 \ A \]
\[V_{GE} = \pm 15 \ V \]
Boost operation
neutral point IGBT (T2, T3) and half bridge FWD (D1, D2)

Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

\[Q_{rr} = f(R_{gon}) \]

At
\[T_j = 25/125/150 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 1 \, \Omega \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor

At
\[T_j = 25/125/150 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[I_F = 407 \, A \]
\[V_{GE} = \pm 15 \, V \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

At
\[T_j = 25/125/150 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 1 \, \Omega \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor

At
\[T_j = 25/125/150 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[I_F = 407 \, A \]
\[V_{GE} = \pm 15 \, V \]
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)

Figure 17: Typical rate of fall of forward and reverse recovery current as a function of collector current.

\[\frac{dI}{dt}, \frac{dI_{\text{rec}}}{dt} = f(I_C) \]

At:
- \(T_j = 25/125/150 \) °C
- \(V_{GE} = 350 \) V
- \(V_{ds} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω

Figure 18: Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor.

\[\frac{dI}{dt}, \frac{dI_{\text{rec}}}{dt} = f(R_{gon}) \]

At:
- \(T_j = 25/125/150 \) °C
- \(V_{GE} = 350 \) V
- \(I_F = 407 \) A
- \(V_{ds} = \pm 15 \) V

Figure 19: IGBT transient thermal impedance as a function of pulse width.

\[Z_{thJH} = f(t_p) \]

At:
- \(D = \frac{t_p}{T} \)
- \(R_{thJH} = 0.15 \) K/W

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>3.58</td>
</tr>
<tr>
<td>0.02</td>
<td>0.74</td>
</tr>
<tr>
<td>0.03</td>
<td>0.18</td>
</tr>
<tr>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Figure 20: FWD transient thermal impedance as a function of pulse width.

\[Z_{thJH} = f(t_p) \]

At:
- \(D = \frac{t_p}{T} \)
- \(R_{thJH} = 0.20 \) K/W

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>4.55</td>
</tr>
<tr>
<td>0.03</td>
<td>0.92</td>
</tr>
<tr>
<td>0.05</td>
<td>0.19</td>
</tr>
<tr>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>0.03</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)

Figure 21
IGBT
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]

Figure 22
IGBT
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]
\[V_{GS} = 15 \, V \]

Figure 23
FWD
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]

Figure 24
FWD
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)

Figure 25
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

Figure 26
Gate voltage vs Gate charge

\[V_G = f(Q_g) \]

At
\[T_J = 25,150 \] °C
\[U_{commia}=U_{voltage},U_{C}/2 \]
\[V_{GE} = \pm 15 \] V
\[R_{gon} = 1 \] Ω

Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)

Figure 25
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

Figure 26
Gate voltage vs Gate charge

\[V_G = f(Q_g) \]

At
\[I_C = 400 \] A
Thermistor

Figure 1

Typical NTC characteristic as a function of temperature

\[R_T = f(T) \]
Switching Definitions Half Bridge

General conditions

- $T_j = 125 \, ^\circ\text{C}$
- $R_{on} = 1 \, \Omega$
- $R_{off} = 1 \, \Omega$

Figure 1

Turn-off Switching Waveforms & definition of t_{doff} t_{Eoff}
(t_{Eoff} = integrating time for E_{off})

- $V_{CE} (0\%) = -15 \, \text{V}$
- $V_{CE} (100\%) = 15 \, \text{V}$
- $V_c (100\%) = 700 \, \text{V}$
- $I_c (100\%) = 407 \, \text{A}$
- $t_{doff} = 0,305 \, \mu\text{s}$
- $t_{Eoff} = 0,715 \, \mu\text{s}$

Figure 2

Turn-on Switching Waveforms & definition of t_{don} t_{Eon}
(t_{Eon} = integrating time for E_{on})

- $V_{CE} (0\%) = -15 \, \text{V}$
- $V_{CE} (100\%) = 15 \, \text{V}$
- $V_c (100\%) = 700 \, \text{V}$
- $I_c (100\%) = 407 \, \text{A}$
- $t_{don} = 0,210 \, \mu\text{s}$
- $t_{Eon} = 0,488 \, \mu\text{s}$

Figure 3

Turn-off Switching Waveforms & definition of t_f

- $V_c (100\%) = 700 \, \text{V}$
- $I_c (100\%) = 407 \, \text{A}$
- $t_f = 0,053 \, \mu\text{s}$

Figure 4

Turn-on Switching Waveforms & definition of t_r

- $V_c (100\%) = 700 \, \text{V}$
- $I_c (100\%) = 407 \, \text{A}$
- $t_r = 0,033 \, \mu\text{s}$

copyright Vincotech
Switching Definitions Half Bridge

Figure 5
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off} (100\%) = 284,95$ kW
- $E_{off} (100\%) = 15,78$ mJ
- $t_{Eoff} = 0,715$ µs

Figure 6
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on} (100\%) = 284,95$ kW
- $E_{on} (100\%) = 9,85$ mJ
- $t_{Eon} = 0,488$ µs

Figure 7
Neutral Point FWD
Turn-off Switching Waveforms & definition of t_{rr}

- $V_s (100\%) = 700$ V
- $I_s (100\%) = 407$ A
- $I_{d080} (100\%) = -341$ A
- $t_{rr} = 0,242$ µs
Switching Definitions Half Bridge

Figure 8
Neutral Point FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

$I_d (100\%) = 407$ A
$Q_{rr} (100\%) = 31,93$ μC
$t_{Qrr} = 0,51$ μs

Figure 9
Neutral Point FWD
Turn-on Switching Waveforms & definition of t_{Erec}
($t_{Erec} = integrating time for E_{rec}$)

$P_{rec} (100\%) = 284,95$ kW
$E_{rec} (100\%) = 8,01$ mJ
$t_{Erec} = 0,51$ μs
Half Bridge switching measurement circuit

Figure 10

![Half Bridge switching measurement circuit diagram]
Switching Definitions Neutral Point

General conditions

\[T_i = 125 \, ^\circ C \]
\[R_{gon} = 1 \, \Omega \]
\[R_{goff} = 1 \, \Omega \]

Figure 1: Neutral Point IGBT
Turn-off Switching Waveforms & definition of \(t_{doff}, t_{Eoff} \)
(\(t_{Eoff} \) = integrating time for \(E_{off} \)

\[
\begin{align*}
V_{CE} (0\%) &= -15 \, V \\
V_{CE} (100\%) &= 15 \, V \\
V_c (100\%) &= 350 \, V \\
l_c (100\%) &= 403 \, A \\
t_{doff} &= 0.23 \, \mu s \\
t_{Eoff} &= 0.58 \, \mu s \\
\end{align*}
\]

Figure 2: Neutral Point IGBT
Turn-on Switching Waveforms & definition of \(t_{don}, t_{Eon} \)
(\(t_{Eon} \) = integrating time for \(E_{on} \)

\[
\begin{align*}
V_{CE} (0\%) &= -15 \, V \\
V_{CE} (100\%) &= 15 \, V \\
V_c (100\%) &= 350 \, V \\
l_c (100\%) &= 403 \, A \\
t_{don} &= 0.199 \, \mu s \\
t_{Eon} &= 0.38 \, \mu s \\
\end{align*}
\]

Figure 3: Neutral Point IGBT
Turn-off Switching Waveforms & definition of \(t_f \)

\[
\begin{align*}
V_c (100\%) &= 350 \, V \\
l_c (100\%) &= 403 \, A \\
t_f &= 0.06 \, \mu s \\
\end{align*}
\]

Figure 4: Neutral Point IGBT
Turn-on Switching Waveforms & definition of \(t_r \)

\[
\begin{align*}
V_c (100\%) &= 350 \, V \\
l_c (100\%) &= 403 \, A \\
t_r &= 0.030 \, \mu s \\
\end{align*}
\]

Copyright Vincotech
Switching Definitions Neutral Point

Figure 5 Neutral Point IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- P_{Eoff} (100%) = 140.97 kW
- E_{Eoff} (100%) = 15.22 mJ
- t_{Eoff} = 0.58 μs

Figure 6 Neutral Point IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- P_{Eon} (100%) = 140.9653 kW
- E_{Eon} (100%) = 13.39 mJ
- t_{Eon} = 0.38 μs

Figure 7 Half Bridge FWD
Turn-off Switching Waveforms & definition of t_{rr}

- V_d (100%) = 350 V
- I_d (100%) = 403 A
- I_{dRM} (100%) = -511 A
- t_{rr} = 0.08 μs
Switching Definitions Neutral Point

Figure 8
Half Bridge FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
($t_{Qrr} = \text{integrating time for } Q_{rr}$)

- $I_d (100\%) = 403$ A
- $Q_{rr} (100\%) = 31.37$ μC
- $t_{Qint} = 0.33$ μs

Figure 9
Half Bridge FWD
Turn-on Switching Waveforms & definition of t_{Erec}
($t_{Erec} = \text{integrating time for } E_{rec}$)

- $P_{rec} (100\%) = 140.97$ kW
- $E_{rec} (100\%) = 8.74$ mJ
- $t_{Erec} = 0.33$ μs
Neutral Point switching measurement circuit

Figure 10
Ordering Code and Marking - Outline - Pinout

Outline

<table>
<thead>
<tr>
<th>Driver pins</th>
<th>Low current connections</th>
<th>Power connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin X1 Y1</td>
<td>Function</td>
<td>Group</td>
</tr>
<tr>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>G1-1</td>
<td>T1</td>
<td>3.1</td>
</tr>
<tr>
<td>81.6</td>
<td>µ1</td>
<td>TR+</td>
</tr>
<tr>
<td>µ1</td>
<td>µ2</td>
<td>µ2</td>
</tr>
<tr>
<td>T1</td>
<td>T1</td>
<td>T1</td>
</tr>
<tr>
<td>89.8</td>
<td>89.8</td>
<td>89.8</td>
</tr>
<tr>
<td>µ1</td>
<td>µ1</td>
<td>µ1</td>
</tr>
<tr>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Driver pins

Low current connections

Power connections

Ordering Code & Marking

Ordering Code

In DataMatrix as

In packaging barcode as

M709P

M709P

copyright Vincotech
Ordering Code and Marking - Outline - Pinout

Pinout

```
<table>
<thead>
<tr>
<th>DC+</th>
<th>Neutral</th>
<th>DC-</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, T4</td>
<td>IGBT</td>
<td>1200V</td>
<td>400A</td>
<td>Half Bridge Switch</td>
<td></td>
</tr>
<tr>
<td>T2, T3</td>
<td>IGBT</td>
<td>600V</td>
<td>400A</td>
<td>Neutral Point Switch</td>
<td></td>
</tr>
<tr>
<td>D1, D4</td>
<td>FWD</td>
<td>1200V</td>
<td>300A</td>
<td>Half Bridge Diode</td>
<td></td>
</tr>
<tr>
<td>D2, D3</td>
<td>FWD</td>
<td>600V</td>
<td>400A</td>
<td>Neutral Point Diode</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>Thermistor</td>
<td>600V</td>
<td>400A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.

LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.