VINcoMNPC X4

Features
- Mixed-voltage NPC
- Low inductive
- High power screw interface
- Integrated DC-snubber capacitors

Target Applications
- Solar inverter
- UPS
- High speed motor drive

Types
- 70-W212NMA600SC-M200P

Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>Vce</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>Ic</td>
<td>Tj=T_max</td>
<td>498</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>Icp</td>
<td>t_p limited by Tj_max</td>
<td>1800</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>Ptot</td>
<td>Tj=T_max</td>
<td>1188</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>Vce</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>tsc</td>
<td>Tj≤150°C</td>
<td>10</td>
<td>µs</td>
</tr>
<tr>
<td>Turn off safe operating area (RBSOA)</td>
<td>I_FRM</td>
<td>Vce max = 1200V</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>Tj_max</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Buck Switch (T1, T4)

Buck Diode (D2, D3)

Power dissipation per FWD

Ptot

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_rms</td>
<td>Tj=25°C</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>IR</td>
<td>Tj=T_max</td>
<td>288</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_rms</td>
<td>t_p = 10 ms, sine halfwave</td>
<td>1250</td>
<td>A</td>
</tr>
<tr>
<td>I2t-value</td>
<td>I^t</td>
<td>Tj < 150°C</td>
<td>7800</td>
<td>A²s</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_FRM</td>
<td>t_p = 1 ms</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per FWD</td>
<td>Ptot</td>
<td>Tj=T_max</td>
<td>365</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>Tj_max</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

Boost Switch (T2, T3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>V_{CE}</td>
<td>$T_j=T_{j,max}$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_i=T_{i,max}$</td>
<td>388</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{FWM}</td>
<td>t_p limited by $T_{j,max}$</td>
<td>1800</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{j,max}$</td>
<td>594 900</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>$T_{j}=T_{j,max}$</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>I_{SC}</td>
<td>$T_{i}=150{,}^\circ C$</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td>Turn off safe operating area (RBSOA)</td>
<td>I_{CSW}</td>
<td>$V_{GE}=15V$</td>
<td>360 V</td>
<td>µs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j,max}$</td>
<td>$V_{ce} \leq 1200V$</td>
<td>1200</td>
<td>A</td>
</tr>
</tbody>
</table>

Boost Diode (D1, D4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{REX}</td>
<td>$T_{j}=25{,}^\circ C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j=T_{j,max}$</td>
<td>355</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{SOE}</td>
<td>$t_p=10{,}ms \text{, sin } 180^\circ$</td>
<td>3600</td>
<td>A</td>
</tr>
<tr>
<td>12t-value</td>
<td>f_{t}</td>
<td>$T_j=150{,}^\circ C$</td>
<td>16200</td>
<td>A·s</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{PEM}</td>
<td>t_p limited by $T_{j,max}$</td>
<td>1800</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per FWD</td>
<td>P_{tot}</td>
<td>$T_j=T_{j,max}$</td>
<td>633 960</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j,max}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC link Capacitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. DC voltage</td>
<td>(V_{\text{MAX}})</td>
<td></td>
<td>630</td>
<td>V</td>
</tr>
<tr>
<td>Operation Temperature</td>
<td>(T_{\text{OP}})</td>
<td></td>
<td>-40...+105</td>
<td>°C</td>
</tr>
<tr>
<td>RMS Current</td>
<td>(I_{\text{RMS}})</td>
<td></td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>General Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material of module baseplate</td>
<td></td>
<td></td>
<td>Cu</td>
<td></td>
</tr>
<tr>
<td>Material of internal isolation</td>
<td></td>
<td></td>
<td>Al₂O₃</td>
<td></td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{\text{REG}})</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>(T_{\text{OP}})</td>
<td>for power part</td>
<td>-40...+((T_{\text{JMAX}} - 25))</td>
<td>°C</td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>(V_{\text{u}})</td>
<td>(\text{t=2s}) DC voltage</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>CTI</td>
<td></td>
<td>>200</td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Switch (T1, T4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>(V_{GE(th)})</td>
<td>(V_{GE} = V_{CE})</td>
<td>0,0006</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>(V_{CEO})</td>
<td></td>
<td>1500</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl.</td>
<td>(I_{CBO})</td>
<td></td>
<td>0,24</td>
<td>V/A</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>(I_{GE})</td>
<td></td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>(R_{G})</td>
<td></td>
<td>2,3</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{on})</td>
<td></td>
<td>±15</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_{r})</td>
<td></td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{off})</td>
<td>Rgoff=1Ω</td>
<td>600</td>
<td>μs</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_{f})</td>
<td></td>
<td>1,5</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>(E_{on})</td>
<td></td>
<td>1,5</td>
<td>mJ</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>(E_{off})</td>
<td></td>
<td>0,5</td>
<td>mJ</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{in})</td>
<td>f=1MHz</td>
<td>0</td>
<td>nF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{out})</td>
<td></td>
<td>25</td>
<td>nF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{g})</td>
<td></td>
<td>3700</td>
<td>pF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>(Q_{G})</td>
<td></td>
<td>±15</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{th(j-s)})</td>
<td>phase-change material</td>
<td>0,08</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance junction to case</td>
<td>(R_{th(j-c)})</td>
<td>phase-change material</td>
<td>0,06</td>
<td>K/W</td>
</tr>
<tr>
<td>Buck Diode (D2, D3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWD forward voltage</td>
<td>(V_{f})</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>(I_{so})</td>
<td></td>
<td>190</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{rr})</td>
<td>(R_{G} = 1 \Omega)</td>
<td>1,3</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>(Q_{rr})</td>
<td>(R_{G} = 1 \Omega)</td>
<td>21</td>
<td>μC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(\frac{E_{off}}{I_{off}})</td>
<td></td>
<td>4890</td>
<td>A/μs</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>(E_{off})</td>
<td></td>
<td>5</td>
<td>mJ</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{th(j-s)})</td>
<td>phase-change material</td>
<td>0,26</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance junction to case</td>
<td>(R_{th(j-c)})</td>
<td>phase-change material</td>
<td>0,17</td>
<td>K/W</td>
</tr>
<tr>
<td>Boost Switch (T2, T3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>(V_{GE(th)})</td>
<td>(V_{GE} = V_{CE})</td>
<td>0,0006</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>(V_{CEO})</td>
<td></td>
<td>1500</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl.</td>
<td>(I_{CBO})</td>
<td></td>
<td>0,24</td>
<td>V/A</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>(I_{GE})</td>
<td></td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>(R_{G})</td>
<td></td>
<td>2,3</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{on})</td>
<td></td>
<td>±15</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_{r})</td>
<td></td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{off})</td>
<td>Rgoff=1Ω</td>
<td>600</td>
<td>μs</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_{f})</td>
<td></td>
<td>1,5</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>(E_{on})</td>
<td></td>
<td>1,5</td>
<td>mJ</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>(E_{off})</td>
<td></td>
<td>0,5</td>
<td>mJ</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{in})</td>
<td>f=1MHz</td>
<td>0</td>
<td>nF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{out})</td>
<td></td>
<td>25</td>
<td>nF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{g})</td>
<td></td>
<td>36960</td>
<td>pF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>(Q_{G})</td>
<td></td>
<td>±15</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{th(j-s)})</td>
<td>phase-change material</td>
<td>0,16</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance junction to case</td>
<td>(R_{th(j-c)})</td>
<td>phase-change material</td>
<td>0,11</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
<th>Conditions</th>
<th>Value</th>
<th>Tj=25°C</th>
<th>Tj=125°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWD forward voltage</td>
<td>Vf</td>
<td>V</td>
<td></td>
<td>600</td>
<td>223</td>
<td>3</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>Il</td>
<td>µA</td>
<td></td>
<td>1200</td>
<td></td>
<td>720</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>IRR</td>
<td>A</td>
<td></td>
<td>422</td>
<td>568</td>
<td>78</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>tr</td>
<td>ms</td>
<td></td>
<td>290</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Qrr</td>
<td>µC</td>
<td></td>
<td>61</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>dv/dt</td>
<td>A/µs</td>
<td></td>
<td>14592</td>
<td>12180</td>
<td></td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>Em</td>
<td>mW</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>Rth(j-s)</td>
<td>K/W</td>
<td></td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to case</td>
<td>Rth(j-c)</td>
<td>K/W</td>
<td></td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DC link Capacitor

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>C</th>
<th>nf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance</td>
<td>±10</td>
<td></td>
</tr>
<tr>
<td>Dissipation factor</td>
<td>0.0004</td>
<td>mW</td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Rated resistance</th>
<th>Rth(25°C)</th>
<th>Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviation of Rth</td>
<td>±5%</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>5</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>1,5</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>3962</td>
<td>K</td>
</tr>
<tr>
<td>B-value</td>
<td>4000</td>
<td>K</td>
</tr>
</tbody>
</table>

Module Properties

<table>
<thead>
<tr>
<th>Module inductance (from chips to PCB)</th>
<th>L</th>
<th>µH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module inductance (from PCB to PCB using Intercon board)</td>
<td>L</td>
<td>µH</td>
</tr>
<tr>
<td>Resistance of Intercon boards (from PCB to PCB using Intercon board)</td>
<td>R</td>
<td>mΩ</td>
</tr>
<tr>
<td>Mounting torque</td>
<td>M</td>
<td>6 Nm</td>
</tr>
<tr>
<td>Terminal connection torque</td>
<td>M</td>
<td>710 g</td>
</tr>
</tbody>
</table>
Figure 1
Typical output characteristics
$I_C = f(V_{CE})$

At
$t_p = 350 \mu s$
$T_j = 25 \degree C$
V_{GE} from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics
$I_C = f(V_{CE})$

At
$t_p = 350 \mu s$
$T_j = 125 \degree C$
V_{GE} from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics
$I_C = f(V_{GE})$

At
$t_p = 350 \mu s$
$V_{CE} = 10 V$

Figure 4
Typical FWD forward current as a function of forward voltage
$I_F = f(V_F)$

At
$t_p = 350 \mu s$
Buck
Half bridge IGBT and Neutral point FWD

Figure 5
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]

With an inductive load at
\[T_j = 25/125 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[R_{on} = 1 \Omega \]
\[R_{off} = 1 \Omega \]

Figure 6
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
\[T_j = 25/125 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[I_C = 596 \text{ A} \]

Figure 7
Typical reverse recovery energy loss as a function of collector current
\[E_{\text{rec}} = f(I_C) \]

With an inductive load at
\[T_j = 25/125 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[R_{on} = 1 \Omega \]

Figure 8
Typical reverse recovery energy loss as a function of gate resistor
\[E_{\text{rec}} = f(R_G) \]

With an inductive load at
\[T_j = 25/125 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[I_C = 596 \text{ A} \]
Buck

Half bridge IGBT and Neutral point FWD

Figure 9
Typical switching times as a function of collector current

\[t = f(I_c) \]

With an inductive load at

- \(T_j = 125 \degree C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω
- \(R_{goff} = 1 \) Ω

Figure 10
Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at

- \(T_j = 125 \degree C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_c = 596 \) A

Figure 11
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_c) \]

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At

- \(T_j = 25/125 \degree C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω

Copyright Vincotech 8 02 Aug. 2018 / Revision 9
Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

At
\[T_J = 25/125 °C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[R_{gon} = 1 \Omega \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

At
\[T_J = 25/125 °C \]
\[V_{CE} = 350 \text{ V} \]
\[I_F = 596 \text{ A} \]
\[V_{GE} = \pm 15 \text{ V} \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

At
\[T_J = 25/125 °C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[R_{gon} = 1 \Omega \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

At
\[T_J = 25/125 °C \]
\[V_{CE} = 350 \text{ V} \]
\[I_F = 596 \text{ A} \]
\[V_{GE} = \pm 15 \text{ V} \]
Typical rate of fall of forward and reverse recovery current as a function of collector current
di0/dt, direc/dt = f(Ic)

At
Tj = 25/125 °C
VCE = 350 V
VGE = ±15 V
IF = 596 A
Rgon = 1 Ω

IGBT transient thermal impedance as a function of pulse width
ZthJH = f(tp)

At
D = tp / T
RthJH = 0,08 K/W

IGBT thermal model values
R (C/W) Tau (s)
3,54E-02 1,20E+00
2,06E-02 1,85E-01
2,16E-02 3,61E-02
2,86E-03 8,04E-03
4,30E-03 6,80E-04

FWD transient thermal impedance as a function of pulse width
ZthJH = f(tp)

At
D = tp / T
RthJH = 0,26 K/W

FWD thermal model values
R (C/W) Tau (s)
4,86E-02 5,38E+00
5,69E-02 1,12E+00
4,08E-02 2,59E-01
7,52E-02 4,95E-02
2,43E-02 1,67E-02
6,46E-03 3,42E-03
1,22E-02 3,99E-04

copyright Vincotech 10 02 Aug. 2018 / Revision 9
Buck
Half bridge IGBT and Neutral point FWD

Figure 21
Power dissipation as a function of heatsink temperature
$P_{\text{tot}} = f(T_h)$

At $T_j = 175 \, ^\circ C$

Figure 22
Collector current as a function of heatsink temperature
$I_C = f(T_h)$

At $T_j = 175 \, ^\circ C$
$V_{ge} = 15 \, V$

Figure 23
Power dissipation as a function of heatsink temperature
$P_{\text{tot}} = f(T_h)$

At $T_j = 175 \, ^\circ C$

Figure 24
Forward current as a function of heatsink temperature
$I_F = f(T_h)$

At $T_j = 175 \, ^\circ C$
Buck
Half bridge IGBT and Neutral point FWD

Figure 25
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

<table>
<thead>
<tr>
<th>(V_{CE}) (V)</th>
<th>(I_C) (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>0</td>
</tr>
<tr>
<td>960</td>
<td>15</td>
</tr>
</tbody>
</table>

At

\[D = \text{single pulse} \]
\[T_h = 80 \, ^\circ\text{C} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[T_J = T_{j\text{max}} \, ^\circ\text{C} \]

Figure 26
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

\[V_{GE} = 240 \, \text{V} \]
\[V_{GE} = 960 \, \text{V} \]

At

\[I_C = 600 \, \text{A} \]

Figure 27
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

Switching mode: 3 level switching
Boost

Neutral point IGBT and Half bridge FWD

Figure 1
Typical output characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 350 \ \mu s \)
- \(T_j = 25 \ ^\circ C \)
- \(V_{GE} \) from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 350 \ \mu s \)
- \(T_j = 125 \ ^\circ C \)
- \(V_{GE} \) from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 350 \ \mu s \)
- \(V_{CE} = 0 \ \text{V} \)
- \(T_j = T_{j\text{max}} - 25 \ ^\circ C \)

Figure 4
Typical FWD forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

- \(t_p = 350 \ \mu s \)
Figure 5: IGBT
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]
With an inductive load at
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{g_{on}} = 1 \, \Omega \]
\[R_{g_{off}} = 1 \, \Omega \]

Figure 6: IGBT
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]
With an inductive load at
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[I_C = 600 \, A \]

Figure 7: FWD
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_C) \]
With an inductive load at
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{g_{on}} = 1 \, \Omega \]

Figure 8: FWD
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]
With an inductive load at
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[I_C = 600 \, A \]
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(T_J = 125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 1 \, \Omega \)
- \(R_{goff} = 1 \, \Omega \)

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At

- \(T_J = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 1 \, \Omega \)
Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

![Graph showing typical reverse recovery charge as a function of collector current](image)

At
- \(T_j = 25/125 \degree C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1 \) \(\Omega \)

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

![Graph showing typical reverse recovery charge as a function of gate resistor](image)

At
- \(T_j = 25/125 \degree C \)
- \(V_A = 350 \) V
- \(I_F = 600 \) A
- \(V_{GE} = \pm 15 \) V

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

![Graph showing typical reverse recovery current as a function of collector current](image)

At
- \(T_j = 25/125 \degree C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1 \) \(\Omega \)

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

![Graph showing typical reverse recovery current as a function of gate resistor](image)

At
- \(T_j = 25/125 \degree C \)
- \(V_A = 350 \) V
- \(I_F = 600 \) A
- \(V_{GE} = \pm 15 \) V
Figure 17
Neutral point IGBT and Half bridge FWD

Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At
- \(T_j = 25/125 \ ^\circ C \)
- \(V_{ce} = 350 \ V \)
- \(V_{ds} = \pm 15 \ V \)
- \(R_{gon} = 1 \ \Omega \)

Figure 19
IGBT transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
\(D = \frac{t_p}{T} \)
\(R_{thJH} = 0.16 \ K/W \)

IGBT thermal model values
<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,60E-02</td>
<td>4,40E+00</td>
</tr>
<tr>
<td>2,82E-02</td>
<td>1,10E+00</td>
</tr>
<tr>
<td>2,81E-02</td>
<td>2,36E-01</td>
</tr>
<tr>
<td>3,54E-02</td>
<td>5,04E-02</td>
</tr>
<tr>
<td>1,47E-02</td>
<td>1,71E-02</td>
</tr>
<tr>
<td>2,19E-03</td>
<td>2,97E-03</td>
</tr>
<tr>
<td>4,85E-03</td>
<td>4,64E-04</td>
</tr>
</tbody>
</table>

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

At
\(T_j = 25/125 \ ^\circ C \)
\(V_{ce} = 350 \ V \)
\(I_F = 600 \ A \)
\(V_{ds} = \pm 15 \ V \)

Figure 20
FWD transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
\(D = \frac{t_p}{T} \)
\(R_{thJH} = 0.15 \ K/W \)

FWD thermal model values
<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,30E-02</td>
<td>6,05E+00</td>
</tr>
<tr>
<td>3,53E-02</td>
<td>1,29E+00</td>
</tr>
<tr>
<td>2,90E-02</td>
<td>2,22E-01</td>
</tr>
<tr>
<td>4,43E-02</td>
<td>4,71E-02</td>
</tr>
<tr>
<td>8,50E-03</td>
<td>1,13E-02</td>
</tr>
<tr>
<td>6,93E-03</td>
<td>1,30E-03</td>
</tr>
</tbody>
</table>
Boost
Neutral point IGBT and Half bridge FWD

Figure 21
IGBT
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

![Graph](image1)

At
\[T_j = 175 \, ^\circ\text{C} \]

Figure 22
IGBT
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

![Graph](image2)

At
\[T_j = 175 \, ^\circ\text{C} \]

Figure 23
FWD
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

![Graph](image3)

At
\[T_j = 175 \, ^\circ\text{C} \]

Figure 24
FWD
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

![Graph](image4)

At
\[T_j = 175 \, ^\circ\text{C} \]
Figure 25
IGBT
Reverse bias safe operating area

$I_C = f(V_{CE})$

At
$T_J = T_{jmax} - 25 \, ^{\circ}C$

$U_{ccminus} = U_{ccplus}$

Switching mode : 3 level switching
Figure 26
Thermistor
Typical NTC characteristic
as a function of temperature
\[R_T = f(T) \]
Switching Definitions Half bridge IGBT

General conditions

- $T_J = 125 \, ^\circ\text{C}$
- $R_{\text{on}} = 2 \, \Omega$
- $R_{\text{off}} = 2 \, \Omega$

Figure 1

Turn-off Switching Waveforms & definition of $t_{\text{doff}}, t_{\text{Eoff}}$

- $(t_{\text{Eoff}} = \text{integrating time for } E_{\text{off}})$

Figure 2

Turn-on Switching Waveforms & definition of $t_{\text{don}}, t_{\text{Eon}}$

- $(t_{\text{Eon}} = \text{integrating time for } E_{\text{on}})$

VGE (0%)
- $-15 \, \text{V}$

VGE (100%)
- $15 \, \text{V}$

VCE (100%)
- $350 \, \text{V}$

Ic (100%)
- $591 \, \text{A}$

$t_{\text{doff}}$$= 0,37 \, \mu\text{s}$

$t_{\text{Eoff}}$$= 0,93 \, \mu\text{s}$

Figure 3

Turn-off Switching Waveforms & definition of t_r

Vc (100%)
- $350 \, \text{V}$

Ic (100%)
- $591 \, \text{A}$

$t_r$$ = 0,08 \, \mu\text{s}$

Figure 4

Turn-on Switching Waveforms & definition of t_f

Vc (100%)
- $350 \, \text{V}$

Ic (100%)
- $591 \, \text{A}$

$t_f$$ = 0,06 \, \mu\text{s}$

copyright Vincotech 21 02 Aug. 2018 / Revision 9
Switching Definitions half bridge IGBT

Figure 5
Turn-off Switching Waveforms & definition of \(t_{\text{Eoff}} \)

- \(P_{\text{off}} \) (100%) = 206.68 kW
- \(E_{\text{off}} \) (100%) = 30.27 mJ
- \(t_{\text{Eoff}} \) = 0.93 μs

Figure 6
Turn-on Switching Waveforms & definition of \(t_{\text{Eon}} \)

- \(P_{\text{on}} \) (100%) = 206.68 kW
- \(E_{\text{on}} \) (100%) = 12.81 mJ
- \(t_{\text{Eon}} \) = 0.51 μs

Figure 7
Neutral point FWD
Turn-off Switching Waveforms & definition of \(t_{\text{rr}} \)

- \(V_{\text{f}} \) (100%) = 350 V
- \(I_{\text{d}} \) (100%) = 591 A
- \(I_{\text{RRM 10%}} \) = -457 A
- \(t_{\text{rr}} \) = 0.25 μs
Switching Definitions half bridge IGBT

Figure 8 Neutral point FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
($t_{Qrr} =$ integrating time for Q_{rr})

$\begin{align*}
I_d(100\%) & = 591 \ \text{A} \\
Q_{rr}(100\%) & = 47.04 \ \text{µC} \\
t_{Qrr} & = 0.55 \ \text{µs}
\end{align*}$

Figure 9 Neutral point FWD
Turn-on Switching Waveforms & definition of t_{Erec}
($t_{Erec} =$ integrating time for E_{rec})

$\begin{align*}
P_{rec}(100\%) & = 206.68 \ \text{kW} \\
E_{rec}(100\%) & = 10.70 \ \text{mJ} \\
t_{Erec} & = 0.55 \ \text{µs}
\end{align*}$
half bridge IGBT switching measurement circuit

Figure 10
Switching Definitions neutral point IGBT

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{goff}</td>
<td>2 Ω</td>
</tr>
<tr>
<td>R_{gon}</td>
<td>2 Ω</td>
</tr>
</tbody>
</table>

Figure 1
Neutral point IGBT

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}
(t_{Eoff} = integrating time for E_{off})

Figure 2
Neutral point IGBT

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}
(t_{Eon} = integrating time for E_{on})

Figure 3
Neutral point IGBT

Turn-off Switching Waveforms & definition of t_f

Figure 4
Neutral point IGBT

Turn-on Switching Waveforms & definition of t_r

Values:**

- $V_{GE}(0\%) = -15$ V
- $V_{GE}(100\%) = 15$ V
- $V_C (100\%) = 350$ V
- $I_C (100\%) = 592$ A
- $t_{doff} = 0,23 \mu s$
- $t_{Eoff} = 0,58 \mu s$
- $V_{GE}(0\%) = -15$ V
- $V_{GE}(100\%) = 15$ V
- $V_C (100\%) = 350$ V
- $I_C (100\%) = 592$ A
- $t_{don} = 0,25 \mu s$
- $t_{Eon} = 0,38 \mu s$
- $V_C (100\%) = 350$ V
- $I_C (100\%) = 592$ A
- $t_f = 0,067 \mu s$
- $t_r = 0,053 \mu s$
Switching Definitions neutral point IGBT

Figure 5 Neutral point IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{\text{off}}(100\%) = 207,31$ kW
- $E_{\text{off}}(100\%) = 22,22$ mJ
- $t_{\text{Eoff}} = 0,58$ μs

Figure 6 Neutral point IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{\text{on}}(100\%) = 207,3054$ kW
- $E_{\text{on}}(100\%) = 13,39$ mJ
- $t_{\text{Eon}} = 0,38$ μs

Figure 7 Half bridge FWD
Turn-off Switching Waveforms & definition of t_{rr}

- $V_d(100\%) = 350$ V
- $I_d(100\%) = 592$ A
- $I_{\text{RDM}}(100\%) = -568$ A
- $t_{rr} = 0,29$ μs
Switching Definitions neutral point IGBT

Figure 8 Half bridge FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

- $I_d(100\%) = 592$ A
- $Q_{rr}(100\%) = 60,53$ μC
- $t_{Qint} = 0,33$ μs

Figure 9 Half bridge FWD
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

- $P_{rec}(100\%) = 207,31$ kW
- $E_{rec}(100\%) = 14,30$ mJ
- $t_{Erec} = 0,33$ μs
neutral point IGBT switching measurement circuit
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without PCM</td>
<td>70-W212NMA600SC-M200P</td>
<td>M200P</td>
<td>M200P</td>
</tr>
<tr>
<td>with PCM</td>
<td>70-W212NMA600SC-M200P-/3/</td>
<td>M200P</td>
<td>M200P-/3/</td>
</tr>
</tbody>
</table>

Outline

Driver pins

<table>
<thead>
<tr>
<th>Pin</th>
<th>X1</th>
<th>Y1</th>
<th>Function</th>
<th>Group</th>
<th>M4 screw</th>
<th>X3</th>
<th>Y3</th>
<th>Function</th>
<th>M6 screw</th>
<th>X2</th>
<th>Y2</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>4.5</td>
<td>78.7</td>
<td>G1-1</td>
<td>T1</td>
<td>78.7</td>
<td>3.1</td>
<td>37</td>
<td>89.8</td>
<td>DC+</td>
<td>2.1</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>1.2</td>
<td>4.5</td>
<td>81.6</td>
<td>E1-1</td>
<td>T1</td>
<td>78.7</td>
<td>3.2</td>
<td>81.4</td>
<td>89.8</td>
<td>DC+</td>
<td>2.2</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>1.3</td>
<td>39.5</td>
<td>78.7</td>
<td>G1-2</td>
<td>T1</td>
<td>3.3</td>
<td>37</td>
<td>65.2</td>
<td>CE</td>
<td>2.3</td>
<td>44</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>1.4</td>
<td>39.5</td>
<td>81.6</td>
<td>E1-2</td>
<td>T1</td>
<td>3.4</td>
<td>81.4</td>
<td>65.2</td>
<td>CE</td>
<td>2.4</td>
<td>0</td>
<td>110.4</td>
<td>DC+</td>
</tr>
<tr>
<td>1.5</td>
<td>8.85</td>
<td>88.4</td>
<td>G2-1</td>
<td>T2</td>
<td>3.5</td>
<td>37</td>
<td>45.2</td>
<td>Phase</td>
<td>2.5</td>
<td>22</td>
<td>110.4</td>
<td>Neutral</td>
</tr>
<tr>
<td>1.6</td>
<td>39.2</td>
<td>68.4</td>
<td>G2-2</td>
<td>T2</td>
<td>3.6</td>
<td>37</td>
<td>45.2</td>
<td>Phase</td>
<td>2.6</td>
<td>44</td>
<td>110.4</td>
<td>DC-</td>
</tr>
<tr>
<td>1.7</td>
<td>42.1</td>
<td>68.4</td>
<td>E2-2</td>
<td>T2</td>
<td>3.7</td>
<td>37</td>
<td>20.6</td>
<td>DC-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>22.2</td>
<td>48.9</td>
<td>G3-1</td>
<td>T3</td>
<td>3.8</td>
<td>37</td>
<td>20.6</td>
<td>DC-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>22.2</td>
<td>48.9</td>
<td>E3-1</td>
<td>T3</td>
<td>3.9</td>
<td>46</td>
<td>29.2</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>46.2</td>
<td>46.6</td>
<td>G3-2</td>
<td>T3</td>
<td>3.10</td>
<td>65.2</td>
<td>32.1</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td>46.2</td>
<td>48.9</td>
<td>E3-2</td>
<td>T3</td>
<td>3.11</td>
<td>65.2</td>
<td>32.1</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.12</td>
<td>6.75</td>
<td>29.2</td>
<td>E4-1</td>
<td>T4</td>
<td>3.12</td>
<td>29.2</td>
<td>44.7</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.13</td>
<td>6.75</td>
<td>32.1</td>
<td>G4-1</td>
<td>T4</td>
<td>3.13</td>
<td>32.1</td>
<td>44.7</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.14</td>
<td>32.1</td>
<td>32.1</td>
<td>G4-2</td>
<td>T4</td>
<td>3.14</td>
<td>32.1</td>
<td>44.7</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.15</td>
<td>50.8</td>
<td>29.2</td>
<td>E4-2</td>
<td>T4</td>
<td>3.15</td>
<td>29.2</td>
<td>44.7</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.16</td>
<td>50.8</td>
<td>32.1</td>
<td>G4-2</td>
<td>T4</td>
<td>3.16</td>
<td>32.1</td>
<td>44.7</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.17</td>
<td>32.1</td>
<td>32.1</td>
<td>Desat-DC+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.18</td>
<td>32.1</td>
<td>32.1</td>
<td>Desat-DC+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.19</td>
<td>32.1</td>
<td>32.1</td>
<td>Desat-GND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td>32.1</td>
<td>32.1</td>
<td>Desat-GND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.21</td>
<td>67.7</td>
<td>86.7</td>
<td>NTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.22</td>
<td>67.7</td>
<td>89.9</td>
<td>NTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low current connections

<table>
<thead>
<tr>
<th>Symbol</th>
<th>x</th>
<th>y</th>
<th>Description</th>
</tr>
</thead>
</table>

Power connections

<table>
<thead>
<tr>
<th>Symbol</th>
<th>x</th>
<th>y</th>
<th>Description</th>
</tr>
</thead>
</table>

copyright Vincotech 29 02 Aug. 2018 / Revision 9
Ordering Code and Marking - Outline - Pinout

NOTE: Driver pins for parallel devices are not connected inside the module! Gx-1 to Gx-2 and Ex-1 to Ex2 shall be connected on customer PCB! Where x = 1 to 4

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, T4</td>
<td>IGBT</td>
<td>1200 V</td>
<td>600 A</td>
<td>Buck Switch</td>
<td></td>
</tr>
<tr>
<td>T2, T3</td>
<td>IGBT</td>
<td>600 V</td>
<td>600 A</td>
<td>Boost Switch</td>
<td></td>
</tr>
<tr>
<td>D2, D3</td>
<td>FWD</td>
<td>600 V</td>
<td>600 A</td>
<td>Buck Diode</td>
<td></td>
</tr>
<tr>
<td>D1, D4</td>
<td>FWD</td>
<td>1200 V</td>
<td>600 A</td>
<td>Boost Diode</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Capacitor</td>
<td>630 V</td>
<td></td>
<td>DC Link Capacitor</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>NTC</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.

LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.