Features
- Mixed-voltage NPC
- Low inductive
- High power screw interface

Target Applications
- Solar inverter
- UPS
- High speed motor drive

Types
- 70-W212NMA600NB04-M200P60

VINcoMNPC X4
1200 V / 600 A

Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>V_{CE}</td>
<td>T_1=T_{j,max} T_h=80°C</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_{C}</td>
<td>T_1=T_{j,max}</td>
<td>517</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CPulse}</td>
<td>t_p limited by T_{j,max}</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>T_1=T_{j,max}</td>
<td>1051</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{CE}</td>
<td>T_{j}</td>
<td>-20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>T_1≤150°C V_{CE}=15V</td>
<td>10</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>V_{CC}</td>
<td></td>
<td>850</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{j,max}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Neutral point FWD (D2, D3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>T_1=T_{j,max} T_{h}=80°C</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{F}</td>
<td>T_1=T_{j,max}</td>
<td>254</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FPM}</td>
<td>t_p = 1 ms T_{a} < 150°C</td>
<td>800</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>T_1=T_{j,max}</td>
<td>354</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{j,max}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral point IGBT (T2, T3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>V_{CE}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_c</td>
<td>T_j=T_{j,max}</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{paks}</td>
<td>t_p limited by T_{j,max}</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>T_j=T_{j,max}</td>
<td>629</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{ce}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{sc}</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>Turn off safe operating area (RBSOA)</td>
<td>I_{max}</td>
<td>V_{CE,max} = 1200V</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_{j,max} = 150°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{j,max}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Half bridge FWD (D1, D4)				
Peak Repetitive Reverse Voltage	V_{esm}		1200	V
DC forward current	I_r	T_j=T_{j,max}		A
Surge forward current	I_{esm}		1100	A
I2t-value	t_{p}		3026	A²s
Repetitive peak forward current	I_{paks}		1200	A
Power dissipation	P_{tot}	T_j=T_{j,max}	596	W
Maximum Junction Temperature	T_{j,max}		175	°C
Maximum Ratings

T\(_j\) = 25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC link Capacitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. DC voltage</td>
<td>(V_{\text{MAX}})</td>
<td></td>
<td>630</td>
<td>V</td>
</tr>
<tr>
<td>Operation Temperature</td>
<td>(T_{\text{OP}})</td>
<td></td>
<td>-40...+105</td>
<td>°C</td>
</tr>
<tr>
<td>RMS Current</td>
<td>(I_{\text{RMS}})</td>
<td></td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>General Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material of module baseplate</td>
<td></td>
<td></td>
<td>Cu</td>
<td></td>
</tr>
<tr>
<td>Material of internal isolation</td>
<td></td>
<td></td>
<td>Al2O3</td>
<td></td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{\text{stab}})</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>(T_{\text{op}})</td>
<td></td>
<td>-40...+(Tjmax - 25)</td>
<td>°C</td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>(V_{\text{a}})</td>
<td>(t=2s) DC voltage</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>(\text{CTI})</td>
<td></td>
<td>>200</td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half bridge IGBT (T1, T4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V_{th}</td>
<td>Y_{th}=Y_{th}</td>
<td>0.03</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{ce}</td>
<td>Y_{ce}=Y_{ce}</td>
<td>15, 600</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off current, incl. FWD</td>
<td>I_{cso}</td>
<td>0, 1200</td>
<td>nA</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{le}</td>
<td>20, 0</td>
<td>1500</td>
<td>nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gin}</td>
<td></td>
<td>3.25</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td></td>
<td>15, 350, 600</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td></td>
<td>34</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>f=1MHz, 0, 10</td>
<td>60000</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td></td>
<td>12000</td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{tr}</td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Neutral point FWD (D2, D3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWD forward voltage</td>
<td>V_{FWD}</td>
<td></td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{r}</td>
<td></td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{r}</td>
<td></td>
<td>281</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{r}</td>
<td></td>
<td>18</td>
<td>μC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>E_{r}</td>
<td></td>
<td>6000</td>
<td>A/μs</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rr}</td>
<td></td>
<td>3</td>
<td>mWs</td>
</tr>
<tr>
<td>Neutral point IGBT (T2, T3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V_{th}</td>
<td>Y_{th}=Y_{th}</td>
<td>0.0032</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{ce}</td>
<td>Y_{ce}=Y_{ce}</td>
<td>15, 400</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl. FWD</td>
<td>I_{cso}</td>
<td>0, 650</td>
<td>nA</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{le}</td>
<td>20, 0</td>
<td>1500</td>
<td>nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gin}</td>
<td></td>
<td>1</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td></td>
<td>15, 350, 600</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td></td>
<td>108</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>f=1MHz, 0, 25</td>
<td>24440</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td></td>
<td>1536</td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{tr}</td>
<td></td>
<td>732</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{in}</td>
<td>15, 480, 600</td>
<td>2507</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>R_{jcs}</td>
<td>100μm preapplied PCM</td>
<td>0.09</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>R_{jcs}</td>
<td>100μm grease 1W/mk</td>
<td>0.11</td>
<td>K/W</td>
</tr>
<tr>
<td>Neutral point IGBT (T2, T3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V_{th}</td>
<td>Y_{th}=Y_{th}</td>
<td>0.0032</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{ce}</td>
<td>Y_{ce}=Y_{ce}</td>
<td>15, 400</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl. FWD</td>
<td>I_{cso}</td>
<td>0, 650</td>
<td>nA</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{le}</td>
<td>20, 0</td>
<td>1500</td>
<td>nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gin}</td>
<td></td>
<td>1</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td></td>
<td>15, 350, 600</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td></td>
<td>108</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>f=1MHz, 0, 25</td>
<td>24440</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td></td>
<td>1536</td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{tr}</td>
<td></td>
<td>732</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{in}</td>
<td>15, 480, 600</td>
<td>2507</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>R_{jcs}</td>
<td>100μm preapplied PCM</td>
<td>0.15</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>R_{jcs}</td>
<td>100μm grease 1W/mk</td>
<td>0.17</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak reverse recovery current</td>
<td>(i_{	ext{comm}})</td>
<td>Tj=25°C, Tj=125°C</td>
<td>≤600</td>
<td>µA</td>
</tr>
<tr>
<td>Reverse recovery time (t_{	ext{rec}})</td>
<td></td>
<td>Tj=25°C, Tj=125°C</td>
<td>≤28</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge (Q_{	ext{r}})</td>
<td></td>
<td>Tj=25°C, Tj=125°C</td>
<td>≤9</td>
<td>µC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current (dV/dt)</td>
<td></td>
<td>Tj=25°C, Tj=125°C</td>
<td>≤1054</td>
<td>A/µs</td>
</tr>
<tr>
<td>Reverse recovery energy (U_{	ext{rec}})</td>
<td></td>
<td>Tj=25°C, Tj=125°C</td>
<td>4</td>
<td>mJ</td>
</tr>
<tr>
<td>Thermal resistance junction to sink (R_{	ext{th}})</td>
<td></td>
<td></td>
<td>0,16</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance junction to case (R_{	ext{th}})</td>
<td></td>
<td></td>
<td>0,18</td>
<td>K/W</td>
</tr>
</tbody>
</table>

DC link Capacitor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>(C)</td>
<td>1360</td>
<td>µF</td>
</tr>
<tr>
<td>Tolerance</td>
<td></td>
<td>±10</td>
<td>%</td>
</tr>
<tr>
<td>Dissipation factor</td>
<td></td>
<td>0,0004</td>
<td></td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>(R)</td>
<td>22000</td>
<td>Ω</td>
</tr>
<tr>
<td>Deviation of (R_{25})</td>
<td></td>
<td>12</td>
<td>%</td>
</tr>
<tr>
<td>Power dissipation (P)</td>
<td></td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td>2</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value (R_{25})</td>
<td></td>
<td>3950</td>
<td>K</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Module Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module inductance (from chips to PCB)</td>
<td>(L_{	ext{module}})</td>
<td>5</td>
<td>nH</td>
</tr>
<tr>
<td>Module inductance (from PCB to PCB using Intercon board)</td>
<td>(L_{	ext{module}})</td>
<td>3</td>
<td>nH</td>
</tr>
<tr>
<td>Resistance of Intercon boards (from PCB to PCB using Intercon board)</td>
<td>(R_{	ext{DC}})</td>
<td>1,5</td>
<td>mΩ</td>
</tr>
<tr>
<td>Mounting torque</td>
<td></td>
<td>2,2</td>
<td>Nm</td>
</tr>
<tr>
<td>Mounting torque</td>
<td></td>
<td>6</td>
<td>Nm</td>
</tr>
<tr>
<td>Terminal connection torque</td>
<td></td>
<td>5</td>
<td>Nm</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td>710</td>
<td>g</td>
</tr>
</tbody>
</table>
Buck operation

Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3)

Figure 1 IGBT
Typical output characteristics Vge=15V
$I_C = f(V_{CE})$

At $t_p = 350 \mu s$
$T_j = 25/125/150 ^\circ C$
$V_{GE} = 15 \text{ V}$

Figure 2 IGBT
Typical output characteristics
$I_C = f(V_{CE})$

At $t_p = 350 \mu s$
$T_j = 150 ^\circ C$
V_{GE} from 7 V to 17 V in steps of 1 V

Figure 3 IGBT
Typical transfer characteristics
$I_C = f(V_{GE})$

Figure 4 FWD
Typical FWD forward current as a function of forward voltage
$I_F = f(V_F)$

At $t_p = 350 \mu s$
$V_{CE} = 350 \text{ V}$
$T_j = 25/125/150 ^\circ C$
Buck operation
Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3)

Figure 5
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_J = 25/125/150 ^\circ C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 0.5 \) Ω
- \(R_{goff} = 0.5 \) Ω

Figure 6
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_J = 25/125/150 ^\circ C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 601 \) A

Figure 7
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_J = 25/125/150 ^\circ C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 0.5 \) Ω

Figure 8
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

- \(T_J = 25/125/150 ^\circ C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 601 \) A
Buck operation

Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3)

Figure 9
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
\[T_j = 125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 0,5 \, \Omega \]
\[R_{goff} = 0,5 \, \Omega \]

Figure 10
Typical switching times as a function of gate resistor
\[t = f(R_G) \]

With an inductive load at
\[T_j = 125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[I_C = 601 \, A \]

Figure 11
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
\[T_j = 25/125/150 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 0,5 \, \Omega \]

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{gon}) \]

At
\[T_j = 25/125/150 \, ^\circ C \]
\[V_{RA} = 350 \, V \]
\[I_T = 601 \, A \]
\[V_{GE} = \pm 15 \, V \]
Buck operation
Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3)

Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

![Graph showing \(Q_{rr} \) vs. \(I_C \)]

At
\[T_J = 25/125/150 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 0.5 \, \Omega \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

![Graph showing \(Q_{rr} \) vs. \(R_{gon} \)]

At
\[T_J = 25/125/150 \, ^\circ C \]
\[V_R = 350 \, V \]
\[I_F = 601 \, A \]
\[V_{GE} = \pm 15 \, V \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

![Graph showing \(I_{RRM} \) vs. \(I_C \)]

At
\[T_J = 25/125/150 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 0.5 \, \Omega \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

![Graph showing \(I_{RRM} \) vs. \(R_{gon} \)]

At
\[T_J = 25/125/150 \, ^\circ C \]
\[V_R = 350 \, V \]
\[I_F = 601 \, A \]
\[V_{GE} = \pm 15 \, V \]
Buck operation
Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3)

Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_{c}) \]

\[\begin{align*}
&\text{At} \\
&T_j = 25/125/150 \, ^\circ C \\
&V_{CE} = 350 \, V \\
&V_{GE} = \pm 15 \, V \\
&R_{gon} = 1,0 \, \Omega \\
\end{align*} \]

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

\[\begin{align*}
&\text{At} \\
&T_j = 25/125/150 \, ^\circ C \\
&V_R = 350 \, V \\
&I_F = 601 \, A \\
&V_{GE} = \pm 15 \, V \\
\end{align*} \]

Figure 19
IGBT transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

\[\begin{align*}
&\text{At} \\
&D = t_p / T \\
&\text{Preapplied PCM} \\
&R_{th} = 0,09 \, K/W & R_{th} = 0,11 \, K/W \\
\end{align*} \]

100um preapplied PCM
100um grease 1W/mK (P12)
R (K/W) Tau (s) R (K/W) Tau (s)
4,16E-02 1,92E+00 5,06E-02 1,92E+00
2,44E-02 2,34E-01 2,97E-02 2,34E-01
2,28E-02 3,53E-02 2,77E-02 3,53E-02
1,69E-03 5,94E-03 2,06E-03 5,94E-03

Figure 20
FWD transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

\[\begin{align*}
&\text{At} \\
&D = t_p / T \\
&\text{Preapplied PCM} \\
&R_{th} = 0,09 \, K/W & R_{th} = 0,11 \, K/W \\
\end{align*} \]

100um preapplied PCM
100um grease 1W/mK (P12)
R (K/W) Tau (s) R (K/W) Tau (s)
4,04E-02 5,63E+00 4,67E-02 5,63E+00
4,43E-02 1,07E+00 5,12E-02 1,07E+00
4,38E-02 2,02E-01 5,07E-02 2,02E-01
3,79E-02 4,11E-02 1,00E-01 4,11E-02
1,49E-02 1,48E-03 1,72E-02 1,48E-03
Buck operation

Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3)

Figure 21

IGBT

Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At

\[T_j = 175 \, ^\circ \text{C} \]

Figure 22

IGBT

Collector current as a function of heatsink temperature

\[I_C = f(T_h) \]

At

\[T_j = 175 \, ^\circ \text{C} \]

\[V_{\text{GE}} = 15 \, \text{V} \]

Figure 23

FWD

Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At

\[T_j = 175 \, ^\circ \text{C} \]

Figure 24

FWD

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At

\[T_j = 175 \, ^\circ \text{C} \]
Buck operation
Half Bridge IGBT (T1,T4) and Neutral Point FWD (D2,D3)

Figure 21
IGBT
Reverse bias safe operating area

At
\[T_j = 25,150 \, ^\circ C \]
\[U_{cc\text{minus}} = U_{cc\text{plus}} = U_{cc}/2 \]
\[V_{GE} = \pm 15 \, V \]
\[R_{\text{gon}} = 1 \, \Omega \]
Switching mode: 3 level cont 2 level dashed
Boost operation
Neutral point IGBT (T2,T3) and Half bridge FWD (D1,D4)

Figure 1
Typical output characteristics $V_{ge}=15\text{V}$
$I_C = f(V_{ce})$

At
$\tau_r = 350 \ \mu\text{s}$
$T_j = 25/125/150 \ ^\circ\text{C}$
$V_{ce} = 15 \ \text{V}$

Figure 2
Typical output characteristics
$I_C = f(V_{ce})$

At
$\tau_r = 350 \ \mu\text{s}$
$T_j = 151 \ ^\circ\text{C}$
V_{ce} from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics
$I_C = f(V_{ge})$

Figure 4
Typical FWD forward current as a function of forward voltage
$I_F = f(V_F)$

At
$\tau_r = 350 \ \mu\text{s}$
$T_j = 25/125/150 \ ^\circ\text{C}$
Boost operation

Neutral point IGBT (T2, T3) and Half bridge FWD (D1, D4)

Figure 5
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at
- \(T_j = 25/125/150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 1.0 \, \Omega \)
- \(R_{goff} = 1 \, \Omega \)

Figure 6
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at
- \(T_j = 25/125/150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 600 \, \text{A} \)

Figure 7
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at
- \(T_j = 25/125/150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 1 \, \Omega \)

Figure 8
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_j = 25/125/150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 600 \, \text{A} \)
Boost operation
Neutral point IGBT (T2,T3) and Half bridge FWD (D1,D4)

Figure 9
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
- \(T_j = 126 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω
- \(R_{goff} = 1 \) Ω

Figure 10
Typical switching times as a function of gate resistor
\[t = f(R_G) \]

With an inductive load at
- \(T_j = 126 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 600 \) A

Figure 11
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
- \(T_j = 25/125/150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{gon}) \]

At
- \(T_j = 25/125/150 \) °C
- \(V_A = 350 \) V
- \(I_F = 600 \) A
- \(V_{GE} = \pm 15 \) V
Boost operation
Neutral point IGBT (T2,T3) and Half bridge FWD (D1,D4)

Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

At
\[T_J = 25/125/150 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 1 \, \Omega \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

At
\[T_J = 25/125/150 \, ^\circ C \]
\[V_R = 350 \, V \]
\[I_F = 600 \, A \]
\[V_{GE} = \pm 15 \, V \]
Boost operation

Neutral point IGBT (T2,T3) and Half bridge FWD (D1,D4)

![Figure 17](image1.png)

Figure 17

Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_C)
\]

At

- \(T_j = 25/125/150 \, ^\circ C \)
- \(V_{GE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 1 \, \Omega \)

![Figure 18](image2.png)

Figure 18

Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[
\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon})
\]

At

- \(T_j = 25/125/150 \, ^\circ C \)
- \(V_R = 350 \, V \)
- \(I_F = 600 \, A \)
- \(V_{GE} = \pm 15 \, V \)

![Figure 19](image3.png)

Figure 19

IGBT transient thermal impedance as a function of pulse width

\(Z_{thJH} = f(t_p) \)

At

- \(D = tp / T \)

Preapplied PCM

- Thermal grease

<table>
<thead>
<tr>
<th>(R_{thJH}) (K/W)</th>
<th>(R_{thJH}) (K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,15</td>
<td>0,17</td>
</tr>
</tbody>
</table>

100um preapplied PCM 100um grease 1W/mK (P12)

IGBT thermal model values

- 100um preapplied PCM
- 100um grease 1W/mK (P12)

![Figure 20](image4.png)

Figure 20

FWD transient thermal impedance as a function of pulse width

\(Z_{thJH} = f(t_p) \)

At

- \(D = tp / T \)

Preapplied PCM

- Thermal grease

<table>
<thead>
<tr>
<th>(R_{thJH}) (K/W)</th>
<th>(R_{thJH}) (K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,16</td>
<td>0,18</td>
</tr>
</tbody>
</table>

100um preapplied PCM 100um grease 1W/mK (P12)

FWD thermal model values

- 100um preapplied PCM
- 100um grease 1W/mK (P12)
Boost operation
Neutral point IGBT (T2,T3) and Half bridge FWD (D1,D4)

Figure 21
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

\[I_C = f(T_h) \]

At
\[T_j = 175 \ ^\circ\text{C} \]

Figure 22
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

At
\[T_j = 175 \ ^\circ\text{C} \]
\[V_{GE} = 15 \ \text{V} \]

Figure 23
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \ ^\circ\text{C} \]

Figure 24
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 175 \ ^\circ\text{C} \]
Boost operation
Neutral point IGBT (T2,T3) and Half bridge FWD (D1,D4)

Figure 25
Reverse bias safe operating area

Figure 22
Gate voltage vs Gate charge

At
\[T_j = 25\text{°C} \]
\[U_{\text{dominu}} = U_{\text{uplus}} + U_c/2 \]
\[VGE = \pm 15 \text{ V} \]
\[R_{\text{gon}} = 1 \text{ Ω} \]

At
\[I_C = 400 \text{ A} \]
Figure 1

Thermistor

Typical NTC characteristic as a function of temperature

\[R_T = f(T) \]
Switching Definitions Half Bridge

General conditions

- $T_J = 125 \, ^\circ C$
- $R_{on} = 0.5 \, \Omega$
- $R_{off} = 0.5 \, \Omega$

Figure 1
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}
($t_{Eoff} =$ integrating time for E_{off})

Figure 2
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}
($t_{Eon} =$ integrating time for E_{on})

Figure 3
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t_i

Figure 4
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t_r

Switching Definitions Half Bridge

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CE} (0%)</td>
<td>-15 V</td>
<td>V_{CE} (0%)</td>
<td>-15 V</td>
</tr>
<tr>
<td>V_{CE} (100%)</td>
<td>350 V</td>
<td>V_{CE} (100%)</td>
<td>15 V</td>
</tr>
<tr>
<td>I_C (100%)</td>
<td>599 A</td>
<td>I_C (100%)</td>
<td>599 A</td>
</tr>
<tr>
<td>t_{doff}</td>
<td>0.27 μs</td>
<td>t_{don}</td>
<td>0.34 μs</td>
</tr>
<tr>
<td>t_{Eoff}</td>
<td>0.97 μs</td>
<td>t_{Eon}</td>
<td>0.80 μs</td>
</tr>
<tr>
<td>t_i</td>
<td>0.07 μs</td>
<td>t_r</td>
<td>0.09 μs</td>
</tr>
</tbody>
</table>
Switching Definitions Half Bridge

Figure 5
Turn-off Switching Waveforms & definition of t_{off}

- $P_{\text{off}} (100\%) = 209.70$ kW
- $E_{\text{off}} (100\%) = 26.34$ mJ
- $t_{\text{off}} = 0.97$ μs

Figure 6
Turn-on Switching Waveforms & definition of t_{on}

- $P_{\text{on}} (100\%) = 209.70$ kW
- $E_{\text{on}} (100\%) = 33.64$ mJ
- $t_{\text{on}} = 0.80$ μs

Figure 7
Gate voltage vs Gate charge (measured)

- $V_{\text{Goff}} = -15$ V
- $V_{\text{Coff}} = 15$ V
- $V_{\text{C}} (100\%) = 350$ V
- $I_{\text{C}} (100\%) = 599$ A
- $Q_g = 2710.20$ nC

Figure 8
Turn-off Switching Waveforms & definition of t_{rr}

- $V_{\text{G}} (100\%) = 350$ V
- $I_{\text{d}} (100\%) = 599$ A
- $I_{\text{RRM}} (100\%) = -192$ A
- $t_{\text{rr}} = 0.42$ μs
Switching Definitions Half Bridge

Figure 9
Neutral Point FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
($t_{Qrr} =$ integrating time for Q_{rr})

Figure 10
Neutral Point FWD
Turn-on Switching Waveforms & definition of t_{Erec}
($t_{Erec} =$ integrating time for E_{rec})

- $I_d (100\%) = 599$ A
- $Q_{rr} (100\%) = 34.86$ μC
- $t_{Qrr} = 0.85$ μs

- $P_{rec} (100\%) = 209.70$ kW
- $E_{rec} (100\%) = 6.58$ mJ
- $t_{Erec} = 0.85$ μs
Figure 11

Half Bridge switching measurement circuit
Switching Definitions Neutral Point

General conditions

- $T_J = 125 \, ^\circ C$
- $R_{on} = 1 \, \Omega$
- $R_{off} = 1 \, \Omega$

Figure 1
Neutral Point IGBT
Turn-off Switching Waveforms & definition of t_{doff} t_{Eoff}
($t_{Eoff} = \text{integrating time for } E_{off}$)

- $V_{GE}(0\%) = -15 \, V$
- $V_{GE}(100\%) = 15 \, V$
- $V_C(100\%) = 350 \, V$
- $I_C(100\%) = 601 \, A$
- $t_{doff} = 0,23 \, \mu s$
- $t_{Eoff} = 0,58 \, \mu s$

Figure 2
Neutral Point IGBT
Turn-on Switching Waveforms & definition of t_{don} t_{Eon}
($t_{Eon} = \text{integrating time for } E_{on}$)

- $V_{GE}(0\%) = -15 \, V$
- $V_{GE}(100\%) = 15 \, V$
- $V_C(100\%) = 350 \, V$
- $I_C(100\%) = 601 \, A$
- $t_{don} = 0,21 \, \mu s$
- $t_{Eon} = 0,38 \, \mu s$

Figure 3
Neutral Point IGBT
Turn-off Switching Waveforms & definition of t_f

- $V_C(100\%) = 350 \, V$
- $I_C(100\%) = 601 \, A$
- $t_f = 0,106 \, \mu s$

Figure 4
Neutral Point IGBT
Turn-on Switching Waveforms & definition of t_r

- $V_C(100\%) = 350 \, V$
- $I_C(100\%) = 601 \, A$
- $t_r = 0,049 \, \mu s$
Switching Definitions Neutral Point

Figure 5 Neutral Point IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off} (100\%) = 210,20\ kW$
- $E_{off} (100\%) = 27,94\ mJ$
- $t_{Eoff} = 0,58\ \mu s$

Figure 6 Neutral Point IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on} (100\%) = 210,204\ kW$
- $E_{on} (100\%) = 13,39\ mJ$
- $t_{Eon} = 0,38\ \mu s$

Figure 7 Neutral Point IGBT
Gate voltage vs Gate charge (measured)

- $V_{GEoff} = -15\ V$
- $V_{GEon} = 15\ V$
- $V_{CE} (100\%) = 350\ V$
- $I_{CE} (100\%) = 601\ A$
- $Q_g = 3441,54\ nC$

Figure 8 Half Bridge FWD
Turn-off Switching Waveforms & definition of t_{rr}

- $V_{ GE } (100\%) = 350\ V$
- $I_2 (100\%) = 601\ A$
- $I_{RRM} (100\%) = -540\ A$
- $t_{rr} = 0,14\ \mu s$
Switching Definitions Neutral Point

Figure 9
Half Bridge FWD
Turn-on Switching Waveforms & definition of \(t_{Qrr} \)
(\(t_{Qrr} \) = integrating time for \(Q_{rr} \))

\[
\begin{align*}
I_d (100\%) &= 601 \text{ A} \\
Q_{rr} (100\%) &= 51,60 \text{ } \mu\text{C} \\
t_{Qrr} &= 0,33 \text{ } \mu\text{s}
\end{align*}
\]

Figure 10
Half Bridge FWD
Turn-on Switching Waveforms & definition of \(t_{Erec} \)
(\(t_{Erec} \) = integrating time for \(E_{rec} \))

\[
\begin{align*}
P_{rec} (100\%) &= 210,20 \text{ kW} \\
E_{rec} (100\%) &= 12,97 \text{ mJ} \\
t_{Erec} &= 0,33 \text{ } \mu\text{s}
\end{align*}
\]
Neutral Point switching measurement circuit

Figure 11
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without PCM</td>
<td>70-W212NMA600NB04-M200P60</td>
<td>M200P60</td>
<td>M200P60</td>
</tr>
<tr>
<td>with PCM</td>
<td>70-W212NMA600NB04-M200P60/-3/</td>
<td>M200P60</td>
<td>M200P60/-3/</td>
</tr>
</tbody>
</table>

Driver pins

<table>
<thead>
<tr>
<th>Pin</th>
<th>X1</th>
<th>Y1</th>
<th>Function</th>
<th>G1-1</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>4.5</td>
<td>78.7</td>
<td>G1-1</td>
<td>T1</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>4.5</td>
<td>81.6</td>
<td>E1-1</td>
<td>T1</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>39.5</td>
<td>78.7</td>
<td>G1-2</td>
<td>T1</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>39.5</td>
<td>81.6</td>
<td>E1-2</td>
<td>T1</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>1.95</td>
<td>68.4</td>
<td>G2-1</td>
<td>T2</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>4.85</td>
<td>68.4</td>
<td>G2-2</td>
<td>T2</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>39.2</td>
<td>68.4</td>
<td>G2-3</td>
<td>T2</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>42.1</td>
<td>68.4</td>
<td>G2-4</td>
<td>T2</td>
<td></td>
</tr>
</tbody>
</table>

Low current connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>X3</th>
<th>Y3</th>
<th>Function</th>
<th>M6 screw</th>
<th>X2</th>
<th>Y2</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td>-2.2</td>
<td>48.9</td>
<td>E3-1</td>
<td>T3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>46.2</td>
<td>48.9</td>
<td>E3-2</td>
<td>T3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td>46.2</td>
<td>29.2</td>
<td>E4-1</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.12</td>
<td>46.2</td>
<td>32.2</td>
<td>G4-1</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.13</td>
<td>50.8</td>
<td>29.2</td>
<td>E4-2</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.14</td>
<td>50.8</td>
<td>32.1</td>
<td>G4-2</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.15</td>
<td>19.5</td>
<td>30.2</td>
<td>Desat-DC+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.16</td>
<td>19.5</td>
<td>44.7</td>
<td>Desat-GND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.17</td>
<td>24.6</td>
<td>44.7</td>
<td>Desat-GND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.18</td>
<td>67.7</td>
<td>86.7</td>
<td>NTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>X1</th>
<th>Y1</th>
<th>Function</th>
<th>M6 screw</th>
<th>X2</th>
<th>Y2</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.19</td>
<td>-2.2</td>
<td>48.9</td>
<td>E3-1</td>
<td>T3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td>46.2</td>
<td>48.9</td>
<td>E3-2</td>
<td>T3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.21</td>
<td>46.2</td>
<td>29.2</td>
<td>E4-1</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.22</td>
<td>46.2</td>
<td>32.2</td>
<td>G4-1</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.23</td>
<td>50.8</td>
<td>29.2</td>
<td>E4-2</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.24</td>
<td>50.8</td>
<td>32.1</td>
<td>G4-2</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outline

Centerline of press-fit pinhead

- Low current connections with PCM
- Power connections without PCM

copyright Vincotech

29 15 Jan. 2018 / Revision 2
Ordering Code and Marking - Outline - Pinout

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, T4</td>
<td>IGBT</td>
<td>1200 V</td>
<td>600 A</td>
<td>Buck Switch</td>
<td></td>
</tr>
<tr>
<td>T2, T3</td>
<td>IGBT</td>
<td>650 V</td>
<td>400 A</td>
<td>Boost Switch</td>
<td></td>
</tr>
<tr>
<td>D2, D3</td>
<td>FWD</td>
<td>1200 V</td>
<td>400 A</td>
<td>Buck Diode</td>
<td></td>
</tr>
<tr>
<td>D1, D4</td>
<td>FWD</td>
<td>650 V</td>
<td>400 A</td>
<td>Boost Diode</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Capacitor</td>
<td>630 V</td>
<td></td>
<td>DC Link Capacitor</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>NTC</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Driver pins for parallel devices are not connected inside the module! Gx-1 to Gx-2 and Ex-1 to Ex2 shall be connected on customer PCB! Where x = 1 to 4
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.