Features

- IGBT M7 technology with low V_{CEsat} and improved EMC behavior
- Low inductive package
- High efficiency
- Integrated snubber capacitors

Target applications

- Solar Inverters
- UPS

Types

- 70-W212NMA600M7-LC09F71

Maximum Ratings

$T_a = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{CE}</td>
<td>$T_a = T_{j\text{max}}$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_C</td>
<td>$T_a = T_{j\text{max}}$</td>
<td>479</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CEM}</td>
<td>$T_a = T_{j\text{max}}$</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_a = T_{j\text{max}}$</td>
<td>819</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{GES}</td>
<td>$T_a = T_{j\text{max}}$</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{sc}</td>
<td>$V_{CE} = 15 , \text{V}$, $V_{CC} = 800 , \text{V}$, $T_a = 150 , ^\circ\text{C}$</td>
<td>9.5</td>
<td>μS</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>175</td>
<td>$^\circ\text{C}$</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_a = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$T_a = T_{j,\text{max}}$, $T_i = 80 , ^\circ C$</td>
<td>361</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{F,\text{RM}}$</td>
<td></td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_a = T_{j,\text{max}}$, $T_i = 80 , ^\circ C$</td>
<td>475</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{j,\text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Buck Sw. Protection Diode				
Peak repetitive reverse voltage	V_{RRM}		1200	V
Continuous (direct) forward current	I_F		20	A
Total power dissipation	P_{tot}	$T_a = T_{j,\text{max}}$, $T_i = 80 \, ^\circ C$	39	W
Maximum junction temperature	$T_{j,\text{max}}$		175	°C

Boost Switch				
Collector-emitter voltage	V_{CES}	Relative moisture level ≤ 50% > 50%	650 500	V
Collector current	I_C	$T_a = T_{j,\text{max}}$, $T_i = 80 \, ^\circ C$	471	A
Repetitive peak collector current	$I_{C,\text{RM}}$	I_t limited by $T_{j,\text{max}}$	1200	A
Total power dissipation	P_{tot}	$T_a = T_{j,\text{max}}$, $T_i = 80 \, ^\circ C$	625	W
Gate-emitter voltage	V_{GES}		≤20	V
Short circuit ratings			9	µs
Maximum junction temperature	$T_{j,\text{max}}$		175	°C

Boost Diode				
Peak repetitive reverse voltage	V_{RRM}		1200	V
Continuous (direct) forward current	I_F	$T_a = T_{j,\text{max}}$, $T_i = 80 \, ^\circ C$	347	A
Repetitive peak forward current	$I_{F,\text{RM}}$		1200	A
Total power dissipation	P_{tot}	$T_a = T_{j,\text{max}}$, $T_i = 80 \, ^\circ C$	511	W
Maximum junction temperature	$T_{j,\text{max}}$		175	°C
Maximum Ratings

\(T_i = 25 \, ^\circ\text{C}, \) unless otherwise specified

Boost Sw. Protection Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>(V_{\text{RRM}})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_{\text{F}})</td>
<td></td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{\text{FRM}})</td>
<td></td>
<td>80</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{\text{tot}}) (T_j = T_{\text{max}}, T_i = 80 , ^\circ\text{C})</td>
<td>84</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{\text{max}})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Capacitor (DC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum DC voltage</td>
<td>(V_{\text{MAX}})</td>
<td></td>
<td>630</td>
<td>V</td>
</tr>
<tr>
<td>Operation Temperature</td>
<td>(T_{\text{op}})</td>
<td></td>
<td>-40..+105</td>
<td>°C</td>
</tr>
</tbody>
</table>

Module Properties

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>(T_{\text{stg}})</td>
<td></td>
<td>-40..+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>(T_{\text{jop}})</td>
<td></td>
<td>-40...(T_{\text{max}} - 25)</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum allowed PCB temperature</td>
<td>(T_{\text{PCB}})</td>
<td></td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

Isolation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation voltage</td>
<td>(V_{\text{isol}}) DC Test Voltage* (t_p = 2 , \text{s})</td>
<td></td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>AC Voltage</td>
<td></td>
<td>(t_p = 1 , \text{min})</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min. 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min. 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td></td>
<td>> 200</td>
<td></td>
</tr>
</tbody>
</table>

*100 % tested in production
Buck Switch

Static

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>10</td>
<td>0,06</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td>15</td>
<td>600</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{ss}</td>
<td>0</td>
<td>1200</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_{g}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{ies}</td>
<td>0</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oes}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>15</td>
<td>600</td>
<td>600</td>
</tr>
</tbody>
</table>

Thermal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>$λ_{paste} = 3,4 \text{ W/mK}$ (PSX)</td>
<td></td>
<td>0,116</td>
</tr>
</tbody>
</table>

Dynamic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>±15</td>
<td>350</td>
<td>600</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>$Q_{on} = 45,4 \text{ μC}$</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright Vincotech
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltages</td>
<td>V_{GE}</td>
<td>600</td>
<td>1,62</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{GS}</td>
<td>125</td>
<td>1,63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{CE}</td>
<td>150</td>
<td>1,63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_D</td>
<td>0</td>
<td>200</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>T_j</td>
<td>125</td>
<td>354</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>T_j</td>
<td>25</td>
<td>631</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>I_F</td>
<td>±15</td>
<td>45,437</td>
<td>µC</td>
</tr>
<tr>
<td></td>
<td>Q_{rd}</td>
<td>350</td>
<td>10,469</td>
<td>mWs</td>
</tr>
<tr>
<td></td>
<td>E_{rec}</td>
<td>600</td>
<td>20,264</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(di/dt)_{max}$</td>
<td>±15</td>
<td>3597</td>
<td>A/µs</td>
</tr>
<tr>
<td></td>
<td>$(di/dt)_{max}$</td>
<td>25</td>
<td>2787</td>
<td></td>
</tr>
</tbody>
</table>

Buck Diode

Static
- Forward voltage: V_f
- Reverse leakage current: I_R

Thermal
- Thermal resistance junction to sink: $R_{th(j-s)}$

Dynamic
- Peak recovery current: I_{rr}
- Reverse recovery time: t_{rr}
- Recovered charge: Q_r
- Reverse recovered energy: E_{rec}
- Peak rate of fall of recovery current: $(di/dt)_{max}$

Buck Sw. Protection Diode

Static
-Forward voltage: V_f
- Reverse leakage current: I_R

Thermal
-Thermal resistance junction to sink: $R_{th(j-s)}$
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>10</td>
<td>0,06</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td>15</td>
<td>600</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CM}</td>
<td>0</td>
<td>650</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_{g}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{IES}</td>
<td>0</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oes}</td>
<td>0</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td>0</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>15</td>
<td>300</td>
<td>600</td>
</tr>
</tbody>
</table>

Boost Switch

Static

- **Gate-emitter threshold voltage**
 - $V_{GE(th)}$
 - Conditions: Min 10, Typ 0,06, Max 25
 - Value: 5,4, 6, 6,6, V

- **Collector-emitter saturation voltage**
 - V_{CEsat}
 - Conditions: Min 15, Typ 600, Max 25
 - Value: 1,37, 1,44, 1,45, V

- **Collector-emitter cut-off current**
 - I_{CM}
 - Conditions: Min 0, Typ 650, Max 25
 - Value: 200, µA

- **Gate-emitter leakage current**
 - I_{GES}
 - Conditions: Min 20, Typ 0, Max 25
 - Value: 2000, nA

Dynamic

- **Turn-on delay time**
 - $t_{d(on)}$
 - Conditions: Min 0, Typ 350, Max 600
 - Value: 25, 125, 65 | 324 | 125, 333

- **Rise time**
 - t_{r}
 - Conditions: Min 0, Typ 350, Max 600
 - Value: 25, 125, 65 | 25, 125, 82

- **Fall time**
 - t_{f}
 - Conditions: Min 0, Typ 350, Max 600
 - Value: 25, 125, 70 | 25, 125, 83

- **Turn-on energy (per pulse)**
 - E_{on}
 - Conditions: Min 0, Typ 350, Max 600
 - Value: 25, 125, 18,502 | 25, 125, 27,757

- **Turn-off energy (per pulse)**
 - E_{off}
 - Conditions: Min 0, Typ 350, Max 600
 - Value: 25, 125, 22,297 | 25, 125, 29,763
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td></td>
<td>V_{GE} [V]</td>
<td>V_{GS} [V]</td>
<td>I_{C} [A]</td>
<td>I_{D} [A]</td>
</tr>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td>V_{CE} [V]</td>
<td>V_{DS} [V]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600</td>
<td>25</td>
</tr>
<tr>
<td>Boost Sw. Protection Diode</td>
<td></td>
<td></td>
<td>I_{R}</td>
<td>1200</td>
</tr>
<tr>
<td>Capacitor (DC)</td>
<td></td>
<td></td>
<td>C</td>
<td>1360</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f</td>
<td>1 kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T_{r}</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f_{max}</td>
<td>40/105/56</td>
</tr>
</tbody>
</table>

Boost Diode

Static
- Forward voltage: V_{FE}
- Reverse leakage current: I_{R}

Thermal
- Thermal resistance junction to sink: $R_{th(j-s)}$

Dynamic
- Peak recovery current: I_{rr}
- Reverse recovery time: t_{rr}
- Recovered charge: Q_{rd}
- Reverse recovered energy: E_{rec}
- Peak rate of fall of recovery current: $(di/dt)_{max}$

Boost Sw. Protection Diode

Static
- Forward voltage: V_{FE}
- Reverse leakage current: I_{R}

Thermal
- Thermal resistance junction to sink: $R_{th(j-s)}$

Capacitor (DC)

- Capacitance: C
- Tolerance: -10% to +10%
- Dissipation factor: $f = 1$ kHz
- Climatic category: 40/105/56
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>GE</sub> [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>GS</sub> [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>C</sub> [A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>D</sub> [A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>F</sub> [A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>CE</sub> [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>DS</sub> [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>F</sub> [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T<sub>j</sub> [°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermistor

Rated resistance	R		25	22	kΩ
Deviation of R₂₅₀	ΔR/R₂₅₀ = 1484 Ω		100	-5	5 %
Power dissipation	P		25	5	mW
Power dissipation constant			25	1,5	mW/K
B-value	B_{25/50}	Tol. ±1 %	25	3962	K
B-value	B_{25/100}	Tol. ±1 %	25	4000	K
Vincotech NTC Reference	I				
Buck Switch Characteristics

Figure 1. Typical output characteristics

![Typical output characteristics graph](image1)

- $I_c = f(V_{ce})$
- $t_p = 250\ \mu s$
- $25^\circ C$
- $V_{GE} = 15\ V$
- $125^\circ C$
- $T_j = 150^\circ C$
- V_{GE} from 7 V to 17 V in steps of 1 V

Figure 2. Typical output characteristics

![Typical output characteristics graph](image2)

- $I_c = f(V_{ge})$
- $Z_{th(j-s)} = f(t_p)$
- $t_p = 250\ \mu s$
- $25^\circ C$
- $D = t_p / T$
- $V_{ce} = 10\ V$
- $150^\circ C$
- $R_{th(j-s)} = 0.116\ K/W$

Figure 3. Typical output characteristics

![Typical output characteristics graph](image3)

- $I_c = f(V_{ce})$
- $t_p = 100\ \mu s$
- $25^\circ C$
- $V_{ce} = 10\ V$
- $125^\circ C$
- $150^\circ C$

Figure 4. Transient thermal impedance as function of pulse duration

![Transient thermal impedance graph](image4)

- $Z_{th(j-s)} = f(t_p)$
- $k = 10^{-3}$
- $R_{th(j-s)} = 0.116\ K/W$

IGBT thermal model values

- $R\ (K/W)$
- $f\ (K)

| $R\ (K/W)$ | $f\ (K) $
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9,54E-03</td>
<td>1,81E+00</td>
</tr>
<tr>
<td>1,68E-02</td>
<td>3,27E-01</td>
</tr>
<tr>
<td>2,45E-02</td>
<td>6,01E-02</td>
</tr>
<tr>
<td>4,18E-02</td>
<td>1,35E-02</td>
</tr>
<tr>
<td>1,36E-02</td>
<td>4,71E-03</td>
</tr>
<tr>
<td>4,16E-03</td>
<td>9,56E-04</td>
</tr>
<tr>
<td>5,57E-03</td>
<td>1,19E-04</td>
</tr>
</tbody>
</table>
Buck Switch Characteristics

Figure 5. IGBT Gate voltage vs gate charge

- $V_{GE} = f(Q_G)$
- $I_C = f(V_{CE})$
- $I_C = 600$ A
- $T_s = 80$ ºC
- $V_{GE} = \pm 15$ V
- $T_j = T_{jmax}$

Figure 6. Safe operating area

- $I_C = f(V_{CE})$
- V_{CE}
- $R_{gd}(V)$
- I_C
- V_{CE}
- $R_{gd}(V)$

- I_C = single pulse
- $T_s = 80$ ºC
- $V_{GE} = \pm 15$ V
- $T_j = T_{jmax}$
Buck Diode Characteristics

Figure 1. FWD
Typical forward characteristics

\[I_F = f(V_F) \]

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Forward Impedance ($Z_{th(j-s)}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>0.200 K/W</td>
</tr>
<tr>
<td>125°C</td>
<td></td>
</tr>
<tr>
<td>150°C</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. FWD
Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Thermal Impedance ($Z_{th(j-s)}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>0.200 K/W</td>
</tr>
<tr>
<td>125°C</td>
<td></td>
</tr>
<tr>
<td>150°C</td>
<td></td>
</tr>
</tbody>
</table>

Buck Sw. Protection Diode Characteristics

Figure 1. FWD
Typical forward characteristics

\[I_F = f(V_F) \]

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Forward Impedance ($Z_{th(j-s)}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>2.444 K/W</td>
</tr>
<tr>
<td>125°C</td>
<td></td>
</tr>
<tr>
<td>150°C</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. FWD
Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Thermal Impedance ($Z_{th(j-s)}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>2.444 K/W</td>
</tr>
<tr>
<td>125°C</td>
<td></td>
</tr>
<tr>
<td>150°C</td>
<td></td>
</tr>
</tbody>
</table>
Boost Switch Characteristics

Figure 1. IGBT
Typical output characteristics
$I_C = f(V_{CE})$

Figure 2. IGBT
Typical output characteristics
$I_C = f(V_{GE})$

Figure 3. IGBT
Typical transfer characteristics
$I_C = f(V_{GE})$

Figure 4. IGBT
Transient thermal impedance as function of pulse duration
$Z_{th(j-s)} = f(t_p)$

<table>
<thead>
<tr>
<th>t_p (μs)</th>
<th>$Z_{th(j-s)}$ (K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>25 °C</td>
</tr>
<tr>
<td>100</td>
<td>25 °C</td>
</tr>
<tr>
<td>150</td>
<td>125 °C</td>
</tr>
<tr>
<td>150</td>
<td>150 °C</td>
</tr>
<tr>
<td>7 V to 17 V</td>
<td>in steps of 1 V</td>
</tr>
</tbody>
</table>

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,25E-02</td>
<td>2,37E+00</td>
</tr>
<tr>
<td>2,20E-02</td>
<td>4,29E-01</td>
</tr>
<tr>
<td>3,21E-02</td>
<td>7,88E-02</td>
</tr>
<tr>
<td>5,48E-02</td>
<td>2,04E-02</td>
</tr>
<tr>
<td>1,78E-02</td>
<td>6,17E-03</td>
</tr>
<tr>
<td>5,45E-03</td>
<td>1,25E-03</td>
</tr>
<tr>
<td>7,30E-03</td>
<td>1,56E-04</td>
</tr>
</tbody>
</table>

Copyright Vincotech

09 Apr. 2019 / Revision 2
Boost Switch Characteristics

Figure 6. IGBT Safe operating area

$I_c = f(V_{CE})$

- δ = single pulse
- $T_j = 80$ °C
- $V_{GE} = \pm 15$ V
- $T_j = T_{jmax}$

$V_{CE}(V)$

J_c (A)

DC 100ms 10ms 1ms 100µs 10µs

0

0.01

0.1

1

10

100

1000

10000

0,01

0,1

1

10

100

1000

10000

1 10 100 1000

Copyright Vincotech
Boost Diode Characteristics

Figure 1.
Typical forward characteristics

\[I_F = f(V_F) \]

<table>
<thead>
<tr>
<th>(I_F) (A)</th>
<th>(V_F) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 2.
Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

<table>
<thead>
<tr>
<th>(t_p) (s)</th>
<th>(Z_{th(j-s)}) (K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>100</td>
</tr>
<tr>
<td>0.01</td>
<td>10</td>
</tr>
</tbody>
</table>

Boost Sw. Protection Diode Characteristics

Figure 1.
Typical forward characteristics

\[I_F = f(V_F) \]

<table>
<thead>
<tr>
<th>(I_F) (A)</th>
<th>(V_F) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 2.
Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

<table>
<thead>
<tr>
<th>(t_p) (s)</th>
<th>(Z_{th(j-s)}) (K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>100</td>
</tr>
<tr>
<td>0.01</td>
<td>10</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Thermistor Characteristics

Figure 1. Typical NTC characteristic as a function of temperature

$r = f(T)$

<table>
<thead>
<tr>
<th>r (Ω)</th>
<th>T (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25000</td>
<td>0</td>
</tr>
<tr>
<td>20000</td>
<td>25</td>
</tr>
<tr>
<td>15000</td>
<td>50</td>
</tr>
<tr>
<td>10000</td>
<td>75</td>
</tr>
<tr>
<td>5000</td>
<td>100</td>
</tr>
</tbody>
</table>

NTC-typical temperature characteristic
Buck Switching Characteristics

Figure 1. Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at:
- \(V_{in} = 350 \) V
- \(V_{out} = \pm 15 \) V
- \(R_{m} = 1 \) Ω
- \(I_C = 600 \) A

- \(T_j = 25^\circ \)C
- \(T_j = 125^\circ \)C

Figure 2. Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at:
- \(V_{in} = 350 \) V
- \(V_{out} = \pm 15 \) V
- \(I_C = 600 \) A

- \(T_j = 25^\circ \)C
- \(T_j = 125^\circ \)C

Figure 3. Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at:
- \(V_{in} = 350 \) V
- \(V_{out} = \pm 15 \) V
- \(R_{m} = 1 \) Ω

- \(T_j = 25^\circ \)C
- \(T_j = 125^\circ \)C

Figure 4. Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at:
- \(V_{in} = 350 \) V
- \(V_{out} = \pm 15 \) V
- \(I_C = 600 \) A

- \(T_j = 25^\circ \)C
- \(T_j = 125^\circ \)C
Buck Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

$t_{d(on)} = f(I_C)$
$t_{d(off)} = f(I_C)$

With an inductive load at
$T_j = 25 \degree C$
$V_{CE} = 350 \text{ V}$
$V_{GS} = \pm 15 \text{ V}$
$R_{on} = 1 \Omega$
$I_C = 600 \text{ A}$

Figure 6. IGBT
Typical switching times as a function of gate resistor

$t_{d(on)} = f(R_{on})$
$t_{d(off)} = f(R_{on})$

With an inductive load at
$T_j = 125 \degree C$
$V_{CE} = 350 \text{ V}$
$V_{GS} = \pm 15 \text{ V}$
$I_C = 600 \text{ A}$

Figure 7. FWD
Typical reverse recovery time as a function of collector current

$t_{rr} = f(I_C)$

With an inductive load at
$T_j = 25 \degree C$
$V_{CE} = 350 \text{ V}$
$V_{GS} = \pm 15 \text{ V}$
$R_{on} = 1 \Omega$

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor

$t_{rr} = f(R_{on})$

With an inductive load at
$T_j = 125 \degree C$
$V_{CE} = 350 \text{ V}$
$V_{GS} = \pm 15 \text{ V}$
$J_C = 600 \text{ A}$
Buck Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

With an inductive load at

- \(V_{in} = 350 \) V
- \(V_{gs} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω

\[T_j = 25 \, ^\circ\text{C} \quad \text{and} \quad 125 \, ^\circ\text{C} \]

Figure 10. FWD
Typical recovered charge as a function of IGBT turn on gate resistor

\[Q_r = f(R_{gon}) \]

With an inductive load at

- \(V_{in} = 350 \) V
- \(V_{gs} = \pm 15 \) V
- \(I_C = 600 \) A

\[T_j = 25 \, ^\circ\text{C} \quad \text{and} \quad 125 \, ^\circ\text{C} \]

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

With an inductive load at

- \(V_{in} = 350 \) V
- \(V_{gs} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω

\[T_j = 25 \, ^\circ\text{C} \quad \text{and} \quad 125 \, ^\circ\text{C} \]

Figure 12. FWD
Typical peak reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RM} = f(R_{gon}) \]

With an inductive load at

- \(V_{in} = 350 \) V
- \(V_{gs} = \pm 15 \) V
- \(I_C = 600 \) A

\[T_j = 25 \, ^\circ\text{C} \quad \text{and} \quad 125 \, ^\circ\text{C} \]
Buck Switching Characteristics

Figure 13: Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
diF/dt, \quad dirr/dt = f(I_C)\]

With an inductive load at

\[V_{CE} = 350 \text{ V}, \quad \theta_{on} = \pm 15 ^\circ \text{C}, \quad R_{gon} = 1 \Omega, \quad I_C = 600 \text{ A}\]

Figure 14: Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[
diF/dt, \quad dirr/dt = f(R_{gon})\]

With an inductive load at

\[V_{CE} = 350 \text{ V}, \quad \theta_{on} = \pm 15 ^\circ \text{C}, \quad R_{gon} = 1 \Omega, \quad I_C = 600 \text{ A}\]

Figure 15: IGBT Reverse bias safe operating area

\[I_{C} = f(V_{CE})\]

At

\[T_J = 125 ^\circ \text{C}, \quad R_{ps} = 1 \Omega, \quad R_{ms} = 1 \Omega\]
Buck Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{th}</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>1 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>1 Ω</td>
</tr>
</tbody>
</table>

Figure 1. IGBT Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff} (t_{Eoff} = integrating time for E_{off})

- $V_{GE}(0\%) = -15$ V
- $V_{GE}(100\%) = 15$ V
- $V_{CE}(90\%) = 350$ V
- $I_{C}(100\%) = 600$ A
- $t_{doff} = 386$ ns

Figure 2. IGBT Turn-on Switching Waveforms & definition of t_{don}, t_{Eon} (t_{Eon} = integrating time for E_{on})

- $V_{GE}(0\%) = -15$ V
- $V_{GE}(100\%) = 15$ V
- $V_{CE}(90\%) = 350$ V
- $I_{C}(100\%) = 600$ A
- $t_{don} = 472$ ns

Figure 3. IGBT Turn-off Switching Waveforms & definition of t_{f}

- $V_{CE}(90\%) = 350$ V
- $I_{C}(100\%) = 600$ A
- $t_{f} = 84$ ns

Figure 4. IGBT Turn-on Switching Waveforms & definition of t_{r}

- $V_{CE}(90\%) = 350$ V
- $I_{C}(100\%) = 600$ A
- $t_{r} = 89$ ns
Buck Switching Characteristics

Figure 5. Turn-off Switching Waveforms & definition of \(t_{rr} \)

- \(V_{F}(100\%) = 350 \) V
- \(I_{F}(100\%) = 600 \) A
- \(I_{RRM}(100\%) = 348 \) A
- \(t_{rr} = 631 \) ns

Figure 6. Turn-on Switching Waveforms & definition of \(t_{Qr} \), \(t_{rr} \) (integrating time for \(Q_{r} \))

- \(I_{r}(100\%) = 600 \) A
- \(Q_{r}(100\%) = 0 \) \(\mu \)C
Boost Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at
- \(V_D = 350 \) V
- \(V_{CG} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω
- \(I_C = 600 \) A

\[T_J = 25 \, ^\circ C \]
\[T_J = 125 \, ^\circ C \]

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at
- \(V_D = 350 \) V
- \(V_{CG} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω
- \(I_C = 600 \) A

\[T_J = 25 \, ^\circ C \]
\[T_J = 125 \, ^\circ C \]

Figure 3. FWD
Typical reverse recovered energy losses as a function of collector current

\[E_{rec} = f(I_c) \]

With an inductive load at
- \(V_D = 350 \) V
- \(V_{CG} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω

\[T_J = 25 \, ^\circ C \]
\[T_J = 125 \, ^\circ C \]

Figure 4. FWD
Typical reverse recovered energy losses as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at
- \(V_D = 350 \) V
- \(V_{CG} = \pm 15 \) V
- \(I_C = 600 \) A

\[T_J = 25 \, ^\circ C \]
\[T_J = 125 \, ^\circ C \]
Boost Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at
- \(T_j = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω
- \(I_C = 600 \) A

Figure 6. IGBT
Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at
- \(T_j = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 600 \) A
- \(R_{goff} = 1 \) Ω

Figure 7. FWD
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

With an inductive load at
- \(T_j = 25 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

With an inductive load at
- \(T_j = 25 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 600 \) A
Boost Switching Characteristics

Figure 9.
Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

Figure 10.
Typical recovered charge as a function of IGBT turn on gate resistor

\[Q_r = f(R_{gon}) \]

Figure 11.
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

Figure 12.
Typical peak reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RM} = f(R_{gon}) \]
Boost Switching Characteristics

Figure 13. FWD

Typical rate of fall of forward and reverse recovery current as a function of collector current

\[\frac{dI_F}{dt}, \frac{dI_{rr}}{dt} = f(I_C) \]

With an inductive load at

- \(V_{CE} = 350 \text{ V} \)
- \(T_j = 125 \text{ °C} \)
- \(R_{gon} = 1 \text{ Ω} \)
- \(R_{goff} = 1 \text{ Ω} \)
- \(I_C = 600 \text{ A} \)

Figure 14. FWD

Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[\frac{dI_F}{dt}, \frac{dI_{rr}}{dt} = f(R_{gon}) \]

With an inductive load at

- \(V_{CE} = 350 \text{ V} \)
- \(T_j = 125 \text{ °C} \)
- \(R_{gon} = 1 \text{ Ω} \)
- \(R_{goff} = 1 \text{ Ω} \)
- \(I_C = 600 \text{ A} \)

Figure 15. IGBT

Reverse bias safe operating area

At

- \(T_j = 125 \text{ °C} \)
- \(R_{gon} = 1 \text{ Ω} \)
- \(R_{goff} = 1 \text{ Ω} \)
Boost Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tj</td>
<td>125 °C</td>
</tr>
<tr>
<td>Rgs</td>
<td>1 Ω</td>
</tr>
<tr>
<td>Rps</td>
<td>1 Ω</td>
</tr>
</tbody>
</table>

figure 1. IGBT
Turn-off Switching Waveforms & definition of t_doff, t_Eoff (t_Eoff = integrating time for E_off)

figure 2. IGBT
Turn-on Switching Waveforms & definition of t_don, t_Eon (t_Eon = integrating time for E_on)

VGE(0%) = -15 V
VGE(100%) = 15 V
VCE(100%) = 350 V
IC(100%) = 600 A

VGE(0%) = -15 V
VGE(100%) = 15 V
VCE(100%) = 350 V
IC(100%) = 600 A

t_doff = 309 ns

t_Eoff = 83 ns

t_don = 333 ns

t_Eon = 82 ns
Boost Switching Characteristics

Figure 5. FWD

Turn-off Switching Waveforms & definition of \(t_{rr} \)

- \(V_F \) (100%) = 350 V
- \(I_F \) (100%) = 600 A
- \(I_{RRM} \) (100%) = 398 A
- \(t_{rr} \) = 477 ns

Figure 6. FWD

Turn-on Switching Waveforms & definition of \(t_{Qr} = \) integrating time for \(Q_r \)

- \(I_F \) (100%) = 600 A
- \(Q_r \) (100%) = 0 μC
70-W212NMA600M7-LC09F71 datasheet

Ordering Code & Marking

<table>
<thead>
<tr>
<th>ohne Thermal paste</th>
<th>70-W212NMA600M7-LC09F71</th>
</tr>
</thead>
<tbody>
<tr>
<td>with thermal paste</td>
<td>70-W212NMA600M7-LC09F71-37</td>
</tr>
</tbody>
</table>

Text

<table>
<thead>
<tr>
<th>Type & Version</th>
<th>Lot Number</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Code</td>
<td>UL & VIN</td>
<td>LLLLLS</td>
</tr>
<tr>
<td>WWYY</td>
<td>SSSS</td>
<td>WWYY</td>
</tr>
</tbody>
</table>

Datamatrix

Outline

Driver pins

<table>
<thead>
<tr>
<th>Pin</th>
<th>X1</th>
<th>Y1</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>4.5</td>
<td>78.65</td>
<td>G11-1</td>
</tr>
<tr>
<td>1.2</td>
<td>4.5</td>
<td>81.55</td>
<td>S11-1</td>
</tr>
<tr>
<td>1.3</td>
<td>39.5</td>
<td>78.65</td>
<td>G11-2</td>
</tr>
<tr>
<td>1.4</td>
<td>39.5</td>
<td>81.55</td>
<td>S11-2</td>
</tr>
<tr>
<td>1.5</td>
<td>19.45</td>
<td>30.15</td>
<td>DC+ desat</td>
</tr>
<tr>
<td>1.6</td>
<td>24.55</td>
<td>30.15</td>
<td>DC+ desat</td>
</tr>
<tr>
<td>1.7</td>
<td>1.95</td>
<td>68.4</td>
<td>G14-1</td>
</tr>
<tr>
<td>1.8</td>
<td>4.85</td>
<td>68.4</td>
<td>G14-2</td>
</tr>
<tr>
<td>1.9</td>
<td>39.15</td>
<td>68.4</td>
<td>G14-2</td>
</tr>
<tr>
<td>1.10</td>
<td>42.05</td>
<td>68.4</td>
<td>S14-2</td>
</tr>
<tr>
<td>1.11</td>
<td>19.45</td>
<td>44.65</td>
<td>GND desat</td>
</tr>
<tr>
<td>1.12</td>
<td>24.55</td>
<td>44.65</td>
<td>GND desat</td>
</tr>
<tr>
<td>1.13</td>
<td>-2.2</td>
<td>46</td>
<td>G13-1</td>
</tr>
<tr>
<td>1.14</td>
<td>-2.2</td>
<td>48.9</td>
<td>S13-1</td>
</tr>
<tr>
<td>1.15</td>
<td>46.2</td>
<td>46</td>
<td>G13-2</td>
</tr>
<tr>
<td>1.16</td>
<td>46.2</td>
<td>48.9</td>
<td>S13-2</td>
</tr>
<tr>
<td>1.17</td>
<td>9.75</td>
<td>29.2</td>
<td>S12-1</td>
</tr>
<tr>
<td>1.18</td>
<td>56.75</td>
<td>32.1</td>
<td>S12-2</td>
</tr>
<tr>
<td>1.19</td>
<td>50.75</td>
<td>32.1</td>
<td>G12-2</td>
</tr>
<tr>
<td>1.20</td>
<td>50.75</td>
<td>32.1</td>
<td>G12-2</td>
</tr>
<tr>
<td>1.21</td>
<td>67.65</td>
<td>86.7</td>
<td>Therml</td>
</tr>
<tr>
<td>1.22</td>
<td>67.65</td>
<td>89.8</td>
<td>Therml</td>
</tr>
</tbody>
</table>

Power interconnections

<table>
<thead>
<tr>
<th>Pin code</th>
<th>X2</th>
<th>Y2</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>0</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>2.2</td>
<td>22</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>2.3</td>
<td>44</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>2.4</td>
<td>0</td>
<td>110.4</td>
<td>DC+</td>
</tr>
<tr>
<td>2.5</td>
<td>22</td>
<td>110.4</td>
<td>GND</td>
</tr>
<tr>
<td>2.6</td>
<td>44</td>
<td>110.4</td>
<td>DC-</td>
</tr>
</tbody>
</table>

Low current connections

<table>
<thead>
<tr>
<th>Pin code</th>
<th>X3</th>
<th>Y3</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>-37.4</td>
<td>89.8</td>
<td>DC+</td>
</tr>
<tr>
<td>3.2</td>
<td>81.4</td>
<td>89.8</td>
<td>DC+</td>
</tr>
<tr>
<td>3.3</td>
<td>-37.4</td>
<td>65.2</td>
<td>EH</td>
</tr>
<tr>
<td>3.4</td>
<td>81.4</td>
<td>65.2</td>
<td>EH</td>
</tr>
<tr>
<td>3.5</td>
<td>-37.4</td>
<td>45.2</td>
<td>Phase</td>
</tr>
<tr>
<td>3.6</td>
<td>81.4</td>
<td>45.2</td>
<td>Phase</td>
</tr>
<tr>
<td>3.7</td>
<td>-37.4</td>
<td>20.6</td>
<td>DC-</td>
</tr>
<tr>
<td>3.8</td>
<td>81.4</td>
<td>20.6</td>
<td>DC-</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Pinout

- **DC+**
- **DC+ desat**
- **C10**
- **G11-n**
- **G12-n**
- **S12-n**
- **G13-n**
- **G14-n**
- **C20**
- **T11-n**
- **T12-n**
- **T13-n**
- **T14-n**
- **GND**
- **GND_desat**
- **D11**
- **D12**
- **D13**
- **D14**
- **D41**
- **D42**
- **D43**
- **D44**
- **R1**
- **Therm1**
- **Therm2**
- **Phase**
- **Ph**

NOTE: Driver pins for parallel devices are not connected inside the module.

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11, T12</td>
<td>IGBT</td>
<td>1200 V</td>
<td>600 A</td>
<td>Buck Switch</td>
<td></td>
</tr>
<tr>
<td>D11, D12</td>
<td>FWD</td>
<td>650 V</td>
<td>600 A</td>
<td>Buck Diode</td>
<td></td>
</tr>
<tr>
<td>D41, D42</td>
<td>FWD</td>
<td>1200 V</td>
<td>20 A</td>
<td>Buck Sw. Protection Diode</td>
<td></td>
</tr>
<tr>
<td>T13, T14</td>
<td>IGBT</td>
<td>650 V</td>
<td>600 A</td>
<td>Boost Switch</td>
<td></td>
</tr>
<tr>
<td>D13, D14</td>
<td>FWD</td>
<td>1200 V</td>
<td>600 A</td>
<td>Boost Diode</td>
<td></td>
</tr>
<tr>
<td>D43, D44</td>
<td>FWD</td>
<td>650 V</td>
<td>40 A</td>
<td>Boost Sw. Protection Diode</td>
<td></td>
</tr>
<tr>
<td>C10, C20</td>
<td>Capacitor</td>
<td>630 V</td>
<td></td>
<td>Capacitor (DC)</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>NTC</td>
<td></td>
<td></td>
<td></td>
<td>Thermistor</td>
</tr>
</tbody>
</table>
DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Packaging instruction

<table>
<thead>
<tr>
<th>Standard packaging quantity (SPQ)</th>
<th>>SPQ</th>
<th>Standard</th>
<th><SPQ</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Handling instruction

Handling instructions for VINco X4 packages see vincotech.com website.

Package data

Package data for VINco X4 packages see vincotech.com website.

UL recognition and file number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

Document No.: 70-W212NMA600M7-LC09F71-D2-14 **Date:** 09 Apr. 2019 **Modification:** Boost switch Vcc conditions added **Pages:** 2