Features
- Mixed voltage NPC
- Low inductive
- High power screw interface
- Integrated DC-snubber capacitors

Target Applications
- Solar inverter
- UPS
- High speed motor drive

Types
- 70-W212NMA400SC-M209P

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td>T_{j}=max, T_{C}=80°C</td>
<td>1200 V</td>
<td></td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_{C}</td>
<td>T_{j}=max, T_{C}=80°C</td>
<td>338 A</td>
<td></td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{p}, limited by I_{j}</td>
<td></td>
<td>1200 A</td>
<td></td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{D}</td>
<td>T_{j}=max, T_{C}=80°C</td>
<td>729 W</td>
<td></td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>T_{j}=max</td>
<td>±20 V</td>
<td></td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>I_{SC}</td>
<td>V_{CC}=15V</td>
<td>10 A</td>
<td></td>
</tr>
<tr>
<td>Turn off safe operating area (RBSOA)</td>
<td>I_{FSM}</td>
<td>V_{CE} max = 1200V, T_{j} max = 150°C</td>
<td>800 A</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{j}</td>
<td></td>
<td>175 °C</td>
<td></td>
</tr>
</tbody>
</table>

Neutral point FWD (D2, D3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RMS}</td>
<td>T_{j}=25°C</td>
<td>600 V</td>
<td></td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{F}</td>
<td>T_{j}=max, T_{C}=80°C</td>
<td>309 A</td>
<td></td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{S}</td>
<td>T_{j}=10 ms, sine halfwave</td>
<td>890 A</td>
<td></td>
</tr>
<tr>
<td>I_{2t}-value</td>
<td>I_{2t}</td>
<td></td>
<td>3960 A²s</td>
<td></td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{F}</td>
<td>T_{j}=1 ms</td>
<td>800 A</td>
<td></td>
</tr>
<tr>
<td>Power dissipation per FWD</td>
<td>P_{D}</td>
<td>T_{j}=max, T_{C}=80°C</td>
<td>421 W</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{j}</td>
<td></td>
<td>175 °C</td>
<td></td>
</tr>
</tbody>
</table>
Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutral point IGBT (T2, T3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td>$T_{j}=T_{j\text{max}}$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_{C}</td>
<td>$T_{j}=T_{j\text{max}}$</td>
<td>329</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=80°C$</td>
<td>430</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CPUL}</td>
<td>I_{p} limited by $T_{j\text{max}}$</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{tot}</td>
<td>$T_{j}=T_{j\text{max}}$</td>
<td>574</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=80°C$</td>
<td>870</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>$T_{j}=T_{j\text{max}}$</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>I_{SC}</td>
<td>$T_{j}=150°C$</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC}=15V$</td>
<td>360</td>
<td>µs</td>
</tr>
<tr>
<td>Turn off safe operating area (RBSOA)</td>
<td>$I_{t\text{max}}$</td>
<td>$V_{CE\text{max}}=1200V$</td>
<td>800</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j\text{max}}=150°C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>half bridge FWD (D1, D4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RMM}</td>
<td>$T_{j}=25°C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{F}</td>
<td>$T_{j}=T_{j\text{max}}$</td>
<td>270</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=80°C$</td>
<td>356</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{SM}</td>
<td>$I_{p}=10ms \cdot \sin 180°$</td>
<td>2200</td>
<td>A</td>
</tr>
<tr>
<td>I_{2t}-value</td>
<td>P_{1}</td>
<td>$T_{j}=150°C$</td>
<td>6052</td>
<td>A²s</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{RMM}</td>
<td>I_{p} limited by $T_{j\text{max}}$</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per FWD</td>
<td>P_{tot}</td>
<td>$T_{j}=T_{j\text{max}}$</td>
<td>540</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=80°C$</td>
<td>818</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>DC link Capacitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.DC voltage</td>
<td>V_{MAX}</td>
<td>$T_{c}=100°C$</td>
<td>630</td>
<td>V</td>
</tr>
<tr>
<td>General Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material of module baseplate</td>
<td></td>
<td></td>
<td>Cu</td>
<td></td>
</tr>
<tr>
<td>Material of internal isolation</td>
<td></td>
<td></td>
<td>Al₂O₃</td>
<td></td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{el}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40...+(Tjmax - 25)</td>
<td>°C</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>V_{is}</td>
<td>$t=2s$</td>
<td>DC voltage</td>
<td>4000</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>CTI</td>
<td></td>
<td>>200</td>
<td></td>
</tr>
</tbody>
</table>

copyright by Vincotech

 Revision: 7
Characteristic Values

Parameter	**Symbol**	**Conditions**	**Value**	**Unit**
Gate emitter threshold voltage | $V_{GE(th)}$ | $V_{CE(sat)}$ | Min | Typ | Max
Collector-emitter saturation voltage | $V_{CE(sat)}$ | $V_{CE(sat)}$ | 5 | 5,8 | 8,5 | V
Collector-emitter cut-off current incl. FWD | I_{CEO} | I_{CEO} | 1,8 | 1,97 | 2,23 | mA
Gate-emitter leakage current | I_{GE} | I_{GE} | 20 | 2000 | nA
Integrated Gate resistor | R_gint | R_gint | 1,88 | 1,88 | 1,88 | Ω
Turn-on delay time | τ_{on} | τ_{on} | 200 | 247 | ns
Rise time | τ_1 | τ_1 | 55 | 55 | 55 | ns
Turn-off delay time | τ_{off} | τ_{off} | 202 | 202 | 202 | ns
Fall time | τ_f | τ_f | 354 | 354 | 354 | ns
Turn-on energy loss per pulse | E_{on} | E_{on} | 7,36 | 7,36 | 7,36 | mWs
Turn-off energy loss per pulse | E_{off} | E_{off} | 13,25 | 13,25 | 13,25 | mWs
Input capacitance | C_{iss} | C_{iss} | 24600 | 24600 | 24600 | pF
Output capacitance | C_{oss} | C_{oss} | 1620 | 1620 | 1620 | pF
Reverse transfer capacitance | C_{rss} | C_{rss} | 1380 | 1380 | 1380 | pF
Gate charge | Q_{gss} | Q_{gss} | 2030 | 2030 | 2030 | nC
Thermal resistance chip to heatsink per chip | R_{goff} | R_{goff} | 0,13 | 0,13 | 0,13 | kW
Thermal resistance chip to case per chip | R_{goff} | R_{goff} | 0,09 | 0,09 | 0,09 | kW

neutral point FWD (D2, D3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWD forward voltage</td>
<td>V_F</td>
<td>V_F</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RRM}</td>
<td>I_{RRM}</td>
<td>204</td>
<td>204</td>
<td>204</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>τ_{rec}</td>
<td>τ_{rec}</td>
<td>285</td>
<td>285</td>
<td>285</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rec}</td>
<td>Q_{rec}</td>
<td>163</td>
<td>163</td>
<td>163</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>I_{RMS}</td>
<td>I_{RMS}</td>
<td>7,44</td>
<td>7,44</td>
<td>7,44</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>E_{rec}</td>
<td>1,27</td>
<td>1,27</td>
<td>1,27</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{RMS}</td>
<td>R_{RMS}</td>
<td>0,23</td>
<td>0,23</td>
<td>0,23</td>
</tr>
<tr>
<td>Thermal resistance chip to case per chip</td>
<td>R_{RMS}</td>
<td>R_{RMS}</td>
<td>0,15</td>
<td>0,15</td>
<td>0,15</td>
</tr>
</tbody>
</table>

neutral point IGBT (T2, T3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{GE(th)}$</td>
<td>0,0064</td>
<td>0,0064</td>
<td>0,0064</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td>$V_{CE(sat)}$</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl. FWD</td>
<td>I_{CEO}</td>
<td>I_{CEO}</td>
<td>1,06</td>
<td>1,06</td>
<td>1,06</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GE}</td>
<td>I_{GE}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_gint</td>
<td>R_gint</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>τ_{on}</td>
<td>τ_{on}</td>
<td>201</td>
<td>201</td>
<td>201</td>
</tr>
<tr>
<td>Rise time</td>
<td>τ_1</td>
<td>τ_1</td>
<td>224</td>
<td>224</td>
<td>224</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>τ_{off}</td>
<td>τ_{off}</td>
<td>248</td>
<td>248</td>
<td>248</td>
</tr>
<tr>
<td>Fall time</td>
<td>τ_f</td>
<td>τ_f</td>
<td>272</td>
<td>272</td>
<td>272</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td>E_{on}</td>
<td>3,93</td>
<td>3,93</td>
<td>3,93</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td>E_{off}</td>
<td>14,07</td>
<td>14,07</td>
<td>14,07</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>C_{iss}</td>
<td>732</td>
<td>732</td>
<td>732</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>C_{oss}</td>
<td>1536</td>
<td>1536</td>
<td>1536</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td>C_{rss}</td>
<td>732</td>
<td>732</td>
<td>732</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gss}</td>
<td>Q_{gss}</td>
<td>2480</td>
<td>2480</td>
<td>2480</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{RMS}</td>
<td>R_{RMS}</td>
<td>0,17</td>
<td>0,17</td>
<td>0,17</td>
</tr>
<tr>
<td>Thermal resistance chip to case per chip</td>
<td>R_{RMS}</td>
<td>R_{RMS}</td>
<td>0,11</td>
<td>0,11</td>
<td>0,11</td>
</tr>
</tbody>
</table>
Characteristic Values

half bridge FWD (D1, D4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWD forward voltage</td>
<td>V_{FWD}</td>
<td>Tj=25°C, T=150°C,</td>
<td>400</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{R}</td>
<td>Tj=25°C, T=150°C,</td>
<td>102</td>
<td>μA</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RRM}</td>
<td>Tj=25°C, T=150°C,</td>
<td>410</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>T_{RR}</td>
<td>Tj=25°C, T=150°C,</td>
<td>149</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{m}</td>
<td>Tj=25°C, T=150°C,</td>
<td>24</td>
<td>μC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>f_{rec}</td>
<td>Tj=25°C, T=150°C,</td>
<td>16910</td>
<td>A/μs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>E_{thJH}</td>
<td>Tj=25°C, T=150°C,</td>
<td>12.71</td>
<td>mW/K</td>
</tr>
<tr>
<td>Thermal resistance chip to case per chip</td>
<td>E_{thJC}</td>
<td>Tj=25°C, T=150°C,</td>
<td>0.18</td>
<td>kW</td>
</tr>
</tbody>
</table>

DC link Capacitor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C value</td>
<td>C</td>
<td></td>
<td>2 * 0.68</td>
<td>μF</td>
</tr>
<tr>
<td>Stray inductance of on board capacitors</td>
<td>ESL</td>
<td></td>
<td>26/2</td>
<td>nH</td>
</tr>
<tr>
<td>Series resistance of on board capacitors</td>
<td>ESR</td>
<td></td>
<td>14/2</td>
<td>mΩ</td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R_{T25}</td>
<td>Tj=25°C,</td>
<td>20000</td>
<td>Ω</td>
</tr>
<tr>
<td>Deviation of R_{T25}</td>
<td>δR_{T25}</td>
<td>Tj=100°C,</td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>P_{T25}</td>
<td>Tj=25°C,</td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>P_{T25}</td>
<td>Tj=25°C,</td>
<td>2</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>B_{B25}</td>
<td>Tj=25°C,</td>
<td>3500</td>
<td>K</td>
</tr>
<tr>
<td>B-value</td>
<td>B_{B25}</td>
<td>Tj=25°C,</td>
<td>3996</td>
<td>K</td>
</tr>
</tbody>
</table>

Module Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module inductance (from chips to PCB)</td>
<td>L_{mcb}</td>
<td>T=25°C,</td>
<td>5</td>
<td>nH</td>
</tr>
<tr>
<td>Module inductance (from PCB to PCB using Intercon board)</td>
<td>L_{mc1b}</td>
<td>T=25°C,</td>
<td>3</td>
<td>nH</td>
</tr>
<tr>
<td>Resistance of Intercon boards (from PCB to PCB using Intercon board)</td>
<td>R_{ocmcb}</td>
<td>T=25°C, per switch</td>
<td>1.5</td>
<td>mΩ</td>
</tr>
<tr>
<td>Mounting torque (Source Mn - mounting according to valid application note FSWB1-4TY-M-*10)</td>
<td>M</td>
<td>T=25°C,</td>
<td>2,2</td>
<td>Nm</td>
</tr>
<tr>
<td>Mounting torque (Source Mn - mounting according to valid application note FSWB1-4TY-M-*10)</td>
<td>M</td>
<td>T=25°C,</td>
<td>6</td>
<td>Nm</td>
</tr>
<tr>
<td>Terminal connection torque (Source Mn - mounting according to valid application note FSWB1-4TY-M-*10)</td>
<td>M</td>
<td>T=25°C,</td>
<td>2,5</td>
<td>Nm</td>
</tr>
<tr>
<td>Weight</td>
<td>G</td>
<td></td>
<td>710</td>
<td>g</td>
</tr>
</tbody>
</table>
Buck

half bridge IGBT and neutral point FWD

Figure 1

IGBT

Typical output characteristics

$I_C = f(V_{CE})$

At

- $t_p = 350 \, \mu s$
- $T_j = 25 \, ^\circ C$
- V_{GE} from 8 V to 17 V in steps of 1 V

Figure 2

IGBT

Typical output characteristics

$I_C = f(V_{CE})$

At

- $t_p = 350 \, \mu s$
- $T_j = 125 \, ^\circ C$
- V_{GE} from 7 V to 17 V in steps of 1 V

Figure 3

IGBT

Typical transfer characteristics

$I_C = f(V_{CE})$

Figure 4

FWD

Typical FWD forward current as a function of forward voltage

$I_F = f(V_F)$

At

- $t_p = 350 \, \mu s$
- $V_{CE} = 10 \, V$

copyright by Vincotech
Buck

half bridge IGBT and neutral point FWD

Figure 5
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω
- \(R_{goff} = 1 \) Ω

Figure 6
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 400 \) A

Figure 7
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω

Figure 8
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 400 \) A
Buck

half bridge IGBT and neutral point FWD

Figure 9

Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
\[T_j = 125 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 1.0 \, \Omega \]
\[R_{goff} = 1.0 \, \Omega \]

Figure 10

Typical switching times as a function of gate resistor
\[t = f(R_G) \]

With an inductive load at
\[T_j = 125 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[I_C = 400 \, \text{A} \]

Figure 11

Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
\[T_j = 25/125 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{pox} = 1 \, \Omega \]

Figure 12

Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(I_{pox}) \]

At
\[T_j = 25/125 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[I_V = 400 \, \text{A} \]
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At
- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 1 \, \Omega \)

Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

At
- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 1 \, \Omega \)
Typical rate of fall of forward and reverse recovery current as a function of collector current:

\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At

- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_F = 400 \) A
- \(R_{gon} = 1 \) Ω

IGBT transient thermal impedance as a function of pulse width:

\[Z_{thJH}(t_p) = f(t_p) \]

At

- \(D = t_p / T \)
- \(R_{thJH} = 0,13 \) K/W

Thermal grease

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,06</td>
<td>2,5E+00</td>
</tr>
<tr>
<td>0,03</td>
<td>4,7E-01</td>
</tr>
<tr>
<td>0,03</td>
<td>3,9E-02</td>
</tr>
<tr>
<td>0,01</td>
<td>1,2E-02</td>
</tr>
<tr>
<td>0,00</td>
<td>1,2E-03</td>
</tr>
</tbody>
</table>

IGBT thermal model values

FWD transient thermal impedance as a function of pulse width:

\[Z_{thJH}(t_p) = f(t_p) \]

At

- \(D = t_p / T \)
- \(R_{thJH} = 0,23 \) K/W

Thermal grease

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05</td>
<td>5,2E+00</td>
</tr>
<tr>
<td>0,07</td>
<td>1,1E+00</td>
</tr>
<tr>
<td>0,02</td>
<td>2,0E-01</td>
</tr>
<tr>
<td>0,06</td>
<td>4,6E-02</td>
</tr>
<tr>
<td>0,02</td>
<td>1,7E-02</td>
</tr>
</tbody>
</table>
Power dissipation as a function of heatsink temperature

$P_{\text{tot}} = f(T_h)$

At $T_j = 175 \, ^\circ C$

Collector current as a function of heatsink temperature

$I_c = f(T_h)$

At $T_j = 175 \, ^\circ C, \ V_{GE} = 15 \, V$

Forward current as a function of heatsink temperature

$I_f = f(T_h)$

At $T_j = 175 \, ^\circ C$
Buck

half bridge IGBT and neutral point FWD

Figure 25
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

<table>
<thead>
<tr>
<th>V_{CE} (V)</th>
<th>10^{-1}</th>
<th>10^{0}</th>
<th>10^{1}</th>
<th>10^{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{GE} (V)</td>
<td>0</td>
<td>400</td>
<td>800</td>
<td>1200</td>
</tr>
<tr>
<td>Q_g (nC)</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

At
D = single pulse
T_h = 80 °C
V_{GE} = ±15 V
T_j = T_{jmax} °C

Figure 26
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At
I_C = 400 A

Figure 27
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At
T_j = T_{jmax} - 25 °C
U_{continuous} = U_{replus}

Switching mode: 3 level switching
Boost
neutral point IGBT and half bridge FWD

Figure 1
Typical output characteristics

\[I_C = f(V_{CE}) \]

At
- \(t_p = 350 \ \mu s \)
- \(T_j = 25^\circ C \)
- \(V_{CE} \) from 8 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics

\[I_C = f(V_{CE}) \]

At
- \(t_p = 350 \ \mu s \)
- \(T_j = 125^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics

\[I_C = f(V_{GE}) \]

At
- \(t_p = 350 \ \mu s \)
- \(T_j = 25^\circ C \), \(T_j = T_{j\max} - 25^\circ C \)
- \(V_{CE} = 0 \ \text{V} \)

Figure 4
Typical FWD forward current as a function of forward voltage

\[I_F = f(V_F) \]

At
- \(t_p = 350 \ \mu s \)
Boost
neutral point IGBT and half bridge FWD

Figure 5
Typical switching energy losses
as a function of collector current
\[E = f(I_C) \]

With an inductive load at
\[T_J = 25/125 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 1 \, \Omega \]
\[R_{goff} = 1 \, \Omega \]

Figure 6
Typical switching energy losses
as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
\[T_J = 25/125 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[I_C = 400 \, \text{A} \]

Figure 7
Typical reverse recovery energy loss
as a function of collector current
\[E_{rec} = f(I_C) \]

With an inductive load at
\[T_J = 25/125 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 1 \, \Omega \]

Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
\[T_J = 25/125 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[I_C = 400 \, \text{A} \]
Figure 9
Typical switching times as a function of collector current
\(t = f(I_C) \)

With an inductive load at
- \(T_j = 125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 1 \, \Omega \)
- \(R_{goff} = 1 \, \Omega \)

Figure 10
Typical switching times as a function of gate resistor
\(t = f(R_g) \)

With an inductive load at
- \(T_j = 125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_C = 400 \, A \)

Figure 11
Typical reverse recovery time as a function of collector current
\(t_{rr} = f(I_C) \)

At
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 1 \, \Omega \)

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
\(t_{rr} = f(R_{gon}) \)

At
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{GE} = 350 \, V \)
- \(I_C = 400 \, A \)
- \(V_{GE} = \pm 15 \, V \)
Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

![Graph showing typical reverse recovery charge as a function of collector current](image)

At
\(T_j = 25/125 \degree C \)
\(V_{CE} = 350 \) V
\(V_{GE} = \pm 15 \) V
\(R_{gon} = 1 \) Ω

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

![Graph showing typical reverse recovery charge as a function of IGBT turn on gate resistor](image)

At
\(T_j = 25/125 \degree C \)
\(V_I = 350 \) V
\(I_F = 400 \) A
\(V_{GE} = \pm 15 \) V

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

![Graph showing typical reverse recovery current as a function of collector current](image)

At
\(T_j = 25/125 \degree C \)
\(V_{CE} = 350 \) V
\(V_{GE} = \pm 15 \) V
\(R_{gon} = 1 \) Ω

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

![Graph showing typical reverse recovery current as a function of IGBT turn on gate resistor](image)

At
\(T_j = 25/125 \degree C \)
\(V_I = 350 \) V
\(I_F = 400 \) A
\(V_{GE} = \pm 15 \) V
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_C) \]

At

- \(T_J = 25/125 \, ^\circ \text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 1 \, \Omega \)

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

At

- \(T_J = 25/125 \, ^\circ \text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_F = 400 \, \text{A} \)

Figure 19
IGBT transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

At

- \(D = \frac{tp}{T} \)
- \(R_{thJH} = 0.17 \, \text{K/W} \)

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>8.9E+00</td>
</tr>
<tr>
<td>0.07</td>
<td>2.2E+00</td>
</tr>
<tr>
<td>0.02</td>
<td>3.7E-01</td>
</tr>
<tr>
<td>0.04</td>
<td>4.3E-02</td>
</tr>
<tr>
<td>0.01</td>
<td>1.1E-02</td>
</tr>
<tr>
<td>0.00</td>
<td>1.9E-03</td>
</tr>
</tbody>
</table>

Figure 20
FWD transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

At

- \(D = \frac{tp}{T} \)
- \(R_{thJH} = 0.18 \, \text{K/W} \)

FWD thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>9.8E+00</td>
</tr>
<tr>
<td>0.05</td>
<td>2.5E+00</td>
</tr>
<tr>
<td>0.03</td>
<td>6.5E-01</td>
</tr>
<tr>
<td>0.03</td>
<td>8.1E-02</td>
</tr>
<tr>
<td>0.03</td>
<td>2.7E-02</td>
</tr>
<tr>
<td>0.01</td>
<td>4.1E-03</td>
</tr>
</tbody>
</table>
Boost
neutral point IGBT and half bridge FWD

Figure 21
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \degree C \]

Figure 22
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

At
\[T_j = 175 \degree C \]

Figure 23
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \degree C \]

Figure 24
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 175 \degree C \]

copyright by Vincotech

17 Revision: 7
Figure 25
Reverse bias safe operating area

$I_C = f(V_{CE})$ at $T_j = T_{j\text{max}} - 25 \degree C$

$U_{C-} = U_{C+}$

Switching mode: 3 level switching
Thermistor

Figure 1

Typical NTC characteristic as a function of temperature

\[R_T = f(T) \]
Switching Definitions half bridge IGBT

General conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 $^\circ$C</td>
</tr>
<tr>
<td>R_{son}</td>
<td>1 Ω</td>
</tr>
<tr>
<td>R_{goff}</td>
<td>1 Ω</td>
</tr>
</tbody>
</table>

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

- V_{CE} ($0\%) = -15$ V
- V_{CE} ($100\%) = 15$ V
- I_C ($100\%) = 400$ A
- $t_{doff} = 0.35$ μs
- $t_{Eoff} = 1.12$ μs

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

- V_{CE} ($0\%) = -15$ V
- V_{CE} ($100\%) = 15$ V
- V_C ($100\%) = 350$ V
- I_C ($100\%) = 400$ A
- $t_{don} = 0.25$ μs
- $t_{Eon} = 0.56$ μs

Copyright by Vincotech
Switching Definitions half bridge IGBT

Figure 5
Turn-off Switching Waveforms & definition of \(t_{\text{Eoff}} \)

![Graph](image)

\[P_{\text{off}} \ (100\%) = 140.00 \ kW \]
\[E_{\text{off}} \ (100\%) = 22.08 \ mJ \]
\[t_{\text{Eoff}} = 1.12 \ \mu s \]

Figure 6
Turn-on Switching Waveforms & definition of \(t_{\text{Eon}} \)

![Graph](image)

\[P_{\text{on}} \ (100\%) = 140.00 \ kW \]
\[E_{\text{on}} \ (100\%) = 12.30 \ mJ \]
\[t_{\text{Eon}} = 0.56 \ \mu s \]

Figure 7
Gate voltage vs Gate charge (measured)

![Graph](image)

\[V_{\text{Goff}} = -15 \ V \]
\[V_{\text{Gon}} = 15 \ V \]
\[V_{\text{G}} \ (100\%) = 350 \ V \]
\[I_{\text{d}} \ (100\%) = 400 \ A \]
\[Q_{g} = 3059 \ nC \]

Figure 8
Turn-off Switching Waveforms & definition of \(t_{rr} \)

![Graph](image)

\[V_{d} \ (100\%) = 350 \ V \]
\[I_{d} \ (100\%) = 400 \ A \]
\[I_{\text{fmax}} \ (100\%) = -262 \ A \]
\[Q_{g} = 0.30 \ \mu s \]
Switching Definitions half bridge IGBT

Figure 9
Turn-on Switching Waveforms & definition of $t_{Q_{rr}}$
($t_{Q_{rr}}$ = integrating time for Q_{rr})

$\begin{align*}
I_q \text{(100\%)} &= 400 \text{ A} \\
Q_{rr} \text{(100\%)} &= 33.04 \mu \text{C} \\
t_{Q_{rr}} &= 0.64 \mu \text{s}
\end{align*}$

Figure 10
Turn-on Switching Waveforms & definition of $t_{E_{rec}}$
($t_{E_{rec}}$ = integrating time for E_{rec})

$\begin{align*}
P_{rec} \text{(100\%)} &= 140.00 \text{ kW} \\
E_{rec} \text{(100\%)} &= 7.44 \text{ mJ} \\
t_{E_{rec}} &= 0.64 \mu \text{s}
\end{align*}$

Figure 11
Half bridge IGBT switching measurement circuit

copyright by Vincotech
Switching Definitions neutral point IGBT

General conditions

- $T_J = 125 \degree C$
- $R_{on} = 1 \Omega$
- $R_{off} = 1 \Omega$

Figure 1 neutral point IGBT

Turn-off Switching Waveforms & definition of t_{off}, $t_{f_{off}}$

(t_{off} = integrating time for E_{off})

- $V_G(0\%) = -15$ V
- $V_G(100\%) = 15$ V
- $V_C(100\%) = 700$ V
- $I_C(100\%) = 400$ A
- $t_{off} = 0.23 \mu s$
- $t_{f_{off}} = 0.58 \mu s$

Figure 2 neutral point IGBT

Turn-on Switching Waveforms & definition of t_{on}, $t_{f_{on}}$

(t_{on} = integrating time for E_{on})

- $V_G(0\%) = -15$ V
- $V_G(100\%) = 15$ V
- $V_C(100\%) = 700$ V
- $I_C(100\%) = 400$ A
- $t_{on} = 0.20 \mu s$
- $t_{f_{on}} = 0.38 \mu s$

Figure 3 neutral point IGBT

Turn-off Switching Waveforms & definition of t_f

- $V_C(100\%) = 700$ V
- $I_C(100\%) = 400$ A
- $t_f = 0.088 \mu s$

Figure 4 neutral point IGBT

Turn-on Switching Waveforms & definition of t_r

- $V_C(100\%) = 700$ V
- $I_C(100\%) = 400$ A
- $t_r = 0.032 \mu s$
Switching Definitions neutral point IGBT

Figure 5
Turn-off Switching Waveforms & definition of t_{Eoff}

P_{off} (100%) = 280.22 kW
E_{off} (100%) = 14.07 mJ
t_{Eoff} = 0.58 μs

Figure 6
Turn-on Switching Waveforms & definition of t_{Eon}

P_{on} (100%) = 280.2184 kW
E_{on} (100%) = 13.39 mJ
t_{Eon} = 0.38 μs

Figure 7
Gate voltage vs Gate charge (measured)

V_{GEoff} = -15 V
V_{GEon} = 15 V
I_{off} (100%) = 700 V
I_{on} (100%) = 400 A
Q_{g} = 3442 nC

Figure 8
Turn-off Switching Waveforms & definition of t_{rr}

V_{d} (100%) = 700 V
i_{b} (100%) = 400 A
i_{rrmax} (100%) = -521 A
t_{rr} = 0.15 μs
Switching Definitions neutral point IGBT

Figure 9
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

- $I_D(100\%) = 400$ A
- $Q_{rr}(100\%) = 49.18$ µC
- $t_{Qrr} = 0.33$ µs

Figure 10
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

- $P_{rec}(100\%) = 280.22$ kW
- $E_{rec}(100\%) = 12.71$ mJ
- $t_{Erec} = 0.33$ µs

neutral point IGBT switching measurement circuit

Figure 11

Ordering Code and Marking - Outline - Pinout

Outline

<table>
<thead>
<tr>
<th>Driver pins</th>
<th>Power connections</th>
<th>Low current connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>X1</td>
<td>Y1</td>
</tr>
<tr>
<td>1.1</td>
<td>4.5</td>
<td>78.0</td>
</tr>
<tr>
<td>1.2</td>
<td>4.5</td>
<td>81.5</td>
</tr>
<tr>
<td>1.3</td>
<td>38.5</td>
<td>78.0</td>
</tr>
<tr>
<td>1.4</td>
<td>38.5</td>
<td>81.5</td>
</tr>
<tr>
<td>1.5</td>
<td>1.95</td>
<td>66.4</td>
</tr>
<tr>
<td>1.6</td>
<td>4.05</td>
<td>66.4</td>
</tr>
<tr>
<td>1.7</td>
<td>38.5</td>
<td>66.4</td>
</tr>
<tr>
<td>1.8</td>
<td>22.0</td>
<td>66.4</td>
</tr>
<tr>
<td>1.9</td>
<td>-2.2</td>
<td>46.0</td>
</tr>
<tr>
<td>1.10</td>
<td>-2.2</td>
<td>33.1</td>
</tr>
<tr>
<td>1.11</td>
<td>46.0</td>
<td>46.0</td>
</tr>
<tr>
<td>1.12</td>
<td>46.0</td>
<td>32.1</td>
</tr>
<tr>
<td>1.13</td>
<td>-7.5</td>
<td>29.2</td>
</tr>
<tr>
<td>1.14</td>
<td>-7.5</td>
<td>32.1</td>
</tr>
<tr>
<td>1.15</td>
<td>20.0</td>
<td>29.2</td>
</tr>
<tr>
<td>1.16</td>
<td>20.0</td>
<td>32.1</td>
</tr>
<tr>
<td>1.17</td>
<td>19.4</td>
<td>30.1</td>
</tr>
<tr>
<td>1.18</td>
<td>24.5</td>
<td>30.1</td>
</tr>
<tr>
<td>1.19</td>
<td>19.4</td>
<td>44.8</td>
</tr>
<tr>
<td>1.20</td>
<td>24.5</td>
<td>44.8</td>
</tr>
<tr>
<td>1.21</td>
<td>67.6</td>
<td>66.7</td>
</tr>
<tr>
<td>1.22</td>
<td>67.6</td>
<td>69.8</td>
</tr>
</tbody>
</table>
NOTE: Driver pins for parallel devices are not connected inside the module!
Gx-1 to Gx-2 and Ex-1 to Ex2 shall be connected on customer PCB!
Where x = 1 to 4
DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.