Vincotech

VINcoMNPC X4 1200 V/400 A

Features
- Mixed voltage NPC
- Low inductive
- High power screw interface

Target Applications
- Solar inverter
- UPS
- High speed motor drive

Types
- 70-W212NMA400NB02-M209P62

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>half bridge IGBT (T1, T4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_CES</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>T_{j=25°C}</td>
<td>358</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>I_{pul}</td>
<td>T_{j=25°C} limited by T_{j,max}</td>
<td>800</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{tot}</td>
<td>T_{j=25°C}</td>
<td>864</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>V_{SC}</td>
<td>T_{j=150°C}, V_{GE}=15V</td>
<td>10</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>800</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{j,max}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

neutral point FWD (D2, D3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{max}</td>
<td>T_{j=25°C}</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{Fmax}</td>
<td>T_{j=25°C}</td>
<td>232</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{Rmax}</td>
<td>T_{j=25°C} limited by T_{j,max}</td>
<td>600</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per FWD</td>
<td>P_{tot}</td>
<td>T_{j=25°C}</td>
<td>306</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{j,max}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

copyright Vincotech

1 Revision: 1.2
Maximum Ratings

T\(_{j}\) = 25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral point IGBT (T2, T3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>(V_{CES})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>(i_c)</td>
<td>(T_i = T_{j,\text{max}}) (T_i = T_{j,\text{max}})</td>
<td>260</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>(i_{\text{pulse}})</td>
<td>(i_p) limited by (T_{j,\text{max}})</td>
<td>900</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>(P_{\text{tot}})</td>
<td>(T_i = T_{j,\text{max}}) (T_i = T_{j,\text{max}})</td>
<td>500</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>(V_{GE})</td>
<td></td>
<td>(\leq 20)</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>(t_{SC}) (V_{CC}) (V_{GE} = 15)</td>
<td></td>
<td>10 (\mu)s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j,\text{max}})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Half Bridge FWD (D1, D4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{\text{RMM}})</td>
<td>(T_i = 25°C)</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(i_{FAM})</td>
<td>(T_i = T_{j,\text{max}}) (T_i = T_{j,\text{max}})</td>
<td>252</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>(i_{\text{SM}}) (i_p = 10) ms, (\sin 180°)</td>
<td>(T_i = 25°C)</td>
<td>1720</td>
<td>A</td>
</tr>
<tr>
<td>(\mu)T-value</td>
<td>(\mu T)</td>
<td>(T_i = 150°C)</td>
<td>3700</td>
<td>A²s</td>
</tr>
<tr>
<td>Power dissipation per FWD</td>
<td>(P_{\text{tot}})</td>
<td>(T_i = T_{j,\text{max}}) (T_i = T_{j,\text{max}})</td>
<td>528</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j,\text{max}})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

General Module Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material of module baseplate</td>
<td>Cu</td>
</tr>
<tr>
<td>Material of internal isolation</td>
<td>Al2O3</td>
</tr>
</tbody>
</table>

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>(T_{\text{stg}}) (-40...+125) °C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>(T_{\text{op}}) (-40...+(T_{j,\text{max}} - 25)) °C</td>
</tr>
</tbody>
</table>

Insulation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation voltage (V_i) (i = 2)</td>
<td>4000 V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td>min 12.7 mm</td>
</tr>
<tr>
<td>Clearance</td>
<td>min 12.7 mm</td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>CTI > 200</td>
</tr>
</tbody>
</table>

copyright Vincotech
Characteristic Values

half bridge IGBT (T1, T4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>V_{GE(th)} [V]</td>
<td>V_{GE} = V_{GE(th)}</td>
<td>0,04</td>
<td>5,5</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CE(sat)} [V]</td>
<td>V_{CE} = V_{CE(sat)}</td>
<td>2,21</td>
<td>3,5</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. FWD</td>
<td>I_{CES} [mA]</td>
<td>I_{CES}</td>
<td>1200</td>
<td>2</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GED} [mA]</td>
<td>I_{GED}</td>
<td>3000</td>
<td>nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{Integrated resistors} [Ω]</td>
<td>R_{Integrated resistors}</td>
<td>none</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on} [ns]</td>
<td>t_{on}</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{Rise} [ns]</td>
<td>t_{Rise}</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off} [ns]</td>
<td>t_{off}</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{Fall} [ns]</td>
<td>t_{Fall}</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on} [mWs]</td>
<td>E_{on}</td>
<td>12,25</td>
<td>17,66</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off} [mWs]</td>
<td>E_{off}</td>
<td>2,98</td>
<td>5,40</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in} [pF]</td>
<td>C_{in}</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out} [pF]</td>
<td>C_{out}</td>
<td>1MHz</td>
<td>8000</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{RSS} [pF]</td>
<td>C_{RSS}</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{Gate} [nC]</td>
<td>Q_{Gate}</td>
<td>±15</td>
<td>600</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{JH} [K/W]</td>
<td>R_{JH}</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to case per chip</td>
<td>R_{JC} [K/W]</td>
<td>R_{JC}</td>
<td>0,13</td>
<td></td>
</tr>
</tbody>
</table>

neutral point FWD (D2, D3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWD forward voltage</td>
<td>V_{DF} [V]</td>
<td>V_{DF}</td>
<td>300</td>
<td>1,2</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RR} [A]</td>
<td>I_{RR}</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{RR} [ns]</td>
<td>t_{RR}</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{r} [µC]</td>
<td>Q_{r}</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>dI_{d(rec)} [A]</td>
<td>dI_{d(rec)}</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec} [mWs]</td>
<td>E_{rec}</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{JH} [K/W]</td>
<td>R_{JH}</td>
<td>0,31</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to case per chip</td>
<td>R_{JC} [K/W]</td>
<td>R_{JC}</td>
<td>0,36</td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutral point IGBT (T2, T3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>V<sub>GE(th)</sub></td>
<td>V<sub>GE</sub> or V<sub>GS</sub></td>
<td>0.0048</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V<sub>CE(sat)</sub></td>
<td>V<sub>CE</sub> or V<sub>DS</sub></td>
<td>5.1</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl FWD</td>
<td>I<sub>CES</sub></td>
<td>650</td>
<td>1.85</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I<sub>CES</sub></td>
<td>300</td>
<td>2.2</td>
<td>mA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R<sub>int</sub></td>
<td>T<sub>j=25°C</sub></td>
<td>191</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t<sub>on</sub></td>
<td>T<sub>j=25°C</sub></td>
<td>192</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t<sub>r</sub></td>
<td>T<sub>j=25°C</sub></td>
<td>32</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t<sub>off</sub></td>
<td>R<sub>goff=2 Ω</sub></td>
<td>34</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t<sub>f</sub></td>
<td>T<sub>j=25°C</sub></td>
<td>239</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E<sub>on</sub></td>
<td>T<sub>j=25°C</sub></td>
<td>4.29</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E<sub>off</sub></td>
<td>T<sub>j=25°C</sub></td>
<td>6.19</td>
<td>mWs</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C<sub>in</sub></td>
<td>f=1MHz</td>
<td>10.19</td>
<td>µF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C<sub>rss</sub></td>
<td>T<sub>j=25°C</sub></td>
<td>14.03</td>
<td>µF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q<sub>gmax</sub></td>
<td>15</td>
<td>548</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R<sub>thJH</sub></td>
<td>100µm preapplied PCM</td>
<td>0.19</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to case per chip</td>
<td>R<sub>thJC</sub></td>
<td>1W/mK</td>
<td>0.22</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWD forward voltage</td>
<td>V_{F}</td>
<td>$T_j=25^\circ C$</td>
<td>2.21</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=125^\circ C$</td>
<td>2.76</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{R}</td>
<td>$T_j=25^\circ C$</td>
<td>0.048</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=125^\circ C$</td>
<td>0.56</td>
<td>mA</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RMS}</td>
<td>$T_j=25^\circ C$</td>
<td>309</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=125^\circ C$</td>
<td>441</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>$T_j=25^\circ C$</td>
<td>66</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=125^\circ C$</td>
<td>136</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>$T_j=25^\circ C$</td>
<td>19</td>
<td>µC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=125^\circ C$</td>
<td>38</td>
<td>µC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$d(i_{rec})/dt$</td>
<td>$T_j=25^\circ C$</td>
<td>14653</td>
<td>A/μs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=125^\circ C$</td>
<td>14438</td>
<td>A/μs</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td>$T_j=25^\circ C$</td>
<td>4.36</td>
<td>mWs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=125^\circ C$</td>
<td>9.72</td>
<td>mWs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>$T_j=100^\circ C$</td>
<td>22000</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$R_{thJH}=1000 \Omega$</td>
<td>$R_{thJH}=1486 \Omega$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_j=25^\circ C$</td>
<td>+14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_j=125^\circ C$</td>
<td>+14</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>P</td>
<td>$T_j=25^\circ C$</td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_j=125^\circ C$</td>
<td>2</td>
</tr>
<tr>
<td>B-value</td>
<td>$B(25/50)$</td>
<td>$T_j=25^\circ C$</td>
<td>3950</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=125^\circ C$</td>
<td>3996</td>
<td>K</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td>$T_j=25^\circ C$</td>
<td>2000</td>
<td>Ω</td>
</tr>
<tr>
<td>Deviation of R_{100}</td>
<td>$\Delta R/R$</td>
<td>$R_{100}=1486 \Omega$</td>
<td>-12</td>
<td>%</td>
</tr>
<tr>
<td>Power dissipation</td>
<td></td>
<td>$T_j=25^\circ C$</td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td>$T_j=125^\circ C$</td>
<td>2</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>$B(25/50)$</td>
<td>$T_j=25^\circ C$</td>
<td>3950</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=125^\circ C$</td>
<td>3996</td>
<td>K</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{GE} [V] or V_{GS} [V]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{r} [V] or V_{CE} [V] or V_{DS} [V]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{C} [A] or I_{F} [A] or I_{D} [A]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_{j}</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module inductance (from chip to PCB)</td>
</tr>
<tr>
<td>Module inductance (from PCB to PCB using Intercon board)</td>
</tr>
<tr>
<td>Resistance of Intercon boards (from PCB to PCB using Intercon board)</td>
</tr>
<tr>
<td>Mounting torque</td>
</tr>
<tr>
<td>Mounting torque</td>
</tr>
<tr>
<td>Terminal connection torque</td>
</tr>
<tr>
<td>Weight</td>
</tr>
</tbody>
</table>

Module inductance (from chip to PCB): L_{CE}

Module inductance (from PCB to PCB using Intercon board): $L_{CE,PCB}$

Resistance of Intercon boards (from PCB to PCB using Intercon board): $R_{CE,PCB}$

Mounting torque (M): Screw M4 and M5

Terminal connection torque (M): Screw M6

Weight (G): 710 g
Buck operation

Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3)

Figure 1

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

\[t_{p} = 350 \ \mu s \]
\[T_j = 25 \ ^\circ C \]

\[V_{CE} \text{ from } 7 \text{ V to } 17 \text{ V in steps of } 1 \text{ V} \]

Figure 2

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

\[t_{p} = 350 \ \mu s \]
\[T_j = 125 \ ^\circ C \]

\[V_{CE} \text{ from } 7 \text{ V to } 17 \text{ V in steps of } 1 \text{ V} \]

Figure 3

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

Figure 4

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

\[t_{p} = 350 \ \mu s \]
\[V_{CE} = 10 \ \text{V} \]

Typical output characteristics

- **IGBT**:
 - \[I_C = f(V_{CE}) \]
 - At
 - \[t_{p} = 350 \ \mu s \]
 - \[T_j = 25 \ ^\circ C \]
 - \[V_{CE} \text{ from } 7 \text{ V to } 17 \text{ V in steps of } 1 \text{ V} \]

- **FWD**:
 - \[I_C = f(V_{GE}) \]
 - At
 - \[t_{p} = 350 \ \mu s \]
 - \[V_{CE} = 10 \ \text{V} \]
Figure 5

Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_j = 25 / 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{goln} = 1 \) Ω
- \(R_{goff} = 1 \) Ω

Figure 6

Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_j = 25 / 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_c = 400 \) A

Figure 7

Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_j = 25 / 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{goln} = 1 \) Ω

Figure 8

Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

- \(T_j = 25 / 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_c = 400 \) A
Buck operation
Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3)

Figure 9
Typical switching times as a function of collector current

With an inductive load at

\[T_J = 125 \, ^\circ\text{C} \]

\[V_{CE} = 350 \, \text{V} \]

\[V_{GE} = \pm 15 \, \text{V} \]

\[R_{gon} = 1 \, \Omega \]

\[R_{goff} = 1 \, \Omega \]

Figure 10
Typical switching times as a function of gate resistor

With an inductive load at

\[T_J = 125 \, ^\circ\text{C} \]

\[V_{CE} = 350 \, \text{V} \]

\[V_{GE} = \pm 15 \, \text{V} \]

\[I_C = 400 \, \text{A} \]

Figure 11
Typical reverse recovery time as a function of collector current

At

\[T_J = 25 / 125 \, ^\circ\text{C} \]

\[V_{CE} = 350 \, \text{V} \]

\[V_{GE} = \pm 15 \, \text{V} \]

\[R_{gon} = 1 \, \Omega \]

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor

At

\[T_J = 25 / 125 \, ^\circ\text{C} \]

\[V_{B} = 350 \, \text{V} \]

\[I_B = 400 \, \text{A} \]

\[V_{GE} = \pm 15 \, \text{V} \]
Buck operation
Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3)

Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

At
- \(T_j = 25 / 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω

At
- \(T_j = 25 / 125 \) °C
- \(V_{BE} = 350 \) V
- \(I_F = 400 \) A
- \(V_{GE} = \pm 15 \) V

Copyright Vincotech
Buck operation
Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3)

Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current $\frac{dI}{dt},\frac{dI}{dt}$ as $f(Ic)$

![Graph showing typical rate of fall of forward and reverse recovery current as a function of collector current.]

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor $\frac{dI}{dt},\frac{dI}{dt}$ as $f(R_{gon})$

![Graph showing typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor.]

Figure 19
IGBT transient thermal impedance as a function of pulse width $Z_{thJH} = f(t_p)$

![Graph showing IGBT transient thermal impedance as a function of pulse width.]

Figure 20
FWD transient thermal impedance as a function of pulse width $Z_{thJH} = f(t_p)$

![Graph showing FWD transient thermal impedance as a function of pulse width.]

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>τ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>2.9E+00</td>
</tr>
<tr>
<td>0.02</td>
<td>6.6E-01</td>
</tr>
<tr>
<td>0.02</td>
<td>1.3E-01</td>
</tr>
<tr>
<td>0.04</td>
<td>3.1E-02</td>
</tr>
<tr>
<td>0.01</td>
<td>5.0E-03</td>
</tr>
<tr>
<td>0.01</td>
<td>5.6E-04</td>
</tr>
</tbody>
</table>

FWD thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>τ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>5.1E+00</td>
</tr>
<tr>
<td>0.04</td>
<td>1.1E+00</td>
</tr>
<tr>
<td>0.06</td>
<td>1.8E-01</td>
</tr>
<tr>
<td>0.11</td>
<td>3.7E-02</td>
</tr>
<tr>
<td>0.04</td>
<td>1.1E-02</td>
</tr>
<tr>
<td>0.02</td>
<td>1.8E-03</td>
</tr>
</tbody>
</table>
Buck operation
Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3)

Figure 21
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

Figure 22
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]
\[V_{GE} = 15 \, \text{V} \]

Figure 23
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

Figure 24
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]
Buck operation
Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3)

Figure 29
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At
\[T_j = 125 \, ^\circ C \]
\[R_{g_{on}} = 1 \, \Omega \]
\[R_{goff} = 1 \, \Omega \]
Boost operation
Neutral Point IGBT (T2, T3) & Half Bridge FWD (D1, D4)

Figure 1
Typical output characteristics
$I_C = f(V_{CE})$

![Graph of I_C vs V_{CE}](graph1)

At
$t_p = 350 \mu s$
$T_j = 25 ^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics
$I_C = f(V_{GE})$

![Graph of I_C vs V_{GE}](graph2)

At
$t_p = 350 \mu s$
$T_j = 125 ^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics
$I_C = f(V_{CE})$

![Graph of I_C vs V_{CE}](graph3)

At
$t_p = 350 \mu s$
$V_{CE} = 10 V$

Figure 4
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$

![Graph of I_F vs V_F](graph4)

At
$t_p = 350 \mu s$

Copyright Vincotech
Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4))

Figure 5
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]

With an inductive load at
\[T_j = 25 \text{ / } 125 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 2 \, \Omega \]
\[R_{goff} = 2 \, \Omega \]

Figure 6
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
\[T_j = 25 \text{ / } 125 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[I_C = 300 \, \text{A} \]

Figure 7
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_C) \]

Figure 8
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
\[T_j = 25 \text{ / } 125 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[I_C = 300 \, \text{A} \]
Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4)

Figure 9
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
- \(T_J = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{CE} = \pm 15 \) V
- \(R_{gon} = 2 \) Ω
- \(R_{goff} = 2 \) Ω

Figure 10
Typical switching times as a function of gate resistor
\[t = f(R_G) \]

With an inductive load at
- \(T_J = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{CE} = \pm 15 \) V
- \(I_C = 300 \) A

Figure 11
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
- \(T_J = 25 / 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{CE} = \pm 15 \) V
- \(R_{gon} = 2 \) Ω

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{gon}) \]

At
- \(T_J = 25 / 125 \) °C
- \(V_{CE} = 350 \) V
- \(I_T = 300 \) A
- \(V_{GE} = \pm 15 \) V
Boost operation

Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4)

Figure 13
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

![Graph showing typical reverse recovery charge as a function of collector current.](image)

At
- \(T_j = 25 / 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 2 \) Ω

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

![Graph showing typical reverse recovery charge as a function of IGBT turn on gate resistor.](image)

At
- \(T_j = 25 / 125 \) °C
- \(V_{GE} = 350 \) V
- \(I_F = 300 \) A
- \(V_{GE} = \pm 15 \) V

Figure 15
Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

![Graph showing typical reverse recovery current as a function of collector current.](image)

At
- \(T_j = 25 / 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 2 \) Ω

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

![Graph showing typical reverse recovery current as a function of IGBT turn on gate resistor.](image)

At
- \(T_j = 25 / 125 \) °C
- \(V_{GE} = 350 \) V
- \(I_F = 300 \) A
- \(V_{GE} = \pm 15 \) V

copyright Vincotech

18

Revision: 1.2
Boost operation
Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4)

Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current $\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(Ic)$

At
$Tj = 25 / 125 ^\circ C$
$VGE = 350 V$
$VGE = \pm 15 V$
$R_{gon} = 2 \Omega$

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor $\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_{ton})$

At
$Tj = 25 / 125 ^\circ C$
$VGE = 350 V$
$Ir = 300 A$
$VGE = \pm 15 V$

Figure 19
IGBT transient thermal impedance as a function of pulse width $Z_{thJH} = f(t_p)$

$D = \frac{tp}{T}$
$R_{thJH} = 0.19 KW$

IGBT thermal model values
$R (C/W)$ $\tau (s)$
0.02 5.05
0.03 1.19
0.03 0.24
0.06 0.05
0.04 0.02
0.01 0.00

Figure 20
FWD transient thermal impedance as a function of pulse width $Z_{thJH} = f(t_p)$

$D = \frac{tp}{T}$
$R_{thJH} = 0.18 KW$

FWD thermal model values
$R (C/W)$ $\tau (s)$
0.02 4.17
0.03 0.86
0.05 0.15
0.06 0.03
0.01 0.01
0.01 0.00
Boost operation
Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4)

Figure 21 IGBT
Power dissipation as a function of heatsink temperature
$P_{\text{tot}} = f(T_h)$

At
$T_j = 175 \degree C$

Figure 22 IGBT
Collector current as a function of heatsink temperature
$I_C = f(T_h)$

At
$T_j = 175 \degree C$
$V_{GE} = 15 \ V$

Figure 23 FWD
Power dissipation as a function of heatsink temperature
$P_{\text{tot}} = f(T_h)$

At
$T_j = 175 \degree C$

Figure 24 FWD
Forward current as a function of heatsink temperature
$I_F = f(T_h)$

At
$T_j = 175 \degree C$
Figure 1

Thermistor

Typical NTC characteristic
as a function of temperature

\[R_T = f(T) \]
Switching Definitions Half Bridge

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{Jth}</td>
<td>1 Ω</td>
</tr>
</tbody>
</table>

Turn-off Switching Waveforms & definition of t_{off}, t_{Eoff}

- $V_{GE}(0\%) = -15$ V
- $V_{GE}(100\%) = 15$ V
- $V_{C}(100\%) = 700$ V
- $I_{C}(100\%) = 400$ A
- $t_{off} = 0.19$ µs
- $t_{Eoff} = 0.86$ µs

Turn-on Switching Waveforms & definition of t_{on}, t_{Eon}

- $V_{GE}(0\%) = -15$ V
- $V_{GE}(100\%) = 15$ V
- $V_{C}(100\%) = 700$ V
- $I_{C}(100\%) = 400$ A
- $t_{on} = 0.12$ µs
- $t_{Eon} = 0.24$ µs

Turn-off Switching Waveforms & definition of t_{f}

- $V_{C}(100\%) = 700$ V
- $I_{C}(100\%) = 400$ A
- $t_{f} = 0.07$ µs

Turn-on Switching Waveforms & definition of t_{r}

- $V_{C}(100\%) = 700$ V
- $I_{C}(100\%) = 400$ A
- $t_{r} = 0.02$ µs
Switching Definitions Half Bridge

Figure 5
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{\text{off}}(100\%) = 280$ kW
- $E_{\text{off}}(100\%) = 17.66$ mJ
- $t_{\text{Eoff}} = 0.86$ µs

Figure 6
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{\text{on}}(100\%) = 280$ kW
- $E_{\text{on}}(100\%) = 5.40$ mJ
- $t_{\text{Eon}} = 0.24$ µs

Figure 7
Turn-off Switching Waveforms & definition of t_{rr}

- $V_d(100\%) = 700$ V
- $I_d(100\%) = 400$ A
- $I_{\text{fmax}}(100\%) = -320$ A
- $t_{\text{rr}} = 0.27$ µs

copyright Vincotech

Revision: 1.2
Switching Definitions Half Bridge

Figure 6 Neutral Point FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

![Waveform diagram](image)

$I_d (100\%) = 400 \text{ A}$
$E_{rec} (100\%) = 30.81 \mu \text{C}$
$t_{Qrr} = 0.54 \mu \text{s}$

Figure 9 Neutral Point FWD
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

![Waveform diagram](image)

$P_{rec} (100\%) = 280 \text{ kW}$
$E_{rec} (100\%) = 7.81 \text{ mJ}$
$t_{Erec} = 0.54 \mu \text{s}$

Measurement circuits

Figure 10
Half Bridge stage switching measurement circuit

![Circuit diagram](image)
Switching Definitions Neutral Point

General conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>2 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>2 Ω</td>
</tr>
</tbody>
</table>

Figure 1: Neutral Point IGBT
Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}
(t_{Eoff} = integrating time for E_{off})

- $V_{CE} (0\%) = -15$ V
- $V_{CE} (100\%) = 15$ V
- $V_C (100\%) = 700$ V
- $I_C (100\%) = 300$ A
- $t_{doff} = 0.26$ μs
- $t_{Eoff} = 0.77$ μs

Figure 2: Neutral Point IGBT
Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}
(t_{Eon} = integrating time for E_{on})

- $V_{CE} (0\%) = -15$ V
- $V_{CE} (100\%) = 15$ V
- $V_C (100\%) = 700$ V
- $I_C (100\%) = 300$ A
- $t_{don} = 0.19$ μs
- $t_{Eon} = 0.28$ μs

Figure 3: Neutral Point IGBT
Turn-off Switching Waveforms & definition of t_f

- $V_C (100\%) = 700$ V
- $I_C (100\%) = 300$ A
- $t_f = 0.12$ μs

Figure 4: Neutral Point IGBT
Turn-on Switching Waveforms & definition of t_r

- $V_C (100\%) = 700$ V
- $I_C (100\%) = 300$ A
- $t_r = 0.03$ μs
Switching Definitions Neutral Point

Figure 5
Neutral Point IGBT

Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off}(100\%) = 210$ kW
- $E_{off}(100\%) = 14.03$ mJ
- $t_{Eoff} = 0.77$ µs

Figure 6
Neutral Point IGBT

Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on}(100\%) = 210$ kW
- $E_{on}(100\%) = 6.19$ mJ
- $t_{Eon} = 0.28$ µs

Figure 7
Neutral Point IGBT

Turn-off Switching Waveforms & definition of t_{rr}

- $V_d(100\%) = 700$ V
- $I_d(100\%) = 300$ A
- $I_{rr max}(100\%) = -385$ A
- $t_{rr} = 0.15$ µs
Switching Definitions Neutral Point

Figure 6 Half Bridge FWD

Turn-on Switching Waveforms & definition of t_{Qrr}

(t_{Qrr} = integrating time for Q_{rr})

![Waveform graph showing I_d, Q_{rr}, and t_{Qrr}](image)

- $I_d(100\%) = 300$ A
- $Q_{rr}(100\%) = 38.18$ µC
- $t_{Qrr} = 1.00$ µs

Figure 9 Half Bridge FWD

Turn-on Switching Waveforms & definition of t_{Erec}

(t_{Erec} = integrating time for E_{rec})

![Waveform graph showing P_{rec}, E_{rec}, and t_{Erec}](image)

- $P_{rec}(100\%) = 210$ kW
- $E_{rec}(100\%) = 9.72$ mJ
- $t_{Erec} = 1.00$ µs

Measurement circuits

Figure 10

Neutral Point stage switching measurement circuit

![Circuit diagram](image)
Ordering Code and Marking - Outline - Pinout
Ordering Code and Marking - Outline - Pinout

Outline

<table>
<thead>
<tr>
<th>Pin</th>
<th>X1</th>
<th>Y1</th>
<th>Function</th>
<th>Group</th>
<th>screw</th>
<th>X2</th>
<th>Y2</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>4.5</td>
<td>78.65</td>
<td>G1-1</td>
<td>T1</td>
<td>3.1</td>
<td>-37.4</td>
<td>89.8</td>
<td>DC+</td>
</tr>
<tr>
<td>1.2</td>
<td>4.5</td>
<td>81.55</td>
<td>E1-1</td>
<td>T1</td>
<td>3.2</td>
<td>81.4</td>
<td>89.8</td>
<td>DC+</td>
</tr>
<tr>
<td>1.3</td>
<td>39.5</td>
<td>78.65</td>
<td>G1-2</td>
<td>T1</td>
<td>3.3</td>
<td>-37.4</td>
<td>65.2</td>
<td>CE</td>
</tr>
<tr>
<td>1.4</td>
<td>4.5</td>
<td>81.55</td>
<td>E1-2</td>
<td>T1</td>
<td>3.4</td>
<td>81.4</td>
<td>65.2</td>
<td>CE</td>
</tr>
<tr>
<td>1.5</td>
<td>1.95</td>
<td>68.4</td>
<td>E2-1</td>
<td>T2</td>
<td>3.5</td>
<td>-37.4</td>
<td>45.2</td>
<td>Phase</td>
</tr>
<tr>
<td>1.6</td>
<td>4.85</td>
<td>68.4</td>
<td>G2-1</td>
<td>T2</td>
<td>3.6</td>
<td>81.4</td>
<td>45.2</td>
<td>Phase</td>
</tr>
<tr>
<td>1.7</td>
<td>39.15</td>
<td>68.4</td>
<td>G2-2</td>
<td>T2</td>
<td>3.7</td>
<td>-37.4</td>
<td>20.6</td>
<td>DC-</td>
</tr>
<tr>
<td>1.8</td>
<td>42.05</td>
<td>68.4</td>
<td>E2-2</td>
<td>T2</td>
<td>3.8</td>
<td>81.4</td>
<td>20.6</td>
<td>DC-</td>
</tr>
<tr>
<td>1.9</td>
<td>-2.2</td>
<td>46</td>
<td>G3-1</td>
<td>T3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>-2.2</td>
<td>48.9</td>
<td>E3-1</td>
<td>T3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td>46.2</td>
<td>46</td>
<td>G3-2</td>
<td>T3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.12</td>
<td>46.2</td>
<td>48.9</td>
<td>E3-2</td>
<td>T3</td>
<td>2.1</td>
<td>0</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>1.13</td>
<td>-6.75</td>
<td>29.2</td>
<td>E4-1</td>
<td>T4</td>
<td>2.2</td>
<td>22</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>1.14</td>
<td>-6.75</td>
<td>32.1</td>
<td>G4-1</td>
<td>T4</td>
<td>2.3</td>
<td>44</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>1.15</td>
<td>50.75</td>
<td>29.2</td>
<td>E4-2</td>
<td>T4</td>
<td>2.4</td>
<td>0</td>
<td>110.4</td>
<td>DC+</td>
</tr>
<tr>
<td>1.16</td>
<td>50.75</td>
<td>32.1</td>
<td>G4-2</td>
<td>T4</td>
<td>2.5</td>
<td>22</td>
<td>110.4</td>
<td>Neutral</td>
</tr>
<tr>
<td>1.17</td>
<td>19.45</td>
<td>30.15</td>
<td>Desat-DC+</td>
<td>T5</td>
<td>2.6</td>
<td>44</td>
<td>110.4</td>
<td>DC-</td>
</tr>
<tr>
<td>1.18</td>
<td>24.55</td>
<td>30.15</td>
<td>Desat-DC+</td>
<td>T5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.19</td>
<td>19.45</td>
<td>44.65</td>
<td>Desat-GND</td>
<td>T5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td>24.55</td>
<td>44.65</td>
<td>Desat-GND</td>
<td>T5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.21</td>
<td>67.65</td>
<td>86.7</td>
<td>NTC</td>
<td>T5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.22</td>
<td>67.65</td>
<td>89.8</td>
<td>NTC</td>
<td>T5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power connections

Low current connections

Centerline of press-fit pinhead

convexity for each baseplate

only convex 0.25±0.15mm

Screw depth from PCB top

min. 7
max. 10
DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.