VINcoMNPC X4

Features
- Mixed-voltage NPC
- Low inductive
- High power screw interface
- Integrated DC-snubber capacitors

Target Applications
- Solar inverter
- UPS
- High speed motor drive

Types
- 70-W212NMA300SC-M208P

Maximum Ratings

$T_j = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Switch (T1, T4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>V_{CE}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_j = T_{j\max}$, $T_s = 80 , ^\circ C$</td>
<td>270</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{PSM}</td>
<td>I_s limited by $T_{j\max}$</td>
<td>900</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j\max}$, $T_s = 80 , ^\circ C$</td>
<td>646</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{CE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>$T_j \leq 150 , ^\circ C$, $V_{DC} = 15 , V$</td>
<td>10</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>V_{CE}</td>
<td></td>
<td>800</td>
<td>V</td>
</tr>
<tr>
<td>Turn off safe operating area (RBSOA)</td>
<td>I_{olim}</td>
<td>$V_{CE, \text{max}} = 1200 , V$, $T_j, T_{j\max} = 150 , ^\circ C$</td>
<td>600</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\max}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Diode (D2, D3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RSM}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j = T_{j\max}$, $T_s = 80 , ^\circ C$</td>
<td>244</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{FSM}</td>
<td>$I_s = 10 , ms$, sine halfwave</td>
<td>698</td>
<td>A</td>
</tr>
<tr>
<td>T²-value</td>
<td>t^2</td>
<td></td>
<td>2440</td>
<td>A²s</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{PFM}</td>
<td>$I_p = 1 , ms$, $T_j < 150 , ^\circ C$</td>
<td>600</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per FWD</td>
<td>P_{tot}</td>
<td>$T_j = T_{j\max}$, $T_s = 80 , ^\circ C$</td>
<td>357</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\max}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

* TJ = 25 °C, unless otherwise specified *

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Switch (T2, T3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>VCE</td>
<td>Tj = Tjmax</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>ICC</td>
<td>TJ = Tjmax</td>
<td>252</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>ICCRPM</td>
<td>TJ limited by Tjmax</td>
<td>900</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>Ptot</td>
<td>TJ = Tjmax</td>
<td>476</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>VGE</td>
<td>TJ ≤ 150 °C</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>EDC</td>
<td>TJ ≤ 150 °C</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td>Turn off safe operating area (RBSDA)</td>
<td>IDSS</td>
<td>VGS = 15 V</td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>Tjmax</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Buck Diode (D1, D4)				
Peak Repetitive Reverse Voltage	VBRM	TJ = Tjmax	1200	V
DC forward current	IF	TJ = Tjmax	222	A
Surge forward current	IFSM	TJ = 10ms, sin 180°	1720	A
T²-value	J²t	Tj = 150°C	3700	A²s
Repetitive peak forward current	IFDM	TJ limited by Tjmax	900	A
Power dissipation per PWD	Ptot	TJ = Tjmax	476	W
Maximum Junction Temperature	Tjmax		175	°C

| **DC link Capacitor** | | | | |
| Max. DC voltage | VMAX | TJ = 25°C | 630 | V |

General Module Properties				
Material of module baseplate			Cu	
Material of internal isolation			A203	

Thermal Properties				
Storage temperature	TS		-40...+125	°C
Operation temperature under switching condition	TOP		-40...+(Tjmax - 25)	°C

Isolation Properties				
Isolation voltage	VISO	DC Test Voltage*	6000	V
AC Voltage			2500	V
Creepage distance			min 12,7	mm
Clearance			min 12,7	mm
Comparative Tracking Index	CTI		>200	

*100% tested in production
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Switch (T1, T4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V (_{GE(th)})</td>
<td>V ({GE} = V ({CE})</td>
<td>0,012</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V (_{CEsat})</td>
<td>V ({CE} = V ({CE})</td>
<td>0,012</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl.</td>
<td>I (_{CES})</td>
<td></td>
<td>0</td>
<td>1200</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I (_{GEm})</td>
<td></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R (_{gon})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t (_{on})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>t (_{r})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t (_{off})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t (_{f})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E (_{on})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E (_{off})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C (_{iss})</td>
<td>V (_{CEO} = 1) MHz</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C (_{oss})</td>
<td>V (_{CEO} = 1) MHz</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q (_{G})</td>
<td></td>
<td>15</td>
<td>560</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>R (_{th(j-s)})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost Diode (D2, D3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FWD forward voltage</td>
<td>V (_{F})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I (_{br})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t (_{rr})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q (_{RRM})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(dI/dt) (_{br})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E (_{br})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>R (_{th(j-s)})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost Switch (T2, T3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V (_{GE(th)})</td>
<td>V ({GE} = V ({CE})</td>
<td>0,0048</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V (_{CEsat})</td>
<td>V ({CE} = V ({CE})</td>
<td>0,0048</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl.</td>
<td>I (_{CES})</td>
<td></td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I (_{GEm})</td>
<td></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R (_{gon})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t (_{on})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>t (_{r})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t (_{off})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t (_{f})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E (_{on})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E (_{off})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C (_{iss})</td>
<td>V (_{CEO} = 1) MHz</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C (_{oss})</td>
<td>V (_{CEO} = 1) MHz</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q (_{G})</td>
<td></td>
<td>15</td>
<td>480</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>R (_{th(j-s)})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Diode (D1, D4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_{FWD}</td>
<td></td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{r}</td>
<td></td>
<td>1200</td>
<td>25</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{p}</td>
<td>$R_{pn} = 1 \Omega$</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{r}</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{r}</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$(di/dt)_{pmax}$</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rr}</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>$t_{rr} = 0.8 \text{W/mK (P12)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC link Capacitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap value</td>
<td>C</td>
<td></td>
<td>2 \times 0.68</td>
<td>µF</td>
</tr>
<tr>
<td>Stray inductance of on board capacitors</td>
<td>ESL</td>
<td></td>
<td>26/2</td>
<td>nH</td>
</tr>
<tr>
<td>Series resistance of on board capacitors</td>
<td>ESR</td>
<td></td>
<td>14/2</td>
<td>mΩ</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>25</td>
<td>22000</td>
</tr>
<tr>
<td>Deviation of R_{vth}</td>
<td>ΔR</td>
<td>$R_{vth} = 1486 \Omega$</td>
<td>100</td>
<td>-12</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>25</td>
<td>200</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{25/50}$</td>
<td>Toler. ±3% ($V_{th(D1-D4)}$)</td>
<td>25</td>
<td>3950</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{25/50}$</td>
<td>Toler. ±3% ($V_{th(D1-D4)}$)</td>
<td>25</td>
<td>3996</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td>25</td>
<td>8</td>
</tr>
<tr>
<td>Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module inductance (from chips to PCB)</td>
<td>L_{core}</td>
<td></td>
<td>5</td>
<td>nH</td>
</tr>
<tr>
<td>Module inductance (from PCB to PCB using Intercon)</td>
<td>L_{core}</td>
<td></td>
<td>3</td>
<td>nH</td>
</tr>
<tr>
<td>Resistance of Intercon boards (from PCB to PCB using Intercon)</td>
<td>R_{OCEX}</td>
<td>$Tc=25^\circ\text{C}$, per switch</td>
<td>1.5</td>
<td>mΩ</td>
</tr>
<tr>
<td>Mounting torque</td>
<td>M</td>
<td>Screw M4 - mounting according to valid application note ($V_{In(A)X=H}$)</td>
<td>2</td>
<td>2.2</td>
</tr>
<tr>
<td>Mounting torque</td>
<td>M</td>
<td>Screw M5 - mounting according to valid application note ($V_{In(A)X=H}$)</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Terminal connection torque</td>
<td>M</td>
<td>Screw M5 - mounting according to valid application note ($V_{In(A)X=H}$)</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>Weight</td>
<td>G</td>
<td></td>
<td>710</td>
<td></td>
</tr>
</tbody>
</table>

copyright Vincotech 4 18 Jan. 2018 / Revision 6
Buck
half bridge IGBT and neutral point FWD

Figure 1. IGBT Typical output characteristics

\[I_C = f(V_{CE}) \]

At

\[t_p = 350 \ \mu s \]
\[T_j = 25 \ ^\circ C \]
\[V_{CE} \text{ from } 7 \ \text{V} \text{ to } 17 \ \text{V} \text{ in steps of } 1 \ \text{V} \]

Figure 2. IGBT Typical output characteristics

\[I_C = f(V_{CE}) \]

At

\[t_p = 350 \ \mu s \]
\[T_j = 125 \ ^\circ C \]
\[V_{CE} \text{ from } 7 \ \text{V} \text{ to } 17 \ \text{V} \text{ in steps of } 1 \ \text{V} \]

Figure 3. IGBT Typical transfer characteristics

\[I_C = f(V_{GE}) \]

At

\[t_p = 350 \ \mu s \]
\[T_j = 25 \ ^\circ C \]
\[T_j = T_{j\max} - 25 \ ^\circ C \]

Figure 4. FWD Typical FWD forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

\[t_p = 350 \ \mu s \]
\[V_{CE} = 10 \ \text{V} \]
\[T_j = 25 \ ^\circ C \]
\[T_j = T_{j\max} - 25 \ ^\circ C \]
Buck

half bridge IGBT and neutral point FWD

figure 5.
Typical switching energy losses as a function of collector current

\[E = f(I_c) \]

With an inductive load at

- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{CE} = \pm 15 \) V
- \(R_{gss} = 1 \) Ω
- \(R_{goff} = 1 \) Ω

figure 6.
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at

- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{CE} = \pm 15 \) V
- \(I_C = 300 \) A

figure 7.
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_c) \]

With an inductive load at

- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{CE} = \pm 15 \) V
- \(R_{gss} = 1 \) Ω

figure 8.
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at

- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{CE} = \pm 15 \) V
- \(I_C = 300 \) A
Buck

half bridge IGBT and neutral point FWD

figure 9.

Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(T_j = 125 \degree C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω
- \(R_{goff} = 1 \) Ω

figure 10.

Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at

- \(T_j = 125 \degree C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 300 \) A

figure 11.

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At

- \(T_j = 25/125 \degree C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω

figure 12.

Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At

- \(T_j = 25/125 \degree C \)
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
Buck

half bridge IGBT and neutral point FWD

figure 13. FWD

Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

- At \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω

figure 14. FWD

Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

- At \(T_j = 25/125 \) °C
- \(V_s = 350 \) V
- \(I_f = 300 \) A
- \(V_{GE} = \pm 15 \) V

figure 15. FWD

Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

- At \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_f = 300 \) A
- \(R_{gon} = 1 \) Ω

figure 16. FWD

Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

- At \(T_j = 25/125 \) °C
- \(V_s = 350 \) V
- \(I_f = 300 \) A
- \(V_{GE} = \pm 15 \) V
Buck
half bridge IGBT and neutral point FWD

figure 17. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
dI_o/dt, dI_{rec}/dt = f(I_C)
\]

Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[
dI_o/dt, dI_{rec}/dt = f(R_{gon})
\]

At
\[
T_j = 25/125 °C
V_{CE} = 350 V
V_{GE} = ±15 V
I_F = 300 A
R_{gon} = 1 Ω
\]

figure 19. IGBT
IGBT transient thermal impedance as a function of pulse width
\[
Z_{th(j-s)} = f(t_p)
\]

At
\[
D = t_p / T
R_{th(j-s)} = 0,15 K/W
\]

IGBT thermal model values
\[
R (K/W) \quad \text{Tau (s)}
\begin{align*}
4,1E-02 & \quad 3,0E+00 \\
3,4E-02 & \quad 4,9E-01 \\
4,4E-02 & \quad 5,7E-02 \\
1,8E-02 & \quad 1,4E-02 \\
9,1E-03 & \quad 5,7E-04
\end{align*}
\]

figure 20. FWD
FWD transient thermal impedance as a function of pulse width
\[
Z_{th(j-s)} = f(t_p)
\]

At
\[
D = t_p / T
R_{th(j-s)} = 0,27 K/W
\]

FWD thermal model values
\[
R (K/W) \quad \text{Tau (s)}
\begin{align*}
2,5E-02 & \quad 9,7E+00 \\
5,8E-02 & \quad 1,8E+00 \\
4,0E-02 & \quad 3,0E-01 \\
8,5E-02 & \quad 4,3E-02 \\
3,8E-02 & \quad 9,8E-03 \\
1,9E-02 & \quad 5,4E-04
\end{align*}
\]
Buck
half bridge IGBT and neutral point FWD

Figure 21. IGBT
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_s) \]

\[\begin{align*}
\text{At} & \quad T_j = 175 \degree C \\
\end{align*} \]

Figure 22. IGBT
Collector current as a function of heatsink temperature
\[I_C = f(T_s) \]

\[\begin{align*}
\text{At} & \quad T_j = 175 \degree C \\
V_{GE} & = 15 \ \text{V} \\
\end{align*} \]

Figure 23. FWD
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_s) \]

\[\begin{align*}
\text{At} & \quad T_j = 175 \degree C \\
\end{align*} \]

Figure 24. FWD
Forward current as a function of heatsink temperature
\[I_F = f(T_s) \]

\[\begin{align*}
\text{At} & \quad T_j = 175 \degree C \\
\end{align*} \]
Buck

half bridge IGBT and neutral point FWD

figure 25.

Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

figure 26.

Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At

- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{GE} = \pm 15 \) V
- \(T_j = T_{j\text{max}} \)

figure 27.

Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At

- \(I_C = 300 \) A

\(T_j = T_{j\text{max}}-25 \) °C

\(U_{\text{continuous}} = U_{\text{clamped}} \)

Switching mode: 3 level switching
boost
neutral point IGBT and half bridge FWD

Figure 1. IGBT
Typical output characteristics

\[I_C = f(V_{CE}) \]

At
\[t_p = 350 \ \mu s \]
\[T_j = 25 \ ^\circ C \]
\[V_{CE} \text{ from } 7 \text{ V to } 17 \text{ V in steps of } 1 \text{ V} \]

Figure 2. IGBT
Typical output characteristics

\[I_C = f(V_{CE}) \]

At
\[t_p = 350 \ \mu s \]
\[T_j = 125 \ ^\circ C \]
\[V_{CE} \text{ from } 7 \text{ V to } 17 \text{ V in steps of } 1 \text{ V} \]

Figure 3. IGBT
Typical transfer characteristics

\[I_C = f(V_{GE}) \]

At
\[t_p = 350 \ \mu s \]
\[T_j = 25 \ ^\circ C \]
\[T_j = T_{j\text{max}} - 25 \ ^\circ C \]

Figure 4. FWD
Typical FWD forward current as a function of forward voltage

\[I_F = f(V_F) \]

At
\[t_p = 350 \ \mu s \]
Boost
neutral point IGBT and half bridge FWD

figure 5.
Typical switching energy losses
as a function of collector current
\[E = \text{f}(I_C) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{CE} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω
- \(I_C = 300 \) A

figure 6.
Typical switching energy losses
as a function of gate resistor
\[E = \text{f}(R_G) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{CE} = \pm 15 \) V
- \(I_C = 300 \) A

figure 7.
Typical reverse recovery energy loss
as a function of collector current
\[E_{rec} = \text{f}(I_C) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{CE} = \pm 15 \) V
- \(R_{gon} = 1 \) Ω

figure 8.
Typical reverse recovery energy loss
as a function of gate resistor
\[E_{rec} = \text{f}(R_G) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{CE} = \pm 15 \) V
- \(I_C = 300 \) A
Boost
neutral point IGBT and half bridge FWD

figure 9. IGBT
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
\[T_j = 125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 1 \, \Omega \]
\[R_{goff} = 1 \, \Omega \]

figure 10. IGBT
Typical switching times as a function of gate resistor
\[t = f(R_g) \]

With an inductive load at
\[T_j = 125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[I_C = 300 \, A \]

figure 11. FWD
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 1 \, \Omega \]

figure 12. FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{gon}) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_A = 350 \, V \]
\[I_f = 300 \, A \]
\[V_{GE} = \pm 15 \, V \]
Boost
neutral point IGBT and half bridge FWD

figure 13. FWD
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

figure 14. FWD
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{g(on)}) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{g(on)} = 1 \) Ω

figure 15. FWD
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

figure 16. FWD
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{g(on)}) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_f = 300 \) A
- \(V_{GE} = \pm 15 \) V

copyright Vincotech 2018 / Revision 6
Boost
neutral point IGBT and half bridge FWD

figure 17. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
d
dI0/dt, dIrec/dt = f(Ic)

At
Tj = 25/125 °C
Vce = 350 V
Vce < ±15 V
Rgon = 1 Ω

figure 18. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
d
dI0/dt, dIrec/dt = f(Rgon)

At
Tj = 25/125 °C
Vce = 350 V
Ig = 300 A
Vce < ±15 V

figure 19. IGBT
IGBT transient thermal impedance as a function of pulse width
Zth(j-s) = f(tp)

At
D = tp / T
Rth(j-s) = 0,20 K/W

figure 20. FWD
FWD transient thermal impedance as a function of pulse width
Zth(j-s) = f(tp)

At
D = tp / T
Rth(j-s) = 0,20 K/W

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3E-02</td>
<td>9,7E+00</td>
</tr>
<tr>
<td>6,4E-02</td>
<td>1,9E+00</td>
</tr>
<tr>
<td>2,8E-02</td>
<td>3,6E-01</td>
</tr>
<tr>
<td>5,9E-02</td>
<td>4,3E-02</td>
</tr>
<tr>
<td>1,5E-02</td>
<td>8,0E-03</td>
</tr>
<tr>
<td>1,1E-02</td>
<td>4,7E-04</td>
</tr>
</tbody>
</table>

FWD thermal model values

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2E-02</td>
<td>1,0E+01</td>
</tr>
<tr>
<td>4,0E-02</td>
<td>1,6E+00</td>
</tr>
<tr>
<td>4,5E-02</td>
<td>3,0E-01</td>
</tr>
<tr>
<td>6,9E-02</td>
<td>4,5E-02</td>
</tr>
<tr>
<td>2,0E-02</td>
<td>8,9E-03</td>
</tr>
<tr>
<td>1,3E-02</td>
<td>8,0E-04</td>
</tr>
</tbody>
</table>
Boost
neutral point IGBT and half bridge FWD

figure 21.

<table>
<thead>
<tr>
<th>Power dissipation as a function of heatsink temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{tot} = f(T_s)$</td>
</tr>
</tbody>
</table>

![Graph](image)

At

$T_j = 175 ^\circ C$

figure 22.

<table>
<thead>
<tr>
<th>Collector current as a function of heatsink temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_C = f(T_s)$</td>
</tr>
</tbody>
</table>

![Graph](image)

At

$T_j = 175 ^\circ C$

figure 23.

<table>
<thead>
<tr>
<th>Power dissipation as a function of heatsink temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{tot} = f(T_s)$</td>
</tr>
</tbody>
</table>

![Graph](image)

At

$T_j = 175 ^\circ C$

figure 24.

<table>
<thead>
<tr>
<th>Forward current as a function of heatsink temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_F = f(T_s)$</td>
</tr>
</tbody>
</table>

![Graph](image)

At

$T_j = 175 ^\circ C$

Vincotech

copyright Vincotech 17 18 Jan. 2018 / Revision 6
figure 25. IGBT
Reverse bias safe operating area

$I_C = f(V_{CE})$

At $T_j = T_{j,max} - 25 \degree C$
U_{cc,minus} = U_{cc,plus}
Switching mode : 3 level switching
Thermistor

figure 1. Thermistor
Typical NTC characteristic
as a function of temperature
$R = f(T)$
Switching Definitions Buck IGBT

General conditions

<table>
<thead>
<tr>
<th>T_J</th>
<th>$125 , ^\circ C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{on}</td>
<td>$1 , \Omega$</td>
</tr>
<tr>
<td>R_{off}</td>
<td>$1 , \Omega$</td>
</tr>
</tbody>
</table>

figure 1. IGBT

Turn-off Switching Waveforms & definition of t_{doff} t_{Eoff}

($t_{doff} = \text{integrating time for } E_{off}$)

- $V_{CE} (0\%) = -15 \, V$
- $V_{CE} (100\%) = 350 \, V$
- $I_C (100\%) = 400 \, A$
- $t_{doff} = 0.32 \, \mu s$
- $t_{Eoff} = 1.04 \, \mu s$

figure 2. IGBT

Turn-on Switching Waveforms & definition of t_{don} t_{Eon}

($t_{don} = \text{integrating time for } E_{on}$)

- $V_{CE} (0\%) = -15 \, V$
- $V_{CE} (100\%) = 350 \, V$
- $I_C (100\%) = 400 \, A$
- $t_{don} = 0.21 \, \mu s$
- $t_{Eon} = 0.54 \, \mu s$

figure 3. IGBT

Turn-off Switching Waveforms & definition of t_f

- $V_C (100\%) = 350 \, V$
- $I_C (100\%) = 400 \, A$
- $t_f = 0.08 \, \mu s$

figure 4. IGBT

Turn-on Switching Waveforms & definition of t_r

- $V_C (100\%) = 350 \, V$
- $I_C (100\%) = 400 \, A$
- $t_r = 0.05 \, \mu s$

copyright Vincotech 20 18 Jan. 2018 / Revision 6
Switching Definitions Buck IGBT

figure 5. Turn-off Switching Waveforms & definition of $t_{E\text{off}}$

- P_{off} (100%) = 140 kW
- E_{off} (100%) = 15.62 mJ
- $t_{E\text{off}}$ = 1.04 μs

figure 6. Turn-on Switching Waveforms & definition of $t_{E\text{on}}$

- P_{on} (100%) = 140 kW
- E_{on} (100%) = 11.38 mJ
- $t_{E\text{on}}$ = 0.54 μs

figure 7. FWD Turn-off Switching Waveforms & definition of t_{rr}

- V_d (100%) = 350 V
- I_d (100%) = 400 A
- I_{MAX} (100%) = -217 A
- t_{rr} = 0.27 μs
Switching Definitions Buck IGBT

figure 8. FWD Turn-on Switching Waveforms & definition of $t_{Q_{rr}}$
($t_{Q_{rr}}$ = integrating time for Q_{rr})

- I_d (100%) = 400 A
- Q_{rr} (100%) = 25.32 μC
- $t_{Q_{rr}}$ = 0.58 μs

figure 9. FWD Turn-on Switching Waveforms & definition of $t_{E_{rec}}$
($t_{E_{rec}}$ = integrating time for E_{rec})

- P_{rec} (100%) = 140 kW
- E_{rec} (100%) = 5.33 mJ
- $t_{E_{rec}}$ = 0.58 μs

Buck IGBT switching measurement circuit

figure 10. Buck IGBT switching measurement circuit diagram.
Switching Definitions Boost IGBT

General conditions

General Conditions

- **$T_J = 125 \, ^\circ C$**
- **$R_{ON} = 1 \, \Omega$**
- **$R_{OFF} = 1 \, \Omega$**

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

- **$V_{CE} (0\%) = -15 \, V$**
- **$V_{CE} (100\%) = 350 \, V$**
- **$I_C (100\%) = 302 \, A$**
- **$t_{doff} = 0.23 \, \mu s$**
- **$t_{Eoff} = 0.58 \, \mu s$**

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

- **$V_{CE} (0\%) = -15 \, V$**
- **$V_{CE} (100\%) = 350 \, V$**
- **$I_C (100\%) = 302 \, A$**
- **$t_{don} = 0.19 \, \mu s$**
- **$t_{Eon} = 0.38 \, \mu s$**
Switching Definitions Boost IGBT

Figure 5. IGBT
Turn-off Switching Waveforms & definition of \(t_{E_{\text{off}}} \)

\[
P_{\text{off}}(100\%) = 106 \, \text{kW}

E_{\text{off}}(100\%) = 11,52 \, \text{mJ}

\(t_{E_{\text{off}}} = 0,58 \, \mu\text{s} \)

Figure 6. IGBT
Turn-on Switching Waveforms & definition of \(t_{E_{\text{on}}} \)

\[
P_{\text{on}}(100\%) = 106 \, \text{kW}

E_{\text{on}}(100\%) = 13,39 \, \text{mJ}

\(t_{E_{\text{on}}} = 0,38 \, \mu\text{s} \)

Figure 7. FWD
Turn-off Switching Waveforms & definition of \(t_{rr} \)

\[
V_d(100\%) = 350 \, \text{V}

I_d(100\%) = 302 \, \text{A}

I_{\text{SOE}}(100\%) = -384 \, \text{A}

\(t_{rr} = 0,15 \, \mu\text{s} \)
Switching Definitions Boost IGBT

figure 8. Turn-on Switching Waveforms & definition of t_{Qrr}

Q_{rr} (100%) = 35.60 μC
$t_{Qrr} = 0.33 \mu s$

$I_d (100\%) = 302\, \text{A}$

figure 9. Turn-on Switching Waveforms & definition of t_{Erec}

E_{rec} (100%) = 8.89 mJ
$t_{Erec} = 0.33 \mu s$

$P_{rec} (100\%) = 106\, \text{kW}$

Boost IGBT switching measurement circuit

figure 10.
70-W212NMA300SC-M208P datasheet

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Name</th>
<th>Date code</th>
<th>Lot</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vincotech</td>
<td>UL & VIN</td>
<td>LLLLL</td>
<td>SSSS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Data code</th>
<th>UL & VIN</th>
<th>Lot</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-W612M3A300SC-M208P</td>
<td>WWYY</td>
<td>LLLLL</td>
<td>SSSS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Data code</th>
<th>UL & VIN</th>
<th>Lot</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-W612M3A300SC-M208P+/3</td>
<td>WWYY</td>
<td>LLLLL</td>
<td>SSSS</td>
<td></td>
</tr>
</tbody>
</table>

Outline

<table>
<thead>
<tr>
<th>Pin</th>
<th>X1</th>
<th>Y1</th>
<th>Function</th>
<th>X4</th>
<th>Y4</th>
<th>Capacitor</th>
<th>X5</th>
<th>Y5</th>
<th>Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>4.5</td>
<td>78.65</td>
<td>G1-1</td>
<td>4.1</td>
<td>-0.75</td>
<td>16.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>4.5</td>
<td>81.55</td>
<td>E1-1</td>
<td>4.2</td>
<td>44.8</td>
<td>16.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>39.5</td>
<td>78.65</td>
<td>G1-2</td>
<td>4.3</td>
<td>-0.3</td>
<td>93.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>39.5</td>
<td>81.55</td>
<td>E1-2</td>
<td>4.4</td>
<td>44.8</td>
<td>93.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>1.95</td>
<td>68.4</td>
<td>E2-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>4.85</td>
<td>68.4</td>
<td>G2-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>39.15</td>
<td>68.4</td>
<td>G2-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>42.05</td>
<td>68.4</td>
<td>E2-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>-1.2</td>
<td>46</td>
<td>G3-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>-2.2</td>
<td>48.9</td>
<td>E3-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td>46.2</td>
<td>46</td>
<td>G3-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.12</td>
<td>46.2</td>
<td>48.9</td>
<td>E3-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.13</td>
<td>-6.75</td>
<td>29.2</td>
<td>E4-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.14</td>
<td>-6.75</td>
<td>32.1</td>
<td>E4-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.15</td>
<td>50.75</td>
<td>29.2</td>
<td>G4-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.16</td>
<td>50.75</td>
<td>32.1</td>
<td>G4-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.17</td>
<td>19.45</td>
<td>30.15</td>
<td>Desat-DC+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.18</td>
<td>24.55</td>
<td>30.15</td>
<td>Desat-DC+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.19</td>
<td>19.45</td>
<td>44.65</td>
<td>Desat-GND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td>24.55</td>
<td>44.65</td>
<td>Desat-GND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.21</td>
<td>67.65</td>
<td>86.7</td>
<td>NTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.22</td>
<td>67.65</td>
<td>89.8</td>
<td>NTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power interconnections

<table>
<thead>
<tr>
<th>M6 screw</th>
<th>X2</th>
<th>Y2</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>0</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>2.2</td>
<td>22</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>2.3</td>
<td>44</td>
<td>0</td>
<td>Phase</td>
</tr>
<tr>
<td>2.4</td>
<td>0</td>
<td>110.4</td>
<td>DC+</td>
</tr>
<tr>
<td>2.5</td>
<td>22</td>
<td>110.4</td>
<td>Neutral</td>
</tr>
<tr>
<td>2.6</td>
<td>44</td>
<td>110.4</td>
<td>DC-</td>
</tr>
</tbody>
</table>

Low current connections

<table>
<thead>
<tr>
<th>M4 screw</th>
<th>X3</th>
<th>Y3</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>-37.4</td>
<td>89.8</td>
<td>DC+</td>
</tr>
<tr>
<td>3.2</td>
<td>81.4</td>
<td>89.8</td>
<td>DC+</td>
</tr>
<tr>
<td>3.3</td>
<td>-37.4</td>
<td>65.2</td>
<td>CE</td>
</tr>
<tr>
<td>3.4</td>
<td>81.4</td>
<td>65.2</td>
<td>CE</td>
</tr>
<tr>
<td>3.5</td>
<td>-37.4</td>
<td>45.2</td>
<td>Phase</td>
</tr>
<tr>
<td>3.6</td>
<td>81.4</td>
<td>45.2</td>
<td>Phase</td>
</tr>
<tr>
<td>3.7</td>
<td>-37.4</td>
<td>20.6</td>
<td>DC-</td>
</tr>
<tr>
<td>3.8</td>
<td>81.4</td>
<td>20.6</td>
<td>DC-</td>
</tr>
</tbody>
</table>
Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, T4</td>
<td>IGBT</td>
<td>1200 V</td>
<td>300 A</td>
<td>Buck Switch</td>
<td></td>
</tr>
<tr>
<td>T2, T3</td>
<td>IGBT</td>
<td>600 V</td>
<td>300 A</td>
<td>Boost Switch</td>
<td></td>
</tr>
<tr>
<td>D2, D3</td>
<td>FWD</td>
<td>600 V</td>
<td>300 A</td>
<td>Buck Diode</td>
<td></td>
</tr>
<tr>
<td>D1, D4</td>
<td>FWD</td>
<td>1200 V</td>
<td>300 A</td>
<td>Boost Diode</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Capacitor</td>
<td>630 V</td>
<td></td>
<td>DC Link Capacitor</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>NTC</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Driver pins for parallel devices are not connected inside the module!

Gx-1 to Gx-2 and Ex-1 to Ex-2 shall be connected on customer PCB!
Where x = 1 to 4
Packaging instruction

<table>
<thead>
<tr>
<th>Standard packaging quantity (SPQ)</th>
<th>variable*</th>
<th>>SPQ</th>
<th>Standard</th>
<th><SPQ</th>
<th>Sample</th>
</tr>
</thead>
</table>

Handling instruction

Handling instructions for VINco X4 packages see vincotech.com website.

Package data

Package data for VINco X4 packages see vincotech.com website.

UL recognition and file number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

*10 without PCM
6 with PCM

DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.