Flow 2 MNPC

Features
- Mixed voltage NPC topology
- Reactive power capability
- Low inductance layout
- Split output
- Common collector neutral connection

Target Applications
- Solar inverter
- UPS
- Active frontend

Types
- 30-FT12NMA160SH02-M669F28
- 30-PT12NMA160SH02-M669F28Y

Maximum Ratings

\[T_j = 25 \, ^\circ C, \text{ unless otherwise specified} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>(V_{RPM})</td>
<td>(T_j = T_{jmax}) (T_s = 80 , ^\circ C)</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_s)</td>
<td>(T_j = T_{jmax}) (T_s = 80 , ^\circ C)</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>Maximum repetitive forward current</td>
<td>(I_{FPM})</td>
<td>(T_s = 10 , \mu s)</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>I't-value</td>
<td>(I')</td>
<td>(T_j = T_{jmax})</td>
<td>40</td>
<td>A's</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_s = 80 , ^\circ C)</td>
<td>40</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{jmax})</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Buck Inverse Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>(V_{CE})</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>(I_C)</td>
<td>(T_j = T_{jmax}) (T_s = 80 , ^\circ C)</td>
<td>156</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{CPM})</td>
<td>(T_s) limited by (T_{jmax})</td>
<td>480</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>(V_{CE(max)} = 1200 , V, T_s \leq 150 , ^\circ C)</td>
<td></td>
<td>320</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_s = 80 , ^\circ C)</td>
<td>398</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>(V_{GE})</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>(I_{SC})</td>
<td>(T_\theta \leq 150 , ^\circ C) (V_{ES} = 15 , V)</td>
<td>10</td>
<td>µs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{jmax})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

Buck Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>$T_i = T_{j \text{max}}$</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_i = T_{j \text{max}}$</td>
<td>96</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{j \text{max}}$</td>
<td>129</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j \text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost Switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>V_{CE}</td>
<td>$T_i \leq 150 °C$</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_i \leq 150 °C$</td>
<td>94</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{DSM}</td>
<td>$T_i \leq 150 °C$</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>V_{DS}</td>
<td>$V_{DS} \leq 600 V$, $T_i \leq 175 °C$</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{j \text{max}}$</td>
<td>174</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>$T_i \leq 150 °C$</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{pc}</td>
<td>$V_{RG} = 15 V$</td>
<td>6</td>
<td>μs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j \text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost Inverse Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>$T_i = T_{j \text{max}}$</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_i = T_{j \text{max}}$</td>
<td>38</td>
<td>A</td>
</tr>
<tr>
<td>Maximum repetitive forward current</td>
<td>I_{CRM}</td>
<td>$T_i \leq 150 °C$</td>
<td>60</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{j \text{max}}$</td>
<td>65</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j \text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>$T_i = T_{j \text{max}}$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_i = T_{j \text{max}}$</td>
<td>65</td>
<td>A</td>
</tr>
<tr>
<td>Nonrepetitive peak surge current</td>
<td>I_{FSM}</td>
<td>$t_p \leq 8,3 ms$</td>
<td>650</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{j \text{max}}$</td>
<td>128</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j \text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40...+(T_{j \text{max}} - 25)</td>
<td>°C</td>
</tr>
</tbody>
</table>

Isolation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation voltage</td>
<td>V_u</td>
<td>$t_p = 2 s$</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>AC Voltage</td>
<td></td>
<td>$t_p = 1 min$</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>CTI</td>
<td></td>
<td>>200</td>
<td></td>
</tr>
</tbody>
</table>

* 100 % Tested in production
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td></td>
<td>$0,006$</td>
<td>25</td>
</tr>
<tr>
<td>Threshold voltage (for power loss calc. only)</td>
<td>V_{th}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope resistance (for power loss calc. only)</td>
<td>r_t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_r</td>
<td>1200</td>
<td>25</td>
<td>$1,57$</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buck Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V_{th}</td>
<td>$R_{th}=4 \Omega$</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{ce}</td>
<td>$R_{th}=4 \Omega$</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I_{CC}</td>
<td>0</td>
<td>1200</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{ge}</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gin}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>± 15</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>$R_{on}=4 \Omega$</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_g</td>
<td>15</td>
<td>960</td>
<td>160</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_F</td>
<td></td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RRM}</td>
<td>$R_{on}=4 \Omega$</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>$R_{on}=4 \Omega$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$\frac{\Delta I}{\Delta t}_{\text{max}}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>$R_{on}=4 \Omega$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

copyright Vincotech

3 06 Sep. 2017 / Revision 5
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{ES} = V_{CE}$</td>
<td>0,0016</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{ces}</td>
<td>15</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off diode</td>
<td>I_{CES}</td>
<td>0</td>
<td>650</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{ss}</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gg}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td></td>
<td>15</td>
<td>350</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>F_{on}</td>
<td></td>
<td>25</td>
<td>103</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>F_{off}</td>
<td></td>
<td>25</td>
<td>103</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td></td>
<td>620</td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td></td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td></td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{CE}</td>
<td>phase-change material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boost Inverse Diode							
Diode forward voltage	V_{F}	30	25	1,23	1,64	1,87	V
Thermal resistance junction to sink	$R_{th(j-s)}$	phase-change material				K/W	

Boost Diode							
Diode forward voltage	V_{F}	60	25	1,50	2,47	3,30	V
Reverse leakage current	I_{F}	1200				µA	
Peak reverse recovery current	I_{REX}					A	
Reverse recovery time	t_{r}					ms	
Reverse recovered charge	Q_{R}					µC	
Peak rate of fall of recovery current	$(\frac{di}{dt})_{MAX}$					A/µs	
Reverse recovery energy	E_{RE}					mJ	
Thermal resistance junction to sink	$R_{th(j-s)}$	phase-change material				K/W	

Thermistor						
Rated resistance	R		25	22000	Ω	
Deviation of R_{th}	ΔR_{th}	$R_{th} = 1486 \Omega$	100	-12	+12	%
Power dissipation	P		25	200		mW
Power dissipation constant			25	2		mW/K
B-value	$B_{(25/50)}$	Tol. ±3%	25	3950		K
B-value	$B_{(25/120)}$	Tol. ±3%	25	3998		K
Vincotech NTC Reference						B

copyright Vincotech
Buck Characteristics

figure 1. Typical output characteristics

\[I_c = f(V_{ce}) \]

At

- \(t_p = 250 \ \mu s \)
- \(T_j = 25 \ ^\circ C \)
- \(V_{ce} \) from 7 V to 17 V in steps of 1 V

figure 2. Typical output characteristics

\[I_c = f(V_{ce}) \]

At

- \(t_p = 250 \ \mu s \)
- \(T_j = 125 \ ^\circ C \)
- \(V_{ce} \) from 7 V to 17 V in steps of 1 V

figure 3. Typical transfer characteristics

\[I_c = f(V_{ge}) \]

figure 4. Typical FWD forward current as a function of forward voltage

\[I_f = f(V_f) \]

At

- \(T_j = 25/125 \ ^\circ C \)
- \(t_p = 250 \ \mu s \)
- \(V_{ce} = 10 \ \text{V} \)
- \(T_j = 25/125 \ ^\circ C \)
Buck Characteristics

figure 5. IGBT
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(I_C = 150 \) A

figure 6. IGBT
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 150 \) A

figure 7. FWD
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_C) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

figure 8. FWD
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 150 \) A
Buck Characteristics

figure 9. IGBT
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
- \(T_J = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(R_{goff} = 4 \) Ω

figure 10. IGBT
Typical switching times as a function of gate resistor
\[t = f(R_G) \]

With an inductive load at
- \(T_J = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 150 \) A

figure 11. FWD
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

figure 12. FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{gon}) \]

At
- \(T_J = 25/125 \) °C
- \(V_k = 350 \) V
- \(I_F = 150 \) A
- \(V_{GE} = \pm 15 \) V
Buck Characteristics

Figure 13. Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At

\[T_j = \frac{25}{125} \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 4 \, \Omega \]

Figure 14. Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

At

\[T_j = \frac{25}{125} \, ^\circ\text{C} \]
\[V_s = 350 \, \text{V} \]
\[I_f = 150 \, \text{A} \]
\[V_{GE} = \pm 15 \, \text{V} \]

Figure 15. Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

Figure 16. Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

At

\[T_j = \frac{25}{125} \, ^\circ\text{C} \]
\[V_s = 350 \, \text{V} \]
\[I_f = 150 \, \text{A} \]
\[V_{GE} = \pm 15 \, \text{V} \]
Buck Characteristics

figure 17. Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c)
\]

At

- \(T_j = 25/125 \degree C \)
- \(V_{CE} = 350 \text{ V} \)
- \(I_F = 150 \text{ A} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(R_{gon} = 4 \Omega \)

figure 18. Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[
\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon})
\]

At

- \(T_j = 25/125 \degree C \)
- \(V_{CE} = 350 \text{ V} \)
- \(I_F = 150 \text{ A} \)
- \(V_{GE} = \pm 15 \text{ V} \)

figure 19. IGBT transient thermal impedance as a function of pulse width

\[
Z_{th(j-s)} = f(t_p)
\]

At

- \(D = 0.5 \)
- \(R_{th(j-s)} = 0.22 \text{ K/W} \)

figure 20. FWD transient thermal impedance as a function of pulse width

\[
Z_{th(j-s)} = f(t_p)
\]

At

- \(D = 0.5 \)
- \(R_{th(j-s)} = 0.73 \text{ K/W} \)

IGBT thermal model values

- \(R \text{(K/W)} \)
- \(\text{Tau (s)} \)
- \(8.1E-02, 2.3E+00 \)
- \(5.7E-02, 2.9E-01 \)
- \(7.2E-02, 4.6E-02 \)
- \(2.1E-02, 1.3E-02 \)
- \(8.0E-03, 1.5E-03 \)

FWD thermal model values

- \(R \text{(K/W)} \)
- \(\text{Tau (s)} \)
- \(6.7E-02, 4.1E+00 \)
- \(7.9E-02, 9.3E-01 \)
- \(1.9E-01, 1.4E-01 \)
- \(2.8E-01, 3.5E-02 \)
- \(6.1E-02, 6.8E-03 \)
- \(5.6E-02, 1.2E-03 \)
Buck Characteristics

figure 21. IGBT
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At

\[T_j = 175 \degree C \]

figure 22. IGBT
Collector current as a function of heatsink temperature

\[I_C = f(T_s) \]

At

\[T_j = 175 \degree C \]
\[V_{GE} = 15 \text{ V} \]

figure 23. FWD
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At

\[T_j = 175 \degree C \]

figure 24. FWD
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At

\[T_j = 175 \degree C \]
Buck Characteristics

figure 25.
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

figure 26.
Gate voltage vs Gate charge

\[V_{CE} = f(Q_g) \]

figure 27.
Short circuit withstand time as a function of gate-emitter voltage

\[t_{sc} = f(V_{GE}) \]

figure 28.
Typical short circuit collector current as a function of gate-emitter voltage

\[I_{C(sc)} = f(V_{GE}) \]

At

- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{CE} = \pm 15 \) V
- \(T_j = T_{j\text{max}} \)

At

- \(I_C = 160 \) A
- \(T_j = 25 \) °C

Vincotech

copyright Vincotech

11 06 Sep. 2017 / Revision 5
figure 29. IGBT
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At
\[T_j = T_{jmax} - 25^\circ C \]
\[V_{ccminus} = V_{ccplus} \]

Switching mode: 3 level switching
Boost Characteristics

figure 1. IGBT
Typical output characteristics
\[I_C = f(V_{CE}) \]

At
- \(t_p = 250 \ \mu s \)
- \(T_j = 25 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

figure 2. IGBT
Typical output characteristics
\[I_C = f(V_{CE}) \]

At
- \(t_p = 250 \ \mu s \)
- \(T_j = 150 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

figure 3. IGBT
Typical transfer characteristics
\[I_C = f(V_{GE}) \]

At
- \(T_j = 25/150 \ ^\circ C \)
- \(t_p = 250 \ \mu s \)
- \(V_{CE} = 10 \) V

figure 4. FWD
Typical FWD forward current as a function of forward voltage
\[I_F = f(V_F) \]

At
- \(T_j = 25/150 \ ^\circ C \)
- \(t_p = 250 \ \mu s \)
Boost Characteristics

figure 5.
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

![IGBT Energy Loss vs Collector Current](image1)

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(I_C = 100 \) A

figure 6.
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

![IGBT Energy Loss vs Gate Resistor](image2)

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 100 \) A

figure 7.
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

![FWD Energy Loss vs Collector Current](image3)

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

figure 8.
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

![FWD Energy Loss vs Gate Resistor](image4)

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 100 \) A
Boost Characteristics

figure 9. Typical switching times as a function of collector current

\[t = f(I_C) \]

IGBT

With an inductive load at:
- \(T_J = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(I_C = 100 \) A

figure 10. Typical switching times as a function of gate resistor

\[t = f(R_G) \]

IGBT

With an inductive load at:
- \(T_J = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 100 \) A

figure 11. Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

FWD

At:
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

figure 12. Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

FWD

At:
- \(T_J = 25/125 \) °C
- \(V_A = 350 \) V
- \(I_F = 100 \) A
- \(V_{GE} = \pm 15 \) V
Boost Characteristics

figure 13. FWD
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 4 \, \Omega \]

figure 14. FWD
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_x = 350 \, V \]
\[I_F = 100 \, A \]
\[V_{GE} = \pm 15 \, V \]

figure 15. FWD
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[I_F = 100 \, A \]
\[V_{GE} = \pm 15 \, V \]
Boost Characteristics

figure 17.
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_C)
\]

At
- \(T_j = 25/125 \, ^\circ C\)
- \(V_{CE} = 350 \, V\)
- \(V_{GE} = \pm 15 \, V\)
- \(R_{gon} = 4 \, \Omega\)

figure 18.
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[
\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon})
\]

At
- \(T_j = 25/125 \, ^\circ C\)
- \(V_{GE} = \pm 15 \, V\)
- \(I_F = 100 \, A\)
- \(V_{CE} = 350 \, V\)

figure 19.
IGBT transient thermal impedance as a function of pulse width

\(Z_{th(j-s)} = f(t_p)\)

At
- \(D = 0.5\)
- \(t_p / T\)
- \(R_{th(j-s)} = 0.48 \, K/W\)

figure 20.
FWD transient thermal impedance as a function of pulse width

\(Z_{th(j-s)} = f(t_p)\)

At
- \(D = 0.5\)
- \(t_p / T\)
- \(R_{th(j-s)} = 0.68 \, K/W\)
Boost Characteristics

figure 21.
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

figure 22.
Collector current as a function of heatsink temperature

\[I_C = f(T_s) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

figure 23.
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

figure 24.
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

Vincotech
Boost Characteristics

figure 25. IGBT Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

At

- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{GE} = \pm 15 \) V
- \(T_j = T_{j\max} \)
Boost Characteristics

Figure 25. IGBT

Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

- \(T_J = T_{j(max) - 25 \, ^\circ C} \)
- \(V_{CE(max)} = V_{CEO} \)

Switching mode: 3 level switching

Figure 26. IGBT

Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

Figure 27. IGBT

Short circuit withstand time as a function of gate-emitter voltage

\[t_{sc} = f(V_{GE}) \]

- \(V_{CE} = 600 \, V \)
- \(T_J \leq 150 \, ^\circ C \)

Figure 28. IGBT

Typical short circuit collector current as a function of gate-emitter voltage

\[I_{CC} = f(V_{GE}) \]

- \(V_{CE} \leq 400 \, V \)
- \(T_J = 125 \, ^\circ C \)
Boost Inverse Diode

figure 25.
Typical FWD forward current as a function of forward voltage

\[I_F = f(V_F) \]

figure 26.
FWD transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

At

- \(T_j = 25/150 \ ^\circ C \)
- \(t_p = 250 \ \mu s \)

figure 27.
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_s) \]

- \(T_j = 175 \ ^\circ C \)

figure 28.
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At

- \(T_j = 175 \ ^\circ C \)
Buck Inverse Diode

figure 1. Typical FWD forward current as a function of forward voltage

\[I_F = f(V_F) \]

![Graph showing forward current vs forward voltage](image1)

At

- \(T_j = 25/125 \) °C
- \(t_p = 250 \) µs

figure 2. FWD transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

![Graph showing thermal impedance vs pulse width](image2)

At

- \(D = \frac{t_p}{T} \)
- \(Z_{th(0)} = 1.57 \) K/W

figure 3. Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_s) \]

![Graph showing power dissipation vs heatsink temperature](image3)

At

- \(T_j = 150 \) °C

figure 4. Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

![Graph showing forward current vs heatsink temperature](image4)

At

- \(T_j = 150 \) °C
Thermistor

![Thermistor Typical NTC characteristic as a function of temperature](image)

\[R = f(T) \]
Buck Switching Characteristics

General conditions

\[
\begin{align*}
T_J &= 125 \, ^\circ \text{C} \\
R_{	ext{on}} &= 4 \, \Omega \\
R_{	ext{off}} &= 4 \, \Omega
\end{align*}
\]

Figure 1. IGBT
Turn-off Switching Waveforms & definition of \(t_{\text{doff}}, t_{\text{Eoff}} \)

\(t_{\text{doff}} = 0,25 \, \mu\text{s} \)
\(t_{\text{Eoff}} = 0,62 \, \mu\text{s} \)

\(V_{\text{CE}} (0\%) = -15 \, \text{V} \)
\(V_{\text{CE}} (100\%) = 350 \, \text{V} \)
\(I_{\text{C}} (100\%) = 149 \, \text{A} \)

Figure 2. IGBT
Turn-on Switching Waveforms & definition of \(t_{\text{don}}, t_{\text{Eon}} \)

\(t_{\text{don}} = 0,13 \, \mu\text{s} \)
\(t_{\text{Eon}} = 0,37 \, \mu\text{s} \)

\(V_{\text{CE}} (0\%) = -15 \, \text{V} \)
\(V_{\text{CE}} (100\%) = 350 \, \text{V} \)
\(I_{\text{C}} (100\%) = 149 \, \text{A} \)

Figure 3. IGBT
Turn-off Switching Waveforms & definition of \(t_{f} \)

\(V_{\text{CE}} (100\%) = 350 \, \text{V} \)
\(I_{\text{C}} (100\%) = 149 \, \text{A} \)
\(t_{f} = 0,06 \, \mu\text{s} \)

Figure 4. IGBT
Turn-on Switching Waveforms & definition of \(t_{r} \)

\(V_{\text{CE}} (100\%) = 350 \, \text{V} \)
\(I_{\text{C}} (100\%) = 149 \, \text{A} \)
\(t_{r} = 0,03 \, \mu\text{s} \)
Buck Switching Characteristics

figure 5. IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off} (100\%) = 52.08$ kW
- $E_{off} (100\%) = 5.81$ mJ
- $t_{Eoff} = 0.62$ µs

figure 6. IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on} (100\%) = 52.08$ kW
- $E_{on} (100\%) = 3.36$ mJ
- $t_{Eon} = 0.37$ µs

figure 7. FWD
Turn-off Switching Waveforms & definition of t_{rr}

- $V_d (100\%) = 350$ V
- $I_d (100\%) = 149$ A
- $I_{src} (100\%) = -133$ A
- $t_{rr} = 0.11$ µs
Buck Switching Characteristics

Turn-on Switching Waveforms & definition of \(t_{Qrr} \)

\(t_{Qrr} \) = integrating time for \(Q_{rr} \)

- \(I_d \) (100%) = 149 A
- \(Q_{rr} \) (100%) = 6.41 µC
- \(t_{Qrr} \) = 0.23 µs

Turn-on Switching Waveforms & definition of \(t_{Erec} \)

\(t_{Erec} \) = integrating time for \(E_{rec} \)

- \(P_{rec} \) (100%) = 52.08 kW
- \(E_{rec} \) (100%) = 1.25 mJ
- \(t_{Erec} \) = 0.23 µs

Buck switching measurement circuit

IGBT

- \(V_{dc} \)
- \(V_{cc} \) = 15V
- \(R_{gon} \)
- \(R_{goff} \)
- \(R_{g} \)
- \(L \)
- \(D \)
- \(Q \)
Boost Switching Characteristics

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>4 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

figure 1. IGBT

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

$(t_{Eoff} = \text{integrating time for } E_{off})$

- $V_{CE}(0\%) = -15$ V
- $V_{CE}(100\%) = 15$ V
- $I_C(100\%) = 100$ A
- $t_{doff} = 0.18$ µs
- $t_{Eoff} = 0.44$ µs

figure 2. IGBT

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

$(t_{Eon} = \text{integrating time for } E_{on})$

- $V_{CE}(0\%) = -15$ V
- $V_{CE}(100\%) = 15$ V
- $I_C(100\%) = 100$ A
- $t_{don} = 0.10$ µs
- $t_{Eon} = 0.15$ µs

figure 3. IGBT

Turn-off Switching Waveforms & definition of t_f

- $V_C(100\%) = 350$ V
- $I_C(100\%) = 100$ A
- $t_f = 0.064$ µs

figure 4. IGBT

Turn-on Switching Waveforms & definition of t_r

- $V_C(100\%) = 350$ V
- $I_C(100\%) = 100$ A
- $t_r = 0.019$ µs

copyright Vincotech 27 06 Sep. 2017 / Revision 5
Boost Switching Characteristics

figure 5. IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{\text{off}} (100\%) = 34,96 \text{ kW}$
- $E_{\text{off}} (100\%) = 3,32 \text{ mJ}$
- $t_{\text{Eoff}} = 0,44 \text{ µs}$

figure 6. IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{\text{on}} (100\%) = 34,964 \text{ kW}$
- $E_{\text{on}} (100\%) = 1,52 \text{ mJ}$
- $t_{\text{Eon}} = 0,15 \text{ µs}$

figure 7. FWD
Turn-off Switching Waveforms & definition of t_{rr}

- $V_d (100\%) = 350 \text{ V}$
- $I_d (100\%) = 100 \text{ A}$
- $I_{\text{DDM}} (100\%) = -142 \text{ A}$
- $t_{\text{rr}} = 0,07 \text{ µs}$

copyright Vincotech 28 06 Sep. 2017 / Revision 5
Boost Switching Characteristics

figure 8. FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

- $I_d (100\%) = 100$ A
- $Q_{rr} (100\%) = 12.71$ µC
- $t_{Qrr} = 1.00$ µs

figure 9. FWD
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

- $P_{rec} (100\%) = 34.96$ kW
- $E_{rec} (100\%) = 3.61$ mJ
- $t_{Erec} = 1.00$ µs

Boost switching measurement circuit

figure 10.
IGBT
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste with solder pins 13mm</td>
<td>30-FT12NMA160SH02-M669F28</td>
</tr>
<tr>
<td>housing</td>
<td></td>
</tr>
<tr>
<td>without thermal paste with press-fit pins</td>
<td>30-PT12NMA160SH02-M669F28Y</td>
</tr>
<tr>
<td>13mm housing</td>
<td></td>
</tr>
</tbody>
</table>

Pin table

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>3</td>
<td>C1</td>
<td>17</td>
<td>32</td>
<td>3</td>
<td>E2</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>0</td>
<td>C1</td>
<td>18</td>
<td>32</td>
<td>0</td>
<td>E2</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>0</td>
<td>C1</td>
<td>19</td>
<td>29.5</td>
<td>3</td>
<td>E1</td>
</tr>
<tr>
<td>4</td>
<td>65</td>
<td>0</td>
<td>C1</td>
<td>20</td>
<td>29.5</td>
<td>0</td>
<td>E1</td>
</tr>
<tr>
<td>5</td>
<td>62.5</td>
<td>0</td>
<td>C1</td>
<td>21</td>
<td>27</td>
<td>3</td>
<td>E2</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>0</td>
<td>C1</td>
<td>22</td>
<td>27</td>
<td>0</td>
<td>E2</td>
</tr>
<tr>
<td>7</td>
<td>52.75</td>
<td>3</td>
<td>N1</td>
<td>23</td>
<td>22</td>
<td>3</td>
<td>C1</td>
</tr>
<tr>
<td>8</td>
<td>52.75</td>
<td>0</td>
<td>N1</td>
<td>24</td>
<td>19.75</td>
<td>3</td>
<td>N2</td>
</tr>
<tr>
<td>9</td>
<td>50.25</td>
<td>3</td>
<td>N1</td>
<td>25</td>
<td>19.75</td>
<td>0</td>
<td>N2</td>
</tr>
<tr>
<td>10</td>
<td>50.25</td>
<td>0</td>
<td>N1</td>
<td>26</td>
<td>14.75</td>
<td>0</td>
<td>N2</td>
</tr>
<tr>
<td>11</td>
<td>43</td>
<td>3</td>
<td>E1</td>
<td>27</td>
<td>12.25</td>
<td>0</td>
<td>N2</td>
</tr>
<tr>
<td>12</td>
<td>43</td>
<td>0</td>
<td>E1</td>
<td>28</td>
<td>9 3</td>
<td>E1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>40.5</td>
<td>3</td>
<td>E1</td>
<td>29</td>
<td>6.25</td>
<td>3</td>
<td>C2</td>
</tr>
<tr>
<td>14</td>
<td>40.5</td>
<td>0</td>
<td>E1</td>
<td>30</td>
<td>6.25</td>
<td>0</td>
<td>E1</td>
</tr>
<tr>
<td>15</td>
<td>38</td>
<td>3</td>
<td>E1</td>
<td>31</td>
<td>6.25</td>
<td>3</td>
<td>C2</td>
</tr>
<tr>
<td>16</td>
<td>38</td>
<td>0</td>
<td>E1</td>
<td>32</td>
<td>6.25</td>
<td>0</td>
<td>E1</td>
</tr>
<tr>
<td>17</td>
<td>33</td>
<td>3</td>
<td>E2</td>
<td>33</td>
<td>6.25</td>
<td>3</td>
<td>C2</td>
</tr>
<tr>
<td>18</td>
<td>33</td>
<td>0</td>
<td>E2</td>
<td>34</td>
<td>6.25</td>
<td>0</td>
<td>E2</td>
</tr>
<tr>
<td>19</td>
<td>29.5</td>
<td>3</td>
<td>E2</td>
<td>35</td>
<td>6.25</td>
<td>3</td>
<td>C2</td>
</tr>
<tr>
<td>20</td>
<td>29.5</td>
<td>0</td>
<td>E2</td>
<td>36</td>
<td>6.25</td>
<td>0</td>
<td>E2</td>
</tr>
<tr>
<td>21</td>
<td>27</td>
<td>3</td>
<td>E2</td>
<td>37</td>
<td>6.25</td>
<td>3</td>
<td>C2</td>
</tr>
<tr>
<td>22</td>
<td>27</td>
<td>0</td>
<td>E2</td>
<td>38</td>
<td>6.25</td>
<td>0</td>
<td>E2</td>
</tr>
<tr>
<td>23</td>
<td>19.75</td>
<td>0</td>
<td>N2</td>
<td>39</td>
<td>6.25</td>
<td>3</td>
<td>C2</td>
</tr>
<tr>
<td>24</td>
<td>17.25</td>
<td>0</td>
<td>N2</td>
<td>40</td>
<td>6.25</td>
<td>0</td>
<td>E2</td>
</tr>
<tr>
<td>25</td>
<td>14.75</td>
<td>0</td>
<td>N2</td>
<td>41</td>
<td>6.25</td>
<td>3</td>
<td>C2</td>
</tr>
<tr>
<td>26</td>
<td>12.25</td>
<td>0</td>
<td>N2</td>
<td>42</td>
<td>6.25</td>
<td>0</td>
<td>E2</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>3</td>
<td>C2</td>
<td>43</td>
<td>6.25</td>
<td>3</td>
<td>C2</td>
</tr>
<tr>
<td>28</td>
<td>3</td>
<td>0</td>
<td>C2</td>
<td>44</td>
<td>6.25</td>
<td>0</td>
<td>C2</td>
</tr>
</tbody>
</table>

Outline
Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1, Q2</td>
<td>IGBT</td>
<td>1200 V</td>
<td>160 A</td>
<td>Buck Switch</td>
<td></td>
</tr>
<tr>
<td>DQ1, DQ2</td>
<td>FWD</td>
<td>1200 V</td>
<td>7 A</td>
<td>Buck Sw. Protection Diode</td>
<td></td>
</tr>
<tr>
<td>D3, D4</td>
<td>FWD</td>
<td>650 V</td>
<td>100 A</td>
<td>Buck Diode</td>
<td></td>
</tr>
<tr>
<td>Q3, Q4</td>
<td>IGBT</td>
<td>650 V</td>
<td>100 A</td>
<td>Boost Switch</td>
<td></td>
</tr>
<tr>
<td>DQ3, DQ4</td>
<td>FWD</td>
<td>650 V</td>
<td>60 A</td>
<td>Boost Sw. Protection Diode</td>
<td></td>
</tr>
<tr>
<td>D1, D2</td>
<td>FWD</td>
<td>1200 V</td>
<td>60 A</td>
<td>Boost Diode</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>NTC</td>
<td>1200 V</td>
<td></td>
<td></td>
<td>Thermistor</td>
</tr>
</tbody>
</table>
Handling instruction
Handling instructions for flow 2 packages see vincotech.com website.

Package data
Package data for flow 2 packages see vincotech.com website.

UL recognition and file number
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

Packaging instruction

<table>
<thead>
<tr>
<th>Standard packaging quantity (SPQ)</th>
<th>36</th>
<th>>SPQ</th>
<th>Standard</th>
<th><SPQ</th>
<th>Sample</th>
</tr>
</thead>
</table>

DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.