Features
- Mixed voltage NPC topology
- Reactive power capability
- Low inductance layout
- High speed IGBT and split output
- Common collector neutral connection

Target Applications
- Solar inverter
- UPS
- Active frontend

Types
- 30-FT12NMA200SH-M660F08
- 30-PT12NMA200SH-M660F08Y

Maximum Ratings

\(T_j = 25 \, ^\circ C \), unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>(V_{RRM})</td>
<td>(T_j = T_{jmax}) (T_r = 80 , ^\circ C)</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_F)</td>
<td>(T_j = T_{jmax}) (T_r = 80 , ^\circ C)</td>
<td>25</td>
<td>A</td>
</tr>
<tr>
<td>Maximum repetitive forward current</td>
<td>(I_{FRM})</td>
<td>(T_j = 10 , \mu s)</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_j = 80 , ^\circ C)</td>
<td>52</td>
<td>W</td>
</tr>
</tbody>
</table>

Half Bridge Switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>(V_{CE})</td>
<td>(T_j = T_{jmax}) (T_r = 80 , ^\circ C)</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>(I_C)</td>
<td>(T_j = T_{jmax}) (T_r = 80 , ^\circ C)</td>
<td>171</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{CPM})</td>
<td>(T_j = T_{jmax}), limited by (T_{max})</td>
<td>600</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operation area</td>
<td>(V_{CE}, T = 1200V, T_{jmax} \leq 150^\circ C)</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_j = T_{jmax}) (T_r = 80 , ^\circ C)</td>
<td>434</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>(V_{GE})</td>
<td>(T_j = T_{jmax}) (T_r = 80 , ^\circ C)</td>
<td>(\pm 20)</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>(t_{SC})</td>
<td>(T_j = 150 , ^\circ C) (V_{BE} = 15 , V)</td>
<td>10</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{jmax})</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_j = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral Point FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>$T_i = T_{pwm}$, $T_s = 80 , ^\circ C$</td>
<td>700</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{FDM}</td>
<td>$T_i = T_{pwm}$, $T_s = 80 , ^\circ C$</td>
<td>87</td>
<td>A</td>
</tr>
<tr>
<td>Diode maximum forward current</td>
<td>I_{FDM}</td>
<td>r_s limited by T_{pwm}</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{pwm}$, $T_s = 80 , ^\circ C$</td>
<td>109</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>150</td>
<td>^\circ C</td>
</tr>
<tr>
<td>Neutral Point Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>V_{CE}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_{C}</td>
<td>$T_i = T_{pwm}$, $T_s = 80 , ^\circ C$</td>
<td>124</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CEM}</td>
<td>r_s limited by T_{pwm}</td>
<td>450</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operation area</td>
<td></td>
<td>$V_{CE} \leq 600V$, $T_i \leq 175, ^\circ C$</td>
<td>450</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{pwm}$, $T_s = 80 , ^\circ C$</td>
<td>198</td>
<td>W</td>
</tr>
<tr>
<td>Gate–emitter peak voltage</td>
<td>V_{CE}</td>
<td></td>
<td>420</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>I_{CC}</td>
<td>$T_i \leq 150 , ^\circ C$</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>V_{CE}</td>
<td>$V_{CE} = 15 , V$</td>
<td>360</td>
<td>ms</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>^\circ C</td>
</tr>
<tr>
<td>Neutral Point Sw. Protection Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>$T_i = T_{pwm}$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{F}</td>
<td>$T_i = T_{pwm}$, $T_s = 80 , ^\circ C$</td>
<td>49</td>
<td>A</td>
</tr>
<tr>
<td>Maximum repetitive forward current</td>
<td>I_{FDM}</td>
<td>r_s limited by T_{pwm}</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{pwm}$, $T_s = 80 , ^\circ C$</td>
<td>82</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>^\circ C</td>
</tr>
<tr>
<td>Half Bridge FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{F}</td>
<td>$T_i = T_{pwm}$, $T_s = 80 , ^\circ C$</td>
<td>84</td>
<td>A</td>
</tr>
<tr>
<td>Nonrepetitive peak surge current</td>
<td>I_{FSM}</td>
<td>r_s limited by T_{pwm}</td>
<td>540</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{pwm}$, $T_s = 80 , ^\circ C$</td>
<td>186</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>^\circ C</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_\text{r} = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125°C</td>
<td>ºC</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40...$(T_{\text{max}} - 25)$</td>
<td>ºC</td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>V_{is}</td>
<td>$t = 2 , \text{s}$</td>
<td>DC Test Voltage</td>
<td>4000</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12,7 mm</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12,7 mm</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>CTI</td>
<td></td>
<td>>200</td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half Bridge Sw. Protection Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_{F}</td>
<td></td>
<td>1,6</td>
<td>V</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease thickness ≤ 50um λ = 1 W/mK</td>
<td>1,35</td>
<td>K/W</td>
</tr>
<tr>
<td>Half Bridge Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>V_{th}</td>
<td></td>
<td>0,068</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td></td>
<td>25</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I_{CES}</td>
<td></td>
<td>125</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GE}</td>
<td></td>
<td>25</td>
<td>nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gin}</td>
<td></td>
<td>1</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td></td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{f}</td>
<td></td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td></td>
<td>25</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td></td>
<td>25</td>
<td>mWs</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td></td>
<td>25</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td>25</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td></td>
<td>25</td>
<td>pF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td></td>
<td>960</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease thickness ≤ 50um λ = 1 W/mK</td>
<td>0,22</td>
<td>K/W</td>
</tr>
</tbody>
</table>

*additional value stands for built-in capacitor

Neutral Point FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td></td>
<td>150</td>
<td>V</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RRM}</td>
<td></td>
<td>1,3</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{r}</td>
<td></td>
<td>1,4</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{r}</td>
<td></td>
<td>1</td>
<td>μC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$d(V_{F}/d	au)_{max}$</td>
<td></td>
<td>25</td>
<td>A/μs</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td>25</td>
<td>mWs</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease thickness ≤ 50um λ = 1 W/mK</td>
<td>0,64</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CE}</td>
<td>$V_{CE} = V_{CS}$</td>
<td>0,024</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off diode</td>
<td>I_{CES}</td>
<td>0</td>
<td>600</td>
<td>µA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GEC}</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{on}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>15</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>Rise time</td>
<td>r_{on}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>r_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td>25</td>
<td>150</td>
<td>1,10</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td>25</td>
<td>150</td>
<td>1,59</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>25</td>
<td>150</td>
<td>9240</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>25</td>
<td>150</td>
<td>576</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rs}</td>
<td>274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{G}</td>
<td>25</td>
<td>150</td>
<td>940</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease thickness ≤ 50um</td>
<td>25</td>
<td>1,16</td>
</tr>
</tbody>
</table>

Neutral Point Switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V_{GE}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CE}</td>
<td>$V_{CE} = V_{CS}$</td>
<td>15</td>
<td>150</td>
</tr>
<tr>
<td>Collector-emitter cut-off diode</td>
<td>I_{CES}</td>
<td>0</td>
<td>600</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GEC}</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{on}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>15</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>Rise time</td>
<td>r_{on}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>r_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td>25</td>
<td>150</td>
<td>1,10</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td>25</td>
<td>150</td>
<td>1,59</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>25</td>
<td>150</td>
<td>9240</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>25</td>
<td>150</td>
<td>576</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rs}</td>
<td>274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{G}</td>
<td>25</td>
<td>150</td>
<td>940</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease thickness ≤ 50um</td>
<td>25</td>
<td>1,16</td>
</tr>
</tbody>
</table>

Diode forward voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CE}</td>
<td>$V_{CE} = V_{CS}$</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>

Half Bridge FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CE}</td>
<td>$V_{CE} = V_{CS}$</td>
<td>100</td>
<td>25</td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>25</td>
<td>22000</td>
</tr>
<tr>
<td>Deviation of R_{TH}</td>
<td>$ΔR_{TH}$</td>
<td>$R_{TH} = 1486 Ω$</td>
<td>100</td>
<td>-5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>25</td>
<td>200</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>P</td>
<td></td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/50)}$</td>
<td>Tol. ±3%</td>
<td>25</td>
<td>3950</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/100)}$</td>
<td>Tol. ±3%</td>
<td>25</td>
<td>3998</td>
</tr>
</tbody>
</table>

Vincotech NTC Reference |

copyright Vincotech 5 08 Apr. 2017 / Revision 3
Half Bridge
Half Bridge IGBT and Neutral Point FWD

figure 1.
Typical output characteristics
\[I_C = f(V_{CE}) \]

At
- \(t_p = 250 \ \mu s \)
- \(T_j = 25 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

figure 2.
Typical output characteristics
\[I_C = f(V_{CE}) \]

At
- \(t_p = 250 \ \mu s \)
- \(T_j = 125 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

figure 3.
Typical transfer characteristics
\[I_C = f(V_{GE}) \]

At
- \(t_p = 250 \ \mu s \)
- \(T_j = T_{j_{max}} - 25 \ ^\circ C \)
- \(V_{CE} = 10 \ V \)

figure 4.
Typical FWD forward current as a function of forward voltage
\[I_F = f(V_F) \]

At
- \(t_p = 250 \ \mu s \)
- \(T_j = 25/150 \ ^\circ C \)
Half Bridge

Figure 5.

Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

![Graph showing typical switching energy losses](image)

With an inductive load at:
- \(T_J = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 2 \, \Omega \)
- \(R_{goff} = 2 \, \Omega \)

Figure 6.

Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

![Graph showing typical switching energy losses](image)

With an inductive load at:
- \(T_J = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 198 \, \text{A} \)

Figure 7.

Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

![Graph showing typical reverse recovery energy loss](image)

With an inductive load at:
- \(T_J = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 2 \, \Omega \)

Figure 8.

Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

![Graph showing typical reverse recovery energy loss](image)

With an inductive load at:
- \(T_J = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 198 \, \text{A} \)
Half Bridge

Figure 9.
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

\[T_J = 125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 2 \, \Omega \]
\[R_{goff} = 2 \, \Omega \]

Figure 10.
Typical switching times as a function of gate resistor

\[t = f(R_G) \]

With an inductive load at

\[T_J = 125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[I_C = 198 \, A \]

Figure 11.
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At

\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 2 \, \Omega \]

Figure 12.
Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At

\[T_J = 25/125 \, ^\circ C \]
\[V_B = 350 \, V \]
\[I_F = 198 \, A \]
\[V_{GE} = \pm 15 \, V \]
Half Bridge IGBT and Neutral Point FWD

Figure 13.
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 2 \) Ω

Figure 14.
Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

At
- \(T_J = 25/125 \) °C
- \(V_{R} = 350 \) V
- \(I_F = 198 \) A
- \(V_{GE} = \pm 15 \) V

Figure 15.
Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

Figure 16.
Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

At
- \(T_J = 25/125 \) °C
- \(V_{R} = 350 \) V
- \(I_F = 198 \) A
- \(V_{GE} = \pm 15 \) V
Half Bridge
Half Bridge IGBT and Neutral Point FWD

Figure 17.
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[\frac{di_0}{dt}, \frac{di_{rec}}{dt} = f(I_{cc}) \]

At
- \(T_j = 25/125\, ^\circ C \)
- \(V_{CE} = 350\, V \)
- \(V_{GE} = \pm 15\, V \)
- \(R_{gon} = 2\, \Omega \)

Figure 18.
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[\frac{di_0}{dt}, \frac{di_{rec}}{dt} = f(R_{gon}) \]

At
- \(T_j = 25/125\, ^\circ C \)
- \(V_R = 350\, V \)
- \(I_F = 198\, A \)
- \(V_{GE} = \pm 15\, V \)

Figure 19.
IGBT transient thermal impedance as a function of pulse width

\[Z_{th_{(J,s)}} = f(t_p) \]

At
- \(D = \frac{t_p}{T} \)
- \(R_{th_{(J,s)}} = 0.22\, K/W \)

Figure 20.
FWD transient thermal impedance as a function of pulse width

\[Z_{th_{(J,s)}} = f(t_p) \]

At
- \(D = \frac{t_p}{T} \)
- \(R_{th_{(J,s)}} = 0.64\, K/W \)

IGBT thermal model values

\[
\begin{align*}
R_{(K/W)} & \quad \text{Tau (s)} \\
0.04 & \quad 4,0E+00 \\
0.05 & \quad 9,4E-01 \\
0.04 & \quad 2,3E-01 \\
0.07 & \quad 5,4E-02 \\
0.02 & \quad 1,6E-02 \\
0.01 & \quad 2,8E-03 \\
\end{align*}
\]

FWD thermal model values

\[
\begin{align*}
R_{(K/W)} & \quad \text{Tau (s)} \\
0.09 & \quad 4,6E+00 \\
0.11 & \quad 1,2E+00 \\
0.16 & \quad 1,8E-01 \\
0.23 & \quad 3,8E-02 \\
0.03 & \quad 5,8E-03 \\
0.03 & \quad 7,4E-04 \\
\end{align*}
\]
Half Bridge
Half Bridge IGBT and Neutral Point FWD

figure 21.
IGBT
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_s) \]

![Graph showing power dissipation as a function of heatsink temperature for IGBT.]

At
\[T_j = 175 \ ^\circ\text{C} \]

figure 22.
IGBT
Collector current as a function of heatsink temperature
\[I_C = f(T_s) \]

![Graph showing collector current as a function of heatsink temperature for IGBT.]

At
\[T_j = 175 \ ^\circ\text{C} \]
\[V_{GE} = 15 \ \text{V} \]

figure 23.
FWD
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_s) \]

![Graph showing power dissipation as a function of heatsink temperature for FWD.]

At
\[T_j = 150 \ ^\circ\text{C} \]

figure 24.
FWD
Forward current as a function of heatsink temperature
\[I_F = f(T_s) \]

![Graph showing forward current as a function of heatsink temperature for FWD.]

At
\[T_j = 150 \ ^\circ\text{C} \]
Half Bridge

Half Bridge IGBT and Neutral Point FWD

Figure 25. IGBT

Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

Figure 26. IGBT

Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

Figure 27. IGBT

Short circuit withstand time as a function of gate-emitter voltage

\[t_{sc} = f(V_{GE}) \]

Figure 28. IGBT

Typical short circuit collector current as a function of gate-emitter voltage

\[I_{C(sc)} = f(V_{GE}) \]

At

- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{GE} = \pm 15 \) V
- \(T_J = T_{j\text{max}} \) °C

At

- \(I_D = 160 \) A
- \(T_J = 25 \) °C

At

- \(V_{CE} = 1200 \) V
- \(T_J \leq 175 \) °C

At

- \(V_{CE} \leq 1200 \) V
- \(T_J = 175 \) °C
Half Bridge

Half Bridge IGBT and Neutral Point FWD

figure 27.

Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At

\[T_j = T_{jmax} - 25 \, ^\circ C \]

\[U_{ccminus} = U_{ccplus} \]

Switching mode: 3 level switching
Neutral Point

Neutral Point IGBT and Half Bridge FWD

figure 1. IGBT

Typical output characteristics

$I_C = f(V_{CE})$

<table>
<thead>
<tr>
<th>V_{CE} (V)</th>
<th>I_C (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

At
- $t_p = 250 \ \mu s$
- $T_j = 25 \ ^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

figure 2. IGBT

Typical output characteristics

$I_C = f(V_{CE})$

<table>
<thead>
<tr>
<th>V_{CE} (V)</th>
<th>I_C (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

At
- $t_p = 250 \ \mu s$
- $T_j = 150 \ ^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

figure 3. IGBT

Typical transfer characteristics

$I_C = f(V_{GE})$

<table>
<thead>
<tr>
<th>V_{GE} (V)</th>
<th>I_C (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

At
- $t_p = 250 \ \mu s$
- $V_{CE} = 0 \ \text{V}$
- $T_j = 25/150 \ ^\circ C$

figure 4. FWD

Typical FWD forward current as a function of forward voltage

$I_F = f(V_F)$

<table>
<thead>
<tr>
<th>V_F (V)</th>
<th>I_F (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

At
- $t_p = 250 \ \mu s$
- $T_j = 25/150 \ ^\circ C$
Neutral Point
Neutral Point IGBT and Half Bridge FWD

Figure 5.
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at
- \(T_j = 25/126 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 2 \) Ω
- \(R_{goff} = 2 \) Ω

Figure 6.
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at
- \(T_j = 25/126 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 151 \) A

Figure 7.
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

Figure 8.
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_j = 25/126 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 151 \) A
Neutral Point
Neutral Point IGBT and Half Bridge FWD

figure 9.
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
\[T_j = 126 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 2 \, \Omega \]
\[R_{goff} = 2 \, \Omega \]

figure 10.
Typical switching times as a function of gate resistor
\[t = f(R_g) \]

With an inductive load at
\[T_j = 126 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[I_C = 151 \, \text{A} \]

figure 11.
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
\[T_j = 25/126 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 2 \, \Omega \]

figure 12.
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{gon}) \]

At
\[T_j = 25/126 \, ^\circ\text{C} \]
\[V_R = 350 \, \text{V} \]
\[I_F = 151 \, \text{A} \]
\[V_{GE} = \pm 15 \, \text{V} \]
Neutral Point
Neutral Point IGBT and Half Bridge FWD

figure 13.
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

- At
 - \(T_J = 25/126 \, ^{\circ}\text{C} \)
 - \(V_{CE} = 350 \, \text{V} \)
 - \(V_{GE} = \pm 15 \, \text{V} \)
 - \(R_{gon} = 2 \, \Omega \)

figure 14.
Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

- At
 - \(T_J = 25/126 \, ^{\circ}\text{C} \)
 - \(V_{CE} = 350 \, \text{V} \)
 - \(I_F = 151 \, \text{A} \)
 - \(V_{GE} = \pm 15 \, \text{V} \)

figure 15.
Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

- At
 - \(T_J = 25/126 \, ^{\circ}\text{C} \)
 - \(V_{CE} = 350 \, \text{V} \)
 - \(V_{GE} = \pm 15 \, \text{V} \)
 - \(R_{gon} = 2 \, \Omega \)

figure 16.
Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

- At
 - \(T_J = 25/126 \, ^{\circ}\text{C} \)
 - \(V_{CE} = 350 \, \text{V} \)
 - \(I_F = 151 \, \text{A} \)
 - \(V_{GE} = \pm 15 \, \text{V} \)
Neutral Point
Neutral Point IGBT and Half Bridge FWD

Figure 17.
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
dI_0/dt, dI_{rec}/dt = f(I_c)
\]

Figure 18.
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[
dI_0/dt, dI_{rec}/dt = f(R_{gon})
\]

At
\[
T_j = 25/126 \degree C
\]
\[
V_{CE} = 350 \text{ V}
\]
\[
V_{GE} = \pm 15 \text{ V}
\]
\[
R_{gon} = 2 \Omega
\]

Figure 19.
IGBT transient thermal impedance as a function of pulse width
\[
Z_{th(j-s)} = f(t_p)
\]

Figure 20.
FWD transient thermal impedance as a function of pulse width
\[
Z_{th(j-s)} = f(t_p)
\]

At
\[
D = \frac{t_p}{T}
\]
\[
R_{th(j-s)} = 0.48 \text{ K/W}
\]

IGBT thermal model values
\[
R (\text{K/W}) \quad \text{Tau (s)}
\]
\[
0.09 \quad 4.40
\]
\[
0.11 \quad 0.76
\]
\[
0.10 \quad 0.13
\]
\[
0.15 \quad 0.03
\]
\[
0.02 \quad 0.01
\]

FWD thermal model values
\[
R (\text{K/W}) \quad \text{Tau (s)}
\]
\[
0.06 \quad 3.05
\]
\[
0.08 \quad 0.45
\]
\[
0.20 \quad 0.09
\]
\[
0.14 \quad 0.03
\]
\[
0.04 \quad 0.004
\]
Neutral Point
Neutral Point IGBT and Half Bridge FWD

figure 21.
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_s) \]

figure 22.
Collector current as a function of heatsink temperature
\[I_C = f(T_s) \]

At
\[T_j = 175 \degree C \]
\[V_{\text{CE}} = 15 \text{ V} \]

figure 23.
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

figure 24.
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 175 \degree C \]
Neutral Point
neutral point IGBT

Figure 25. IGBT
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At
\[T_J = T_{jmax} - 25 \, ^\circ C \]
\[U_{ccminus} = U_{ccplus} \]
Switching mode : 3 level switching

Figure 26. IGBT
Gate voltage vs Gate charge

\[V_{GCE} = f(Q_g) \]

At
\[I_D = 150 \, A \]
\[T_J = 25 \, ^\circ C \]

Figure 27. IGBT
Short circuit withstand time as a function of gate-emitter voltage

\[t_{sc} = f(V_{GE}) \]

At
\[V_{CE \leq 400 \, V} \]
\[T_J \leq 150 \, ^\circ C \]

Figure 28. IGBT
Typical short circuit collector current as a function of gate-emitter voltage

\[I_{SC} = f(V_{GE}) \]

At
\[V_{CE \leq 400 \, V} \]
\[T_J = 150 \, ^\circ C \]
Neutal Point IGBT Inverse Diode

Figure 25.
Typical FWD forward current as a function of forward voltage
\[I_F = f(V_F) \]

Figure 26.
FWD transient thermal impedance as a function of pulse width
\[Z_{th(j-s)} = f(t_p) \]

At
\[t_p = 250 \mu s \]

At
\[D = \frac{t_p}{T} \]
\[R_{th(j-s)} = 1.16 \text{ K/W} \]

Figure 27.
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_s) \]

At
\[T_j = 175 \degree C \]

Figure 28.
Forward current as a function of heatsink temperature
\[I_F = f(T_s) \]

At
\[T_j = 175 \degree C \]
Half Bridge Inverse Diode

Figure 1. IGBT
Typical FWD forward current as a function of forward voltage
\[I_F = f(V_F) \]

Figure 2. IGBT
FWD transient thermal impedance as a function of pulse width
\[Z_{th(j-s)} = f(t_p) \]

Figure 3. IGBT
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_s) \]

Figure 4. IGBT
Forward current as a function of heatsink temperature
\[I_F = f(T_J) \]

At
\[t_p = 250 \ \mu s \]

At
\[D = \frac{t_p}{T} \]
\[R_{th(j-s)} = 1.35 \ \text{K/W} \]

At
\[T_J = 150 \ ^\circ\text{C} \]

At
\[T_J = 150 \ ^\circ\text{C} \]
figure 1. Thermistor

Typical NTC characteristic
as a function of temperature

\[R_T = f(T) \]
Switching Definitions Half Bridge

General conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{gon}</td>
<td>2 Ω</td>
</tr>
<tr>
<td>R_{goff}</td>
<td>2 Ω</td>
</tr>
</tbody>
</table>

Turn-off Switching Waveforms & definition of t_{doff} and t_{Eoff}

- $V_{CE} (0\%) = -15$ V
- $V_{CE} (100\%) = 15$ V
- $I_C (100\%) = 198$ A
- $t_{doff} = 0.23$ μs
- $t_{Eoff} = 0.61$ μs

Turn-on Switching Waveforms & definition of t_{don} and t_{Eon}

- $V_{CE} (0\%) = -15$ V
- $V_{CE} (100\%) = 15$ V
- $I_C (100\%) = 700$ V
- $I_C (100\%) = 198$ A
- $t_{don} = 0.13$ μs
- $t_{Eon} = 0.30$ μs

Turn-off Switching Waveforms & definition of t_f

- $V_C (100\%) = 700$ V
- $I_C (100\%) = 198$ A
- $t_f = 0.06$ μs

Turn-on Switching Waveforms & definition of t_r

- $V_C (100\%) = 700$ V
- $I_C (100\%) = 198$ A
- $t_r = 0.03$ μs
Switching Definitions Half Bridge

figure 5. IGBT
Turn-off Switching Waveforms & definition of \(t_{\text{eff}} \)

![graph showing IGBT turn-off waveforms](image)

- \(P_{\text{off}}(100\%) = 138,85 \text{ kW} \)
- \(E_{\text{off}}(100\%) = 7,97 \text{ mJ} \)
- \(t_{\text{Qoff}} = 0,61 \text{ μs} \)

figure 6. IGBT
Turn-on Switching Waveforms & definition of \(t_{\text{on}} \)

![graph showing IGBT turn-on waveforms](image)

- \(P_{\text{on}}(100\%) = 138,85 \text{ kW} \)
- \(E_{\text{on}}(100\%) = 4,20 \text{ mJ} \)
- \(t_{\text{Qon}} = 0,30 \text{ μs} \)

figure 7. FWD
Turn-off Switching Waveforms & definition of \(t_{\text{rr}} \)

![graph showing FWD turn-off waveforms](image)

- \(V_d (100\%) = 700 \text{ V} \)
- \(I_d (100\%) = 198 \text{ A} \)
- \(I_{\text{RRM}} (100\%) = -169 \text{ A} \)
- \(t_{\text{rr}} = 0,12 \text{ μs} \)

figure 8. FWD
**Turn-on Switching Waveforms & definition of \(t_{\text{Qrr}} \)
(\(t_{\text{Qrr}} = \) integrating time for \(Q_{\text{rr}} \))

![graph showing FWD turn-on waveforms](image)

- \(I_d (100\%) = 198 \text{ A} \)
- \(Q_{\text{rr}} (100\%) = 11,00 \text{ μC} \)
- \(t_{\text{Qrr}} = 0,24 \text{ μs} \)
Switching Definitions Half Bridge

figure 9.
FWD

Turn-on Switching Waveforms & definition of $t_{E_{rec}}$

($t_{E_{rec}}$ = integrating time for E_{rec})

\[
P_{rec} (100\%) = 138.85 \text{ kW}\\
E_{rec} (100\%) = 2.39 \text{ mJ}\\
t_{E_{rec}} = 0.24 \text{ μs}
\]

Half Bridge switching measurement circuit

figure 11.
IGBT

Cl, C2 removed for dynamic measurements

- V_{cc}
- 700V
- V_{cc}
- V_{gen}
- 4.7kohm
- 47kohm
- 1mH
- L6
- 3x470mF
- 470mF
- C1, C2
- OUT1
- 3x500mH
- 3x500mH
- 15V
- 15V
- 15V
- V_{cc}
- V_{gen}
- V_{cc}
- OUT2
- 5mH
- 5mH
- 300mH
Switching Definitions Neutral Point IGBT

General conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{gon}</td>
<td>4 Ω</td>
</tr>
<tr>
<td>R_{goff}</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

figure 1. Neutral Point IGBT
Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}
(t_{Eoff} = integrating time for E_{off})

- V_C (0%) = -15 V
- V_C (100%) = 700 V
- I_C (100%) = 151 A
- t_{doff} = 0.18 μs
- t_{Eoff} = 0.46 μs

figure 2. Neutral Point IGBT
Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}
(t_{Eon} = integrating time for E_{on})

- V_C (0%) = -15 V
- V_C (100%) = 700 V
- I_C (100%) = 151 A
- t_{don} = 0.11 μs
- t_{Eon} = 0.19 μs

figure 3. Neutral Point IGBT
Turn-off Switching Waveforms & definition of t_f

- V_C (100%) = 700 V
- I_C (100%) = 151 A
- t_f = 0.064 μs

figure 4. Neutral Point IGBT
Turn-on Switching Waveforms & definition of t_r

- V_C (100%) = 700 V
- I_C (100%) = 151 A
- t_r = 0.019 μs
Switching Definitions Neutral Point IGBT

figure 5. Neutral Point IGBT

Turn-off Switching Waveforms & definition of t\text{Eoff}

![Graph showing turn-off switching waveforms and definition of t\text{Eoff}]

\[P_{\text{Eoff}} (100\%) = 69.93 \text{ kW} \]

\[E_{\text{Eoff}} (100\%) = 3.32 \text{ mJ} \]

\[t_{\text{Eoff}} = 0.44 \mu s \]

figure 6. Neutral Point IGBT

Turn-on Switching Waveforms & definition of t\text{Eon}

![Graph showing turn-on switching waveforms and definition of t\text{Eon}]

\[P_{\text{Eon}} (100\%) = 69.93 \text{ kW} \]

\[E_{\text{Eon}} (100\%) = 1.52 \text{ mJ} \]

\[t_{\text{Eon}} = 0.18 \mu s \]

figure 7. Half Bridge FWD

Turn-off Switching Waveforms & definition of t\text{rr}

![Graph showing turn-off switching waveforms and definition of t\text{rr}]

\[V_d (100\%) = 700 \text{ V} \]

\[I_d (100\%) = 151 \text{ A} \]

\[I_{\text{RRM}} (100\%) = -142 \text{ A} \]

\[t_{\text{rr}} = 0.07 \mu s \]

figure 8. Half Bridge FWD

Turn-on Switching Waveforms & definition of t\text{Qrr}

![Graph showing turn-on switching waveforms and definition of t\text{Qrr}]

\[I_d (100\%) = 151 \text{ A} \]

\[Q_r (100\%) = 12.71 \mu C \]

\[t_{\text{Qrr}} = 1.00 \mu s \]
Switching Definitions Neutral Point IGBT

figure 9. Half Bridge FWD
Turn-on Switching Waveforms & definition of $t_{E_{rec}}$
($t_{E_{rec}}$ = integrating time for E_{rec})

- P_{rec} (100%) = 69.93 kW
- E_{rec} (100%) = 3.61 mJ
- $t_{E_{rec}}$ = 1.00 μs

Neutral Point IGBT switching measurement circuit

figure 10. Neutral Point IGBT
Ordering Code and Marking - Outline - Pinout

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste with solder pins</td>
<td>30-FT12NMA200SH-M660F08</td>
<td>M660F08</td>
<td>M660F08</td>
</tr>
<tr>
<td>with thermal paste and solder pins</td>
<td>30-FT12NMA200SH-M660F08-/3/</td>
<td>M660F08-/3/</td>
<td>M660F08-/3/</td>
</tr>
<tr>
<td>without thermal paste with Press-fit pins</td>
<td>30-PT12NMA200SH-M660F08Y</td>
<td>M660F08Y</td>
<td>M660F08Y</td>
</tr>
<tr>
<td>with thermal paste and Press-fit pins</td>
<td>30-PT12NMA200SH-M660F08Y-/3/</td>
<td>M660F08Y-/3/</td>
<td>M660F08Y-/3/</td>
</tr>
</tbody>
</table>

Outline

![Outline Diagram](image)
Pinout

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, T3</td>
<td>IGBT</td>
<td>1200V</td>
<td>200A</td>
<td>Half Bridge IGBT</td>
<td></td>
</tr>
<tr>
<td>D1, D3</td>
<td>FWD</td>
<td>1200V</td>
<td>15A</td>
<td>HB IGBT Inverse Diode</td>
<td></td>
</tr>
<tr>
<td>D5, D7</td>
<td>FWD</td>
<td>700V</td>
<td>150A</td>
<td>Neutral Point FWD</td>
<td></td>
</tr>
<tr>
<td>T2, T4</td>
<td>IGBT</td>
<td>600V</td>
<td>150A</td>
<td>Neutral Point IGBT</td>
<td></td>
</tr>
<tr>
<td>D6, D8</td>
<td>FWD</td>
<td>1200V</td>
<td>100A</td>
<td>Half Bridge FWD</td>
<td></td>
</tr>
<tr>
<td>D2, D4</td>
<td>FWD</td>
<td>600V</td>
<td>50A</td>
<td>NP IGBT Inverse Diode</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>Resistor</td>
<td></td>
<td></td>
<td></td>
<td>Resistor</td>
</tr>
</tbody>
</table>
DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.