Features

- Mixed voltage NPC topology
- Reactive power capability
- Low inductance layout
- Split output
- Common collector neutral connection

Target Applications

- Solar inverter
- UPS
- Active frontend

Types

- 30-FT12NMA160SH-M669F08

Maximum Ratings

$T_j = 25\, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j = T_{jmax}$, $T_s = 80, ^\circ C$</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>Maximum repetitive forward current</td>
<td>I_{FSM}</td>
<td>$T_s = 10, \mu s$</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>I^2t-value</td>
<td>I^2t</td>
<td>$T_j = T_{jmax}$</td>
<td>40</td>
<td>A2s</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_s = 80, ^\circ C$</td>
<td>40</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Buck Inverse Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>V_{CE}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_j = T_{jmax}$, $T_s = 80, ^\circ C$</td>
<td>157</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CEM}</td>
<td>$T_j = T_{jmax}$</td>
<td>480</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>$V_{CE(max)} = 1200, V$, $T_j = 150, ^\circ C$</td>
<td>320</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{jmax}$, $T_s = 80, ^\circ C$</td>
<td>398</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>4.20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>τ_{SC}</td>
<td>$T_j \leq 150, ^\circ C$, $V_{CE} = 15, V$</td>
<td>10</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>V_{CE}</td>
<td>$V_{CE} = 15, V$</td>
<td>800</td>
<td>μs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_j = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{f}</td>
<td>$T_j = T_{jmax}$</td>
<td>96</td>
<td>A</td>
</tr>
<tr>
<td>Non-repetitive Peak Surge Current</td>
<td>I_{FSM}</td>
<td>r_s limited by T_{jmax}</td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{jmax}$</td>
<td>110</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Boost Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>V_{CE}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_{C}</td>
<td>$T_j = T_{jmax}$</td>
<td>91</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CEM}</td>
<td>r_s limited by T_{jmax}</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>$V_{CE} \leq 600 \mathrm{V}$, $r_s \geq 175 \mathrm{^\circ C}$</td>
<td></td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{jmax}$</td>
<td>174</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{CE}</td>
<td></td>
<td>420</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_p</td>
<td>$T_j \leq 150 , ^\circ C$</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Boost Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{f}</td>
<td>$T_j = T_{jmax}$</td>
<td>38</td>
<td>A</td>
</tr>
<tr>
<td>Maximum repetitive forward current</td>
<td>I_{CEM}</td>
<td>r_s limited by T_{jmax}</td>
<td>60</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{jmax}$</td>
<td>65</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{f}</td>
<td>$T_j = T_{jmax}$</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>Nonrepetitive peak surge current</td>
<td>I_{FSM}</td>
<td>r_s limited by T_{jmax} (Halfwave 1 Phase 60Hz)</td>
<td>650</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{jmax}$</td>
<td>94</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td>$-40...+(T_{jmax} - 25)$</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>V_{isol}</td>
<td>DC voltage* $t_s = 2 , s$</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC voltage $t_s = 1 , min$</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td>>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 100 % tested in production
Characteristic Values

Buck Inverse Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_G</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>Threshold voltage (for power loss calc. only)</td>
<td>V_T</td>
<td>125</td>
<td>1,45</td>
</tr>
<tr>
<td>Slope resistance (for power loss calc. only)</td>
<td>r_s</td>
<td>25</td>
<td>0,91</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_r</td>
<td>1200</td>
<td>0,25</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

Buck Switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>0,006</td>
<td>5,2</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CES}</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I_{ces}</td>
<td>1200</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{ges}</td>
<td>20</td>
<td>480</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{int}</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>25</td>
<td>133</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{rise}</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>25</td>
<td>225</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{fall}</td>
<td>25</td>
<td>276</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td>125</td>
<td>64</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td></td>
<td>920</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>0</td>
<td>920</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{in}</td>
<td>25</td>
<td>540</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_s</td>
<td>15</td>
<td>740</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease thickness≤50um λ = 1 W/mK</td>
<td></td>
</tr>
</tbody>
</table>

Copyright Vincotech 3

13 Apr. 2018 / Revision 6
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_F</td>
<td></td>
<td>120</td>
<td>V</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RM}</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>±15</td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>4 Ω</td>
<td></td>
<td>µC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$(\mathrm{d}V/\mathrm{d}t)_{\mathrm{RM}}$</td>
<td>125</td>
<td>mAs</td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease, thickness≤50um, $\lambda = 1 , \text{W/mK}$</td>
<td>0.04</td>
<td>K/W</td>
</tr>
<tr>
<td>Boost Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V_{GEM}</td>
<td>$V_{GE} = V_{CE}$</td>
<td>0.0016</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{Cem}</td>
<td>V_{CE}</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>t_{off}</td>
<td></td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{on}</td>
<td></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gint}</td>
<td></td>
<td>none</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td></td>
<td>45</td>
<td>100</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>±15</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>$R_{goff} = 4 , \Omega$</td>
<td>45</td>
<td>125</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td></td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td></td>
<td>6280</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>$f = 1 , \text{MHz}$</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td></td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td></td>
<td>620</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease, thickness≤50um, $\lambda = 1 , \text{W/mK}$</td>
<td>0.54</td>
<td>K/W</td>
</tr>
<tr>
<td>Boost Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_F</td>
<td></td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease, thickness≤50um, $\lambda = 1 , \text{W/mK}$</td>
<td>1.45</td>
<td>K/W</td>
</tr>
</tbody>
</table>

copyright Vincotech
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>(V_{f})</td>
<td>25</td>
<td>1,50</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>2,47</td>
<td></td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(I_{r})</td>
<td>25</td>
<td>3,30</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>2,11</td>
<td></td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>(I_{t_{\text{rm}}})</td>
<td>25</td>
<td>2,11</td>
<td>µA</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{r})</td>
<td>25</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>(Q_{\text{rec}})</td>
<td>25</td>
<td>6,6</td>
<td>μC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(\left(\frac{dI_{f}}{dt} \right)_{\text{max}})</td>
<td>25</td>
<td>2890</td>
<td>A/μs</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>(E_{\text{rec}})</td>
<td>25</td>
<td>1,71</td>
<td>mWs</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{\text{j-s}})</td>
<td></td>
<td>0,74</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Thermistor				
Rated resistance	\(R \)	25	22000	Ω
Deviation of \(R_{\text{rm}} \)	\(\Delta R_{\text{rm}} \)	100	5	%
Power dissipation	\(P \)	25	200	mW
Power dissipation constant		25	2	mW/K
B-value	\(B_{(25/100)} \)	25	3950	K
B-value	\(B_{(25/50)} \)	25	3998	K

Vincotech NTC Reference | B | | | |
Buck Switch

Buck IGBT and Buck FWD

figure 1. IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

- \(t_p = 250 \ \mu s \)
- \(T_j = 25 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

At

- \(t_p = 250 \ \mu s \)
- \(T_j = 125 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

figure 2. IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

figure 3. IGBT

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

- \(t_p = 250 \ \mu s \)
- \(V_{CE} = 10 \ \text{V} \)
- \(T_j = 25/150 \ ^\circ C \)

At

- \(t_p = 250 \ \mu s \)
- \(V_{CE} = 10 \ \text{V} \)
- \(T_j = 25/150 \ ^\circ C \)

figure 4. FWD

Typical FWD forward current as a function of forward voltage

\[I_F = f(V_F) \]

- \(t_p = 250 \ \mu s \)
- \(T_j = 25/150 \ ^\circ C \)
Buck Switch

Buck IGBT and Buck FWD

figure 5.

IGBT

Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(I_C = 100 \) A

figure 6.

IGBT

Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 100 \) A

figure 7.

FWD

Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

figure 8.

FWD

Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 100 \) A
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(T_j = 125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)
- \(R_{goff} = 4 \, \Omega \)

At

- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)

With an inductive load at

- \(T_j = 125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 100 \, \text{A} \)

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At

- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)
figure 13. FWD
Typical reverse recovery charge as a function of collector current

\[Q_{\text{rr}} = f(I_C) \]

At
\[T_J = 25/125 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{\text{gon}} = 4 \, \Omega \]

figure 14. FWD
Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{\text{rr}} = f(R_{\text{gon}}) \]

At
\[T_J = 25/125 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[I_F = 100 \, \text{A} \]
\[V_{GE} = \pm 15 \, \text{V} \]

figure 15. FWD
Typical reverse recovery current as a function of collector current

\[I_{\text{rrM}} = f(I_C) \]

At
\[T_J = 25/125 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{\text{gon}} = 4 \, \Omega \]

figure 16. FWD
Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{\text{rrM}} = f(R_{\text{gon}}) \]

At
\[T_J = 25/125 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[I_F = 100 \, \text{A} \]
\[V_{GE} = \pm 15 \, \text{V} \]
Buck Switch

Buck IGBT and Buck FWD

figure 17.
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[\frac{dI_F}{dt}, \frac{dI_{rec}}{dt} = f(I_{C}) \]

figure 18.
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[\frac{dI_F}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

figure 19.
IGBT transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

figure 20.
FWD transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

At

- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,15E-02</td>
<td>2,26E+00</td>
</tr>
<tr>
<td>5,67E-02</td>
<td>2,93E-01</td>
</tr>
<tr>
<td>7,19E-02</td>
<td>4,85E-02</td>
</tr>
<tr>
<td>2,05E-02</td>
<td>1,26E-02</td>
</tr>
<tr>
<td>7,97E-03</td>
<td>1,53E-03</td>
</tr>
</tbody>
</table>

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,73E-01</td>
<td>3,90E+00</td>
</tr>
<tr>
<td>1,15E-01</td>
<td>8,45E-01</td>
</tr>
<tr>
<td>8,15E-02</td>
<td>1,79E-01</td>
</tr>
<tr>
<td>1,95E-01</td>
<td>4,20E-02</td>
</tr>
<tr>
<td>3,86E-02</td>
<td>9,89E-03</td>
</tr>
<tr>
<td>3,49E-02</td>
<td>1,28E-03</td>
</tr>
</tbody>
</table>
Buck Switch
Buck IGBT and Buck FWD

figure 21.
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]

figure 22.
Collector current as a function of heatsink temperature
\[I_C = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]
\[V_{GE} = 15 \, V \]

figure 23.
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_s) \]

At
\[T_j = 150 \, ^\circ C \]

figure 24.
Forward current as a function of heatsink temperature
\[I_F = f(T_s) \]

At
\[T_j = 150 \, ^\circ C \]
Buck Switch

Buck IGBT and Buck FWD

Figure 25. IGBT

Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

At

- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{CE} = \pm 15 \) V
- \(T_j = T_{j\text{max}} \)

Figure 26. IGBT

Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At

- \(I_D = 160 \) A
- \(T_j = 25 \) °C

Figure 27. IGBT

Short circuit withstand time as a function of gate-emitter voltage

\[t_{sc} = f(V_{GE}) \]

At

- \(V_{CE} = 1200 \) V
- \(T_j \leq 175 \) °C

Figure 28. IGBT

Typical short circuit collector current as a function of gate-emitter voltage

\[I_{C(sc)} = f(V_{GE}) \]

At

- \(V_{CE} \leq 1200 \) V
- \(T_j = 175 \) °C

copyright Vincotech 12 13 Apr. 2018 / Revision 6
Buck Switch

Buck IGBT and Buck FWD

Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At

\[T_j = T_{jmax} - 25 \degree C \]

\[U_{ccminus} = U_{ccplus} \]

Switching mode: 3 level switching
Boost Switch
Boost IGBT and Boost FWD

figure 1. IGBT
Typical output characteristics
\[I_C = f(V_{CE}) \]

- At
 - \(t_p = 250 \ \mu s \)
 - \(T_j = 25 \ ^\circ C \)
 - \(V_{CE} \) from 7 V to 17 V in steps of 1 V

figure 2. IGBT
Typical output characteristics
\[I_C = f(V_{CE}) \]

- At
 - \(t_p = 250 \ \mu s \)
 - \(T_j = 150 \ ^\circ C \)
 - \(V_{CE} \) from 7 V to 17 V in steps of 1 V

figure 3. IGBT
Typical transfer characteristics
\[I_C = f(V_{GE}) \]

figure 4. FWD
Typical FWD forward current as a function of forward voltage
\[I_F = f(V_F) \]

- At
 - \(t_p = 250 \ \mu s \)
 - \(V_{CE} = 10 \ V \)
 - \(T_j = 25/150 \ ^\circ C \)
 - \(T_j = T_{j\text{max}} - 25 \ ^\circ C \)
Boost Switch
Boost IGBT and Boost FWD

figure 5.
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]

![Graph showing typical switching energy losses for IGBT](image)

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(I_C = 100 \) A

figure 6.
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

![Graph showing typical switching energy losses for IGBT](image)

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 100 \) A

figure 7.
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_C) \]

![Graph showing typical reverse recovery energy loss for FWD](image)

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

figure 8.
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]

![Graph showing typical reverse recovery energy loss for FWD](image)

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 100 \) A
Boost Switch
Boost IGBT and Boost FWD

figure 9. IGBT

Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at:

- \(T_j = 125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)
- \(I_C = 100 \, \text{A} \)

figure 10. IGBT

Typical switching times as a function of gate resistor

\[t = f(R_G) \]

With an inductive load at:

- \(T_j = 125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 100 \, \text{A} \)

figure 11. FWD

Typical reverse recovery time as a function of collector current

\[t_t = f(I_C) \]

At:

- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 4,0 \, \Omega \)

figure 12. FWD

Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_t = f(R_{gon}) \]

At:

- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_F = 100 \, \text{A} \)
Boost Switch
Boost IGBT and Boost FWD

Figure 13.
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

[Graph showing typical reverse recovery charge as a function of collector current.

Figure 14.
Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

[Graph showing typical reverse recovery charge as a function of IGBT turn on gate resistor.

At

\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 4 \, \Omega \]

Figure 15.
Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

[Graph showing typical reverse recovery current as a function of collector current.

Figure 16.
Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

[Graph showing typical reverse recovery current as a function of IGBT turn on gate resistor.

At

\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[I_F = 100 \, A \]
\[V_{GE} = \pm 15 \, V \]

Copyright Vincotech
figure 17. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI}{dt}, \frac{di_{rec}}{dt} = f(I_c) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

figure 18. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI}{dt}, \frac{di_{rec}}{dt} = f(R_{gon}) \]

At
- \(T_j = 25/125 \) °C
- \(V_{BE} = 350 \) V
- \(I_f = 100 \) A
- \(V_{GE} = \pm 15 \) V

figure 19. IGBT
IGBT transient thermal impedance as a function of pulse width
\[Z_{th(j-s)} = f(t_p) \]

At
- \(D = t_p / T \)
- \(R_{(j-s)} = 0.54 \) K/W

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,12E-01</td>
<td>2,87E+00</td>
</tr>
<tr>
<td>8,79E-02</td>
<td>4,59E-01</td>
</tr>
<tr>
<td>1,16E-01</td>
<td>9,51E-02</td>
</tr>
<tr>
<td>1,70E-01</td>
<td>2,49E-02</td>
</tr>
<tr>
<td>3,03E-02</td>
<td>4,36E-03</td>
</tr>
</tbody>
</table>

figure 20. FWD
FWD transient thermal impedance as a function of pulse width
\[Z_{th(j-s)} = f(t_p) \]

At
- \(D = t_p / T \)
- \(R_{(j-s)} = 0.74 \) K/W

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,78E-02</td>
<td>3,67E+00</td>
</tr>
<tr>
<td>1,00E-01</td>
<td>5,41E-01</td>
</tr>
<tr>
<td>1,97E-01</td>
<td>9,81E-02</td>
</tr>
<tr>
<td>2,56E-01</td>
<td>2,84E-02</td>
</tr>
<tr>
<td>6,83E-02</td>
<td>4,90E-03</td>
</tr>
</tbody>
</table>
Boost Switch
Boost IGBT and Boost FWD

Figure 21.
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

\[I_C = f(T_s) \]

At
\[T_j = 175 \degree C \]

Figure 22.
Collector current as a function of heatsink temperature

\[I_C = f(T_s) \]

At
\[T_j = 175 \degree C \]
\[V_{GE} = 15 \text{ V} \]

Figure 23.
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At
\[T_j = 150 \degree C \]

Figure 24.
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At
\[T_j = 150 \degree C \]
Boost IGBT

Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

Short circuit withstand time as a function of gate-emitter voltage

\[t_{sc} = f(V_{GE}) \]

Typical short circuit collector current as a function of gate-emitter voltage

\[I_{c(max)} = f(V_{CE}) \]

At

- \[T_j = T_{j,\text{max}} - 25 \degree C \]
- \[U_{\text{com}} = U_{\text{peak}} \]

Switching mode: 3 level switching

At

- \[I_D = 100 \ A \]
- \[T_j = 25 \degree C \]

At

- \[V_{CE} = 600 \ V \]
- \[T_j \leq 150 \degree C \]

At

- \[V_{CE} \leq 400 \ V \]
- \[T_j = 125 \degree C \]
Boost Inverse Diode

Figure 25.
Typical FWD forward current as a function of forward voltage

\[I_F = f(V_F) \]

Figure 26.
FWD transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

\[D = \frac{t_p}{T_{R_{th(j-s)}}} = 1.45 \text{ K/W} \]

Figure 27.
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

\[T_j = 175 ^\circ C \]

Figure 28.
Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

\[T_j = 175 ^\circ C \]
Buck Inverse Diode

Figure 1. Buck Inverse Diode

Typical FWD forward current as a function of forward voltage

\[I_F = f(V_F) \]

Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

Figure 2. Buck Inverse Diode

FWD transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

\[D = \frac{t_p}{T} \]

\[R_{th(j-s)} = 1,77 \text{ K/W} \]

Figure 3. Buck Inverse Diode

Forward current as a function of heatsink temperature

\[I_F = f(T_j) \]

\[T_j = 150 \text{ °C} \]

Figure 4. Buck Inverse Diode

Copyright Vincotech 2018 / Revision 6
figure 1. Thermistor

Typical NTC characteristic as a function of temperature

\[R_T = f(T) \]
Switching Definitions Buck

General conditions

\[T_j = 125 \, ^\circ \text{C} \]
\[R_{\text{on}} = 4 \, \Omega \]
\[R_{\text{off}} = 4 \, \Omega \]

figure 1. Buck IGBT
Turn-off Switching Waveforms & definition of \(t_{\text{doff}} \), \(t_{\text{Eoff}} \)

\(t_{\text{doff}} = 0,28 \, \mu\text{s} \)
\(t_{\text{Eoff}} = 0,66 \, \mu\text{s} \)

figure 2. Buck IGBT
Turn-on Switching Waveforms & definition of \(t_{\text{don}} \), \(t_{\text{Eon}} \)

\(t_{\text{don}} = 0,14 \, \mu\text{s} \)
\(t_{\text{Eon}} = 0,31 \, \mu\text{s} \)

figure 3. Buck IGBT
Turn-off Switching Waveforms & definition of \(t_f \)

\(t_f = 0,06 \, \mu\text{s} \)

figure 4. Buck IGBT
Turn-on Switching Waveforms & definition of \(t_r \)

\(t_r = 0,02 \, \mu\text{s} \)
Switching Definitions Buck

figure 5. Buck IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

\[P_{\text{off}} (100\%) = 35.11 \text{ kW} \]
\[E_{\text{off}} (100\%) = 4.03 \text{ mJ} \]
\[t_{\text{Eoff}} = 0.66 \text{ µs} \]

figure 6. Buck IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

\[P_{\text{on}} (100\%) = 35.11 \text{ kW} \]
\[E_{\text{on}} (100\%) = 3.18 \text{ mJ} \]
\[t_{\text{Eon}} = 0.31 \text{ µs} \]

figure 7. Boost FWD
Turn-off Switching Waveforms & definition of t_{rr}

\[V_d (100\%) = 350 \text{ V} \]
\[I_d (100\%) = 100 \text{ A} \]
\[I_{\text{RRM}} (100\%) = -151 \text{ A} \]
\[t_{\text{rr}} = 0.08 \text{ µs} \]
Switching Definitions Buck

figure 8. Boost FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
($t_{Qrr} =$ integrating time for Q_{rr})

figure 9. Boost FWD
Turn-on Switching Waveforms & definition of t_{Erec}
($t_{Erec} =$ integrating time for E_{rec})

$I_d (100%) = 100$ A
$Q_{rr} (100%) = 7,13$ µC
$t_{Qrr} = 0,16$ µs

$P_{rec} (100%) = 35,11$ kW
$E_{rec} (100%) = 1,01$ mJ
$t_{Erec} = 0,16$ µs

Buck switching measurement circuit

figure 10.
Switching Definitions Boost

General conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>4 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

$t_{doff} = 0,18 \mu s$

$t_{Eoff} = 0,44 \mu s$

- $V_{CE}(0\%) = -15$ V
- $V_{CE}(100\%) = 350$ V
- $I_C(100\%) = 100$ A
- $t_{doff} = 0,18 \mu s$
- $t_{Eoff} = 0,44 \mu s$

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

$t_{don} = 0,10 \mu s$

$t_{Eon} = 0,15 \mu s$

- $V_{CE}(0\%) = -15$ V
- $V_{CE}(100\%) = 15$ V
- $V_C(100\%) = 350$ V
- $I_C(100\%) = 100$ A
- $t_{don} = 0,10 \mu s$
- $t_{Eon} = 0,15 \mu s$

Turn-off Switching Waveforms & definition of t_f

$t_f = 0,064 \mu s$

Turn-on Switching Waveforms & definition of t_r

$t_r = 0,019 \mu s$
Switching Definitions Boost

figure 5. Boost IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

P_{off} (100%) = 34,96 kW
E_{off} (100%) = 3,32 mJ
$t_{\text{Eoff}} = 0,44 \, \mu s$

figure 6. Boost IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

P_{on} (100%) = 34,964 kW
E_{on} (100%) = 1,52 mJ
$t_{\text{Eon}} = 0,18 \, \mu s$

figure 7. Buck FWD
Turn-off Switching Waveforms & definition of t_{rr}

V_d (100%) = 350 V
I_d (100%) = 100 A
$I_{\text{RRM 10%}}$ (100%) = -142 A
$t_{\text{rr}} = 0,07 \, \mu s$
Switching Definitions Boost

figure 8. Buck FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

figure 9. Buck FWD
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

$I_d (100\%) = 100$ A
$Q_{rr} (100\%) = 12.71$ µC
$t_{Qrr} = 1.00$ µs

$P_{inc} (100\%) = 69.93$ kW
$E_{inc} (100\%) = 3.61$ mJ
$t_{Einc} = 1.00$ µs

Boost switching measurement circuit

figure 10.

Copyright Vincotech 2018 / Revision 6
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 13mm housing</td>
<td>30-FT12NMA160SH-M669F08</td>
</tr>
</tbody>
</table>

Pin table [mm]

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>3</td>
<td>C1</td>
<td>29</td>
<td>2.5</td>
<td>3</td>
<td>C2</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>0</td>
<td>C1</td>
<td>30</td>
<td>2.5</td>
<td>0</td>
<td>C2</td>
</tr>
<tr>
<td>3</td>
<td>67.5</td>
<td>0</td>
<td>C1</td>
<td>31</td>
<td>0</td>
<td>3</td>
<td>C2</td>
</tr>
<tr>
<td>4</td>
<td>65</td>
<td>0</td>
<td>C1</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>C2</td>
</tr>
<tr>
<td>5</td>
<td>63.5</td>
<td>0</td>
<td>C1</td>
<td>33</td>
<td>5.75</td>
<td>19.45</td>
<td>G4</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>0</td>
<td>C1</td>
<td>34</td>
<td>5.75</td>
<td>22.45</td>
<td>S4</td>
</tr>
<tr>
<td>7</td>
<td>52.75</td>
<td>3</td>
<td>N1</td>
<td>35</td>
<td>12.1</td>
<td>22.7</td>
<td>K2</td>
</tr>
<tr>
<td>8</td>
<td>52.75</td>
<td>0</td>
<td>N1</td>
<td>36</td>
<td>19.25</td>
<td>22.85</td>
<td>G2</td>
</tr>
<tr>
<td>9</td>
<td>50.25</td>
<td>3</td>
<td>N1</td>
<td>37</td>
<td>17.85</td>
<td>19.85</td>
<td>S2</td>
</tr>
<tr>
<td>10</td>
<td>50.25</td>
<td>0</td>
<td>N1</td>
<td>38</td>
<td>2</td>
<td>36</td>
<td>L2</td>
</tr>
<tr>
<td>11</td>
<td>43</td>
<td>3</td>
<td>E1</td>
<td>39</td>
<td>4.5</td>
<td>36</td>
<td>L2</td>
</tr>
<tr>
<td>12</td>
<td>43</td>
<td>0</td>
<td>E1</td>
<td>40</td>
<td>7</td>
<td>36</td>
<td>L2</td>
</tr>
<tr>
<td>13</td>
<td>40.5</td>
<td>3</td>
<td>E1</td>
<td>41</td>
<td>9.5</td>
<td>36</td>
<td>L2</td>
</tr>
<tr>
<td>14</td>
<td>40.5</td>
<td>0</td>
<td>E1</td>
<td>42</td>
<td>12</td>
<td>36</td>
<td>L2</td>
</tr>
<tr>
<td>15</td>
<td>38</td>
<td>3</td>
<td>E1</td>
<td>43</td>
<td>14.5</td>
<td>36</td>
<td>L2</td>
</tr>
<tr>
<td>16</td>
<td>38</td>
<td>0</td>
<td>E1</td>
<td>44</td>
<td>38</td>
<td>36</td>
<td>L1</td>
</tr>
<tr>
<td>17</td>
<td>32</td>
<td>3</td>
<td>E2</td>
<td>45</td>
<td>40.5</td>
<td>36</td>
<td>L1</td>
</tr>
<tr>
<td>18</td>
<td>32</td>
<td>0</td>
<td>E2</td>
<td>46</td>
<td>43</td>
<td>36</td>
<td>L1</td>
</tr>
<tr>
<td>19</td>
<td>29.5</td>
<td>3</td>
<td>E2</td>
<td>47</td>
<td>45.5</td>
<td>36</td>
<td>L1</td>
</tr>
<tr>
<td>20</td>
<td>29.5</td>
<td>0</td>
<td>E2</td>
<td>48</td>
<td>48</td>
<td>36</td>
<td>L1</td>
</tr>
<tr>
<td>21</td>
<td>27</td>
<td>3</td>
<td>E2</td>
<td>49</td>
<td>50.5</td>
<td>36</td>
<td>L1</td>
</tr>
<tr>
<td>22</td>
<td>27</td>
<td>0</td>
<td>E2</td>
<td>50</td>
<td>49.9</td>
<td>32</td>
<td>G3</td>
</tr>
<tr>
<td>23</td>
<td>19.75</td>
<td>0</td>
<td>N2</td>
<td>51</td>
<td>52.9</td>
<td>32</td>
<td>S3</td>
</tr>
<tr>
<td>24</td>
<td>17.25</td>
<td>0</td>
<td>N2</td>
<td>52</td>
<td>52</td>
<td>18.1</td>
<td>K1</td>
</tr>
<tr>
<td>25</td>
<td>14.75</td>
<td>0</td>
<td>N2</td>
<td>53</td>
<td>64.2</td>
<td>36.6</td>
<td>NTC</td>
</tr>
<tr>
<td>26</td>
<td>12.25</td>
<td>0</td>
<td>N2</td>
<td>54</td>
<td>70.6</td>
<td>36.55</td>
<td>NTC</td>
</tr>
<tr>
<td>27</td>
<td>5</td>
<td>3</td>
<td>C2</td>
<td>55</td>
<td>70</td>
<td>18.9</td>
<td>S1</td>
</tr>
<tr>
<td>28</td>
<td>5</td>
<td>0</td>
<td>C2</td>
<td>56</td>
<td>68.55</td>
<td>15.9</td>
<td>G1</td>
</tr>
</tbody>
</table>

Copyright Vincotech 30

13 Apr. 2018 / Revision 6
Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1,Q2</td>
<td>IGBT</td>
<td>1200 V</td>
<td>160 A</td>
<td>Buck Switch</td>
<td></td>
</tr>
<tr>
<td>DQ1,DQ2</td>
<td>FWD</td>
<td>1200 V</td>
<td>7 A</td>
<td>Buck Inverse Diode</td>
<td></td>
</tr>
<tr>
<td>D3,D4</td>
<td>FWD</td>
<td>600 V</td>
<td>120 A</td>
<td>Buck Diode</td>
<td></td>
</tr>
<tr>
<td>Q3,Q4</td>
<td>IGBT</td>
<td>600 V</td>
<td>120 A</td>
<td>Boost Switch</td>
<td></td>
</tr>
<tr>
<td>D1,D2</td>
<td>FWD</td>
<td>1200 V</td>
<td>60 A</td>
<td>Boost Diode</td>
<td></td>
</tr>
<tr>
<td>DQ3,DQ4</td>
<td>FWD</td>
<td>600 V</td>
<td>50 A</td>
<td>Boost Inverse Diode</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>NTC</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
Handling instruction

Handling instructions for flow 2 packages see vincotech.com website.

Package data

Package data for flow 2 packages see vincotech.com website.

UL recognition and file number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.