Features
- Neutral-point-Clamped inverter
- High power flow2 housing
- Low Inductance Layout

Target Applications
- UPS
- Solar inverters

Types
- F206NIA200SA

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td>$T_{j}=T_{j}\text{max}$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_{C}</td>
<td>$T_{j}=T_{j}\text{max}$ $T_{j}=80°C$</td>
<td>155</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{p}</td>
<td>I_{p} limited by $T_{j}\text{max}$</td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_{j}=T_{j}\text{max}$ $T_{j}=80°C$</td>
<td>245</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>$T_{j}=T_{j}\text{max}$</td>
<td>372</td>
<td>W</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>$V_{GE}=15V$ $T_{j}=150°C$</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td>$V_{GE}=15V$ $T_{j}=175°C$</td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{max}</td>
<td>$T_{j}=25°C$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{F}</td>
<td>I_{F} limited by $T_{j}\text{max}$ $T_{j}=80°C$</td>
<td>109</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{F\text{rms}}$</td>
<td>I_{F} limited by $T_{j}\text{max}$ $T_{j}=100°C$</td>
<td>144</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_{j}=T_{j}\text{max}$ $T_{j}=80°C$</td>
<td>158</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td>$V_{GE}=15V$ $T_{j}=175°C$</td>
<td>239</td>
<td>V</td>
</tr>
</tbody>
</table>
Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>(V_{CE})</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>(I_C)</td>
<td>(T_j=T_{max}) (T_j=80°C) (T_j=80°C)</td>
<td>154</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{C_{puls}})</td>
<td>(I_p) limited by (T_{max})</td>
<td>600</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_j=T_{max}) (T_j=80°C) (T_j=80°C)</td>
<td>245</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>(V_{GE})</td>
<td></td>
<td>(\leq 20)</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>(I_{SC}) (V_{CC}) (V_{GE}=15V)</td>
<td></td>
<td>6</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j_{max}})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Boost Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{RRM})</td>
<td>(T_j=25°C)</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_F)</td>
<td>(T_j=T_{max}) (T_j=80°C) (T_j=80°C)</td>
<td>136</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{F_{puls}})</td>
<td>(I_p) limited by (T_{max})</td>
<td>600</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>(P_{tot})</td>
<td>(T_j=T_{max}) (T_j=80°C) (T_j=80°C)</td>
<td>190</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j_{max}})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Boost FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{RRM})</td>
<td>(T_j=25°C)</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_F)</td>
<td>(T_j=T_{max}) (T_j=80°C) (T_j=80°C)</td>
<td>138</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{F_{puls}})</td>
<td>(I_p) limited by (T_{max})</td>
<td>600</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_j=T_{max}) (T_j=80°C) (T_j=80°C)</td>
<td>190</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j_{max}})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{stg})</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>(T_{op})</td>
<td></td>
<td>-40...-((T_{j_{max}})-25)</td>
<td>°C</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>(V_{ins})</td>
<td>(I=2s)</td>
<td>DC voltage</td>
<td>4000</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>V<sub>GE(th)</sub></td>
<td>V<sub>E=VGE</sub></td>
<td>0,0032</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V<sub>CE(sat)</sub></td>
<td>0</td>
<td>15</td>
<td>200</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I<sub>RRM</sub></td>
<td>0</td>
<td>6</td>
<td>600</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I<sub>GE</sub></td>
<td>20</td>
<td>0</td>
<td>700</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R<sub>gint</sub></td>
<td>1</td>
<td>5</td>
<td>105</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t<sub>d(on)</sub></td>
<td>15</td>
<td>350</td>
<td>200</td>
</tr>
<tr>
<td>Rise time</td>
<td>t<sub>r</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t<sub>d(off)</sub></td>
<td>15</td>
<td>350</td>
<td>200</td>
</tr>
<tr>
<td>Fall time</td>
<td>t<sub>f</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E<sub>on</sub></td>
<td>1.5</td>
<td>1.89</td>
<td>3.3</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E<sub>off</sub></td>
<td>1.5</td>
<td>1.89</td>
<td>3.3</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C<sub>in</sub></td>
<td></td>
<td></td>
<td>12320</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C<sub>out</sub></td>
<td>1 MHz</td>
<td>25</td>
<td>768</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C<sub>rss</sub></td>
<td></td>
<td></td>
<td>366</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q<sub>gav</sub></td>
<td>15</td>
<td>700</td>
<td>200</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>R<sub>thJH</sub></td>
<td></td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>Thermal resistance chip to case</td>
<td>R<sub>thJC</sub></td>
<td></td>
<td></td>
<td>3.3</td>
</tr>
</tbody>
</table>

Buck FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V<sub>D</sub></td>
<td>200</td>
<td>1.5</td>
<td>1.89</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I<sub>RRM</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t<sub>rr</sub></td>
<td>15</td>
<td>350</td>
<td>200</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q<sub>r</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>Δ<sub>v_i(t)</sub></td>
<td>25</td>
<td>16.2</td>
<td>μC</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E<sub>rec</sub></td>
<td>25</td>
<td>2.02</td>
<td>3.66</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>R<sub>thJH</sub></td>
<td></td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>Thermal resistance chip to case</td>
<td>R<sub>thJC</sub></td>
<td></td>
<td></td>
<td>3.3</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{CE}=V_{GE}$</td>
<td>0.0032</td>
<td></td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td>15</td>
<td>0.66</td>
<td>mA</td>
</tr>
<tr>
<td>Collector-emitter cut-off diode</td>
<td>I_{OFF}</td>
<td>8</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GSS}</td>
<td>20</td>
<td>0</td>
<td>700 nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{GINT}</td>
<td>1</td>
<td>233</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>≤15</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>200</td>
<td>45</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>$R_{geo}=4 \Omega$</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>$R_{gon}=4 \Omega$</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td>2.17</td>
<td>4.15</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td>66</td>
<td>7.64</td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>12320</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>25</td>
<td>768</td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rs}</td>
<td>366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{Gex}</td>
<td>15</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>R_{ONH}</td>
<td>Thermal grease thickness=550um</td>
<td>0.39</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to case</td>
<td>R_{ONC}</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td>200</td>
<td>1.60</td>
<td>V</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>R_{OFFH}</td>
<td>Thermal grease thickness=550um</td>
<td>0.50</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to case</td>
<td>R_{OFFC}</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td>200</td>
<td>1.60</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{r}</td>
<td>600</td>
<td>1.65</td>
<td>μA</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{pe}^R</td>
<td>600</td>
<td>262</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>$R_{geo}=4 \Omega$</td>
<td>211</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{pe}</td>
<td>$R_{gon}=4 \Omega$</td>
<td>16.5</td>
<td>μC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>di/dt</td>
<td>262</td>
<td>1616</td>
<td>A/μs</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td>2.17</td>
<td>4.15</td>
<td>mWs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>R_{OFFH}</td>
<td>Thermal grease thickness=550um</td>
<td>0.50</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to case</td>
<td>R_{OFFC}</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td>T=25°C</td>
<td>22000</td>
<td>Ω</td>
</tr>
<tr>
<td>Deviation of R_{100}</td>
<td>ΔR/R</td>
<td>$R_{100}=1486 \Omega$</td>
<td>-5</td>
<td>%</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>T=25°C</td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>P</td>
<td>T=25°C</td>
<td>2</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>$B(25/50)$</td>
<td>Tol. ±3%</td>
<td>3950</td>
<td>K</td>
</tr>
<tr>
<td>B-value</td>
<td>$B(25/100)$</td>
<td>Tol. ±3%</td>
<td>3996</td>
<td>K</td>
</tr>
</tbody>
</table>

copyright Vincotech
15 Feb. 2019 / Revision 5
Figure 1: IGBT
Typical output characteristics
\(I_C = f(V_{CE}) \)

At
\(t_p = 350 \ \mu s \)
\(T_j = 25 ^\circ C \)
\(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 2: IGBT
Typical output characteristics
\(I_C = f(V_{CE}) \)

At
\(t_p = 350 \ \mu s \)
\(T_j = 25 ^\circ C \)
\(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 3: IGBT
Typical transfer characteristics
\(I_C = f(V_{GE}) \)

At
\(t_p = 350 \ \mu s \)
\(T_j = T_{jmax} - 25 ^\circ C \)
\(V_{CE} = 10 \ V \)

Figure 4: FRED
Typical diode forward current as a function of forward voltage
\(I_F = f(V_F) \)

At
\(t_p = 350 \ \mu s \)
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{g0n} = 4 \) Ω
- \(I_C = 200 \) A

Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_C) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 200 \) A
Buck

Figure 9 IGBT
Typical switching times as a function of collector current
$t = f(I_C)$

With an inductive load at
$T_J = 125 \degree C$
$V_{CE} = 350 \text{ V}$
$V_{GE} = \pm 15 \text{ V}$
$R_{gon} = 4 \text{ } \Omega$
$R_{goff} = 4 \text{ } \Omega$

Figure 10 IGBT
Typical switching times as a function of gate resistor
$t = f(R_G)$

With an inductive load at
$T_J = 125 \degree C$
$V_{CE} = 350 \text{ V}$
$V_{GE} = \pm 15 \text{ V}$
$I_C = 200 \text{ A}$

Figure 11 FRED
Typical reverse recovery time as a function of collector current
$t_{rr} = f(I_C)$

At
$T_J = 25/125 \degree C$
$V_{CE} = 350 \text{ V}$
$V_{GE} = \pm 15 \text{ V}$
$R_{gon} = 4 \text{ } \Omega$

Figure 12 FRED
Typical reverse recovery time as a function of IGBT turn on gate resistor
$t_{rr} = f(R_{gon})$

At
$T_J = 25/125 \degree C$
$V_{GE} = 350 \text{ V}$
$I_F = 200 \text{ A}$
$V_{GE} = \pm 15 \text{ V}$

copyright Vincotech
Figure 13

Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

Figure 14

Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

Figure 15

Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

Figure 16

Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
dI_0/dt, dI_{rec}/dt = f(I_c)
\]

![Graph showing di/dt vs Ic for FRED and IGBT.]

- **At**
 - \(T_j = 25/125 \, ^\circ \text{C} \)
 - \(V_{CE} = 350 \, \text{V} \)
 - \(V_{GE} = 15 \, \text{V} \)
 - \(R_{gon} = 4 \, \Omega \)

IGBT

IGBT transient thermal impedance as a function of pulse width
\[
Z_{thJH} = f(t_p)
\]

- **At**
 - \(D = 0.5 \)
 - \(R_{thJH} = 0.39 \, \text{KW} \)

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R , (\text{C/W}))</th>
<th>(\text{Tau} , (\text{s}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>1.2E+01</td>
</tr>
<tr>
<td>0.10</td>
<td>2.6E+00</td>
</tr>
<tr>
<td>0.07</td>
<td>4.8E-01</td>
</tr>
<tr>
<td>0.11</td>
<td>5.9E-02</td>
</tr>
<tr>
<td>0.05</td>
<td>1.3E-02</td>
</tr>
<tr>
<td>0.02</td>
<td>4.9E-04</td>
</tr>
</tbody>
</table>

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[
dI_0/dt, dI_{rec}/dt = f(R_{gon})
\]

![Graph showing di/dt vs Rgon for FRED and IGBT.]

- **At**
 - \(T_j = 25/125 \, ^\circ \text{C} \)
 - \(V_{GE} = 15 \, \text{V} \)
 - \(I_F = 200 \, \text{A} \)
 - \(V_{CE} = 350 \, \text{V} \)

FRED

FRED transient thermal impedance as a function of pulse width
\[
Z_{thJH} = f(t_p)
\]

- **At**
 - \(D = 0.5 \)
 - \(R_{thJH} = 0.60 \, \text{KW} \)

FRED thermal model values

<table>
<thead>
<tr>
<th>(R , (\text{C/W}))</th>
<th>(\text{Tau} , (\text{s}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>9.1E+00</td>
</tr>
<tr>
<td>0.12</td>
<td>1.6E+00</td>
</tr>
<tr>
<td>0.18</td>
<td>1.9E-01</td>
</tr>
<tr>
<td>0.19</td>
<td>3.1E-02</td>
</tr>
<tr>
<td>0.04</td>
<td>3.3E-03</td>
</tr>
<tr>
<td>0.04</td>
<td>2.8E-04</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}}(T_h) = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]

Power dissipation as a function of heatsink temperature

\[P_{\text{tot}}(T_h) = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]

Collector current as a function of heatsink temperature

\[I_{C}(T_h) = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]
\[V_{GE} = 15 \, V \]

Forward current as a function of heatsink temperature

\[I_{F}(T_h) = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]
Figure 25
Safe operating area as a function of collector-emitter voltage
\[I_C = f(V_{CE}) \]

Figure 26
Gate voltage vs Gate charge
\[V_{GE} = f(Q_g) \]

At
\[D = \text{single pulse} \]
\[T_h = 80 \text{ } ^\circ \text{C} \]
\[V_{GE} = \leq 15 \text{ } \text{V} \]
\[T_j = T_{j\text{max}} \text{ } ^\circ \text{C} \]
Figure 1
Typical output characteristics
$I_C = f(V_{CE})$

At
$t_p = 250 \, \mu s$
$T_J = 25 \, ^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics
$I_C = f(V_{CE})$

At
$t_p = 250 \, \mu s$
$T_J = 125 \, ^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics
$I_C = f(V_{GE})$

At
$t_p = 250 \, \mu s$
$T_J = 25 \, ^\circ C$

Figure 4
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$

At
$t_p = 250 \, \mu s$
Figure 5 IGBT
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]

With an inductive load at
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CG} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 4 \, \Omega \)
- \(R_{goff} = 4 \, \Omega \)

Figure 6 IGBT
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CG} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_C = 201 \, A \)

Figure 7 IGBT
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_C) \]

With an inductive load at
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CG} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 4 \, \Omega \)

Figure 8 IGBT
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CG} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_C = 201 \, A \)
Figure 9
Typical switching times as a function of collector current
$t = f(I_C)$

With an inductive load at
$T_j = 125 ^\circ C$
$V_{CE} = 350 \text{ V}$
$V_{GE} = \pm 15 \text{ V}$
$R_{gon} = 4 \Omega$
$R_{goff} = 4 \Omega$

Figure 10
Typical switching times as a function of gate resistor
$t = f(R_g)$

With an inductive load at
$T_j = 125 ^\circ C$
$V_{CE} = 350 \text{ V}$
$V_{GE} = \pm 15 \text{ V}$
$I_C = 201 \text{ A}$

Figure 11
Typical reverse recovery time as a function of collector current
$t_{rr} = f(I_C)$

At
$T_j = 25/125 ^\circ C$
$V_{CE} = 350 \text{ V}$
$V_{GE} = \pm 15 \text{ V}$
$R_{gon} = 4 \Omega$

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
$t_{rr} = f(R_{gon})$

At
$T_j = 25/125 ^\circ C$
$V_{CE} = 350 \text{ V}$
$I_C = 201 \text{ A}$
$V_{GE} = \pm 15 \text{ V}$
Figure 13
Typical reverse recovery charge as a function of collector current
Q_{rr} = f(I_C)

At
T_j = 25/125 °C
V_{CE} = 350 V
V_{GE} = ±15 V
R_{gon} = 4 Ω

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
Q_{rr} = f(R_{gon})

At
T_j = 25/125 °C
V_{CE} = 350 V
I_F = 201 A
V_{GE} = ±15 V

Figure 15
Typical reverse recovery current as a function of collector current
I_{RRM} = f(I_C)

At
T_j = 25/125 °C
V_{CE} = 350 V
V_{GE} = ±15 V
R_{gon} = 4 Ω

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
I_{RRM} = f(R_{gon})

At
T_j = 25/125 °C
V_{CE} = 350 V
I_F = 201 A
V_{GE} = ±15 V
Figure 17 FRED
Typical rate of fall of forward and reverse recovery current as a function of collector current $\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c)$

At
- $T_j = 25/125$ °C
- $V_{CE} = 350$ V
- $V_GE = \pm 15$ V
- $I_F = 201$ A
- $R_{gon} = 4 \Omega$

Figure 18 FRED
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor $\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon})$

At
- $T_j = 25/125$ °C
- $V_{CE} = 350$ V
- $V_GE = \pm 15$ V
- $I_F = 201$ A
- $V_{GE} = \pm 15$ V

Figure 19 IGBT
IGBT transient thermal impedance as a function of pulse width $Z_{thJH} = f(t_p)$

At
- $D = tp / T$
- $R_{thJH} = 0.39$ KW

IGBT thermal model values
- $R (C/W)$ $\tau (s)$
 - 0.02 1.2E+01
 - 0.10 2.6E+00
 - 0.07 4.8E-01
 - 0.11 5.9E-02
 - 0.05 1.3E-02
 - 0.02 4.9E-04

Figure 20 FRED
FRED transient thermal impedance as a function of pulse width $Z_{thJH} = f(t_p)$

At
- $D = tp / T$
- $R_{thJH} = 0.50$ KW

FRED thermal model values
- $R (C/W)$ $\tau (s)$
 - 0.04 9.6E+00
 - 0.10 1.7E+00
 - 0.09 2.6E-01
 - 0.18 3.6E-02
 - 0.05 7.1E-03
 - 0.04 4.0E-04
Power dissipation as a Collector current as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]
\[I_C = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

Power dissipation as a Forward current as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]
\[I_F = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]
\[V_{GE} = 15 \, \text{V} \]

Copyright Vincotech 17
15 Feb. 2019 / Revision 5
Figure 25
Boost Inverse Diode
Typical diode forward current as a function of forward voltage
$I_F = f(V_f)$

![Graph showing diode forward current as a function of forward voltage.]

At
$t_p = 250 \ \mu s$

Figure 26
Boost Inverse Diode
Diode transient thermal impedance as a function of pulse width
$Z_{thJH} = f(t_p)$

![Graph showing diode transient thermal impedance as a function of pulse width.]

At
$D = \frac{t_p}{T}$
$R_{thJH} = 0.50 \ \text{K/W}$

Figure 27
Boost Inverse Diode
Power dissipation as a function of heatsink temperature
$P_{tot} = f(T_h)$

![Graph showing power dissipation as a function of heatsink temperature.]

At
$T_j = 175 ^\circ C$

Figure 28
Boost Inverse Diode
Forward current as a function of heatsink temperature
$I_F = f(T_h)$

![Graph showing forward current as a function of heatsink temperature.]

At
$T_j = 175 ^\circ C$
Figure 1
Typical NTC characteristic as a function of temperature
\[R_T = f(T) \]
Switching Definitions BUCK IGBT

General conditions

\[T_j = 125 \, ^\circ C \]
\[R_{son} = 4 \, \Omega \]
\[R_{poff} = 4 \, \Omega \]

Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of \(t_{doff}, t_{Eoff} \)

- \(V_G(0\%) = -15 \, V \)
- \(V_G(100\%) = 15 \, V \)
- \(I_C(100\%) = 201 \, A \)
- \(t_{doff} = 0.34 \, \mu s \)
- \(t_{Eoff} = 0.59 \, \mu s \)

Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of \(t_{don}, t_{Eon} \)

- \(V_G(0\%) = -15 \, V \)
- \(V_G(100\%) = 15 \, V \)
- \(I_C(100\%) = 201 \, A \)
- \(t_{don} = 0.25 \, \mu s \)
- \(t_{Eon} = 0.45 \, \mu s \)

Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of \(t_f \)

- \(V_C(100\%) = 700 \, V \)
- \(I_C(100\%) = 201 \, A \)
- \(t_f = 0.10 \, \mu s \)

Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of \(t_r \)

- \(V_C(100\%) = 700 \, V \)
- \(I_C(100\%) = 201 \, A \)
- \(t_r = 0.04 \, \mu s \)

copyright Vincotech
Switching Definitions BUCK MOSFET

Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off} (100\%) = 140.86$ kW
- $E_{off} (100\%) = 7.89$ mJ
- $t_{Eoff} = 0.59$ μs

Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on} (100\%) = 140.86$ kW
- $E_{on} (100\%) = 4.22$ mJ
- $t_{Eon} = 0.45$ μs

Figure 7
Output inverter FRED
Gate voltage vs Gate charge (measured)

- $V_{GEoff} = -15$ V
- $V_{GEon} = 15$ V
- $V_{C}(100\%) = 300$ V
- $I_{D}(100\%) = 201$ A
- $Q_g = 2106.06$ nC

Figure 8
Output inverter IGBT
Turn-off Switching Waveforms & definition of t_r

- $V_D (100\%) = 700$ V
- $I_D (100\%) = 201$ A
- $I_{max10\%} = -172$ A
- $t_r = 0.27$ μs
Switching Definitions BUCK MOSFET

Figure 9
Output inverter FRED
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

- $I_d (100\%) = 201$ A
- $Q_{rr} (100\%) = 16.20 \, \mu C$
- $t_{Qrr} = 0.55 \, \mu s$

Figure 10
Output inverter FRED
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

- $P_{rec} (100\%) = 140.86 \, kW$
- $E_{rec} (100\%) = 3.66 \, mJ$
- $t_{Erec} = 0.55 \, \mu s$

Measurement circuits

Figure 11
BUCK stage switching measurement circuit

Figure 12
BOOST stage switching measurement circuit
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard in flow2 housing</td>
<td>30-F206NIA200SA-M105F</td>
<td>M105F</td>
<td>M105F</td>
</tr>
</tbody>
</table>

Outline

<table>
<thead>
<tr>
<th>Pin</th>
<th>Note</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S3</td>
<td>47.6</td>
<td>33.3</td>
</tr>
<tr>
<td>2</td>
<td>B7</td>
<td>44.7</td>
<td>33.3</td>
</tr>
<tr>
<td>3</td>
<td>S7</td>
<td>44.7</td>
<td>22.35</td>
</tr>
<tr>
<td>4</td>
<td>B3</td>
<td>44.7</td>
<td>22.35</td>
</tr>
<tr>
<td>5</td>
<td>S4</td>
<td>44.7</td>
<td>22.35</td>
</tr>
<tr>
<td>6</td>
<td>G6</td>
<td>6.55</td>
<td>25.25</td>
</tr>
<tr>
<td>7</td>
<td>S8</td>
<td>6.55</td>
<td>28.3</td>
</tr>
<tr>
<td>8</td>
<td>G4</td>
<td>6.55</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>DC+</td>
<td>2.7</td>
<td>21.95</td>
</tr>
<tr>
<td>10</td>
<td>DC-</td>
<td>2.7</td>
<td>24.85</td>
</tr>
<tr>
<td>11</td>
<td>DC+</td>
<td>2.7</td>
<td>21.95</td>
</tr>
<tr>
<td>12</td>
<td>DC-</td>
<td>2.7</td>
<td>24.85</td>
</tr>
<tr>
<td>13</td>
<td>DC+</td>
<td>5.4</td>
<td>36.6</td>
</tr>
<tr>
<td>14</td>
<td>DC-</td>
<td>5.4</td>
<td>36.6</td>
</tr>
<tr>
<td>15</td>
<td>DC-</td>
<td>8.1</td>
<td>24.85</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>8.1</td>
<td>24.85</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>15.5</td>
<td>22.15</td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
<td>15.5</td>
<td>22.15</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>19.35</td>
<td>24.85</td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
<td>20.1</td>
<td>24.85</td>
</tr>
<tr>
<td>21</td>
<td>DC+</td>
<td>27.3</td>
<td>16.75</td>
</tr>
<tr>
<td>22</td>
<td>DC-</td>
<td>27.3</td>
<td>16.75</td>
</tr>
<tr>
<td>23</td>
<td>DC-</td>
<td>30.6</td>
<td>14.05</td>
</tr>
<tr>
<td>24</td>
<td>DC+</td>
<td>30.6</td>
<td>14.05</td>
</tr>
</tbody>
</table>

Pinout

Diagram showing the pinout and electrical connections of the device.
PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Status</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Final</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
</tbody>
</table>

DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.