Features

- Neutral-point-Clamped inverter
- Compact flow 1 housing
- Low Inductance Layout

Target Applications

- UPS
- Motor Drive
- Solar inverters

Types

- 10-F106NIA100SA-M135F
- 10-P106NIA100SA-M135FY
- 10-FY06NIA100SA-M135F08
- 10-PY06NIA100SA-M135F08Y

Maximum Ratings

$T_j = 25^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td>$T_j = T_{jmax}$ $T_s = 80^\circ C$ $T_c = 80^\circ C$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_j = T_{jmax}$ $T_s = 80^\circ C$ $T_c = 80^\circ C$</td>
<td>92</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>I_{CEM}</td>
<td>I_I limited by T_{jmax}</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{jmax}$ $T_s = 80^\circ C$ $T_c = 80^\circ C$</td>
<td>159</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>$T_s = 80^\circ C$ $T_c = 80^\circ C$</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>V_{CE} $T_s = 15^\circ C$</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td>$T_s = 150^\circ C$ $V_{GE} = 15 V$</td>
<td>175</td>
<td>ºC</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>I_I</td>
<td>V_{CE} $T_s = 150^\circ C$ $V_{GE} = 15 V$</td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>$T_j = T_{jmax}$ $T_s = 80^\circ C$ $T_c = 80^\circ C$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_j = T_{jmax}$ $T_s = 80^\circ C$ $T_c = 80^\circ C$</td>
<td>87</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FRRM}</td>
<td>I_I limited by T_{jmax}</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>$T_j = T_{jmax}$ $T_s = 80^\circ C$ $T_c = 80^\circ C$</td>
<td>74</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td>$T_s = 80^\circ C$ $T_c = 80^\circ C$</td>
<td>175</td>
<td>ºC</td>
</tr>
</tbody>
</table>

copyright Vincotech 1 17 May. 2016 / Revision 4
Maximum Ratings

\(T_j = 25^\circ C \), unless otherwise specified

Boost IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>(V_{CE})</td>
<td>(T_s = T_{PWM}, T_c = 80^\circ C)</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>(I_C)</td>
<td>(T_s = T_{PWM}, T_c = 80^\circ C)</td>
<td>92</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>(I_{QSM})</td>
<td>(r_s) limited by (T_{PWM})</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_s = T_{PWM}, T_c = 80^\circ C)</td>
<td>159</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>(V_{GE})</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>(t_{SC})</td>
<td>(T_s \leq 150^\circ C)</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>(V_{CE})</td>
<td>(V_{CE} \leq V_{CES})</td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{jmax})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost Sw. Prot. Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{ASM})</td>
<td>(T_s = 80^\circ C)</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_F)</td>
<td>(T_s = T_{PWM}, T_c = 80^\circ C)</td>
<td>80</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{FRM})</td>
<td>(r_s) limited by (T_{PWM})</td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>(P_{tot})</td>
<td>(T_s = T_{PWM}, T_c = 80^\circ C)</td>
<td>119</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{jmax})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{ASM})</td>
<td>(T_s = 80^\circ C)</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_F)</td>
<td>(T_s = T_{PWM}, T_c = 80^\circ C)</td>
<td>80</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{FRM})</td>
<td>(r_s) limited by (T_{PWM})</td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>(P_{tot})</td>
<td>(T_s = T_{PWM}, T_c = 80^\circ C)</td>
<td>119</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{jmax})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>(T_{STG})</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>(T_{op})</td>
<td></td>
<td>-40...+((T_{PWM} - 25))</td>
<td>°C</td>
</tr>
</tbody>
</table>

Isolation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation voltage</td>
<td>(V_i)</td>
<td>(t = 2s)</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td>17mm housing</td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12mm housing solder pins / Press-fit pins</td>
<td>8,07 / 7,86</td>
<td>mm</td>
</tr>
</tbody>
</table>
Characteristic Values

Buck IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$T_{J} = T_{C} = 25$</td>
<td>0,0016</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td>$T_{J} = 150$</td>
<td>1,05</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I_{oss}</td>
<td>$T_{J} = 25$</td>
<td>0</td>
<td>µA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{oss}</td>
<td>$T_{J} = 25$</td>
<td>0</td>
<td>µA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gss}</td>
<td>none</td>
<td>none</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{f(on)}$</td>
<td>$R_{DS} = 8 , \Omega$</td>
<td>±15</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{f(off)}$</td>
<td>$R_{DS} = 8 , \Omega$</td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>$R_{DS} = 8 , \Omega$</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td>$R_{DS} = 1 , \Omega$</td>
<td>1,887</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td>$R_{DS} = 1 , \Omega$</td>
<td>2,405</td>
<td>mWs</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>$f = 1 , MHz$</td>
<td>25</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>$R_{DS} = 8 , \Omega$</td>
<td>6280</td>
<td>nF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{G}</td>
<td>$R_{DS} = 8 , \Omega$</td>
<td>480</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td>$\lambda = 3,4 , W/mK$</td>
<td>0,60</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td>$T_{J} = 25$</td>
<td>1,4</td>
<td>V</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RRM}</td>
<td>$R_{DS} = 8 , \Omega$</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{r}</td>
<td>$R_{DS} = 8 , \Omega$</td>
<td>±15</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{R}</td>
<td>$R_{DS} = 8 , \Omega$</td>
<td>150</td>
<td>µC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>E_{off}</td>
<td>$R_{DS} = 8 , \Omega$</td>
<td>5,072</td>
<td>mWs</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{on}</td>
<td>$R_{DS} = 8 , \Omega$</td>
<td>9,357</td>
<td>mWs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td>$\lambda = 3,4 , W/mK$</td>
<td>1,01</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Note: All characteristic values are related to gates of parallel IGBTs connected together
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V_{CE} [V] or V_{GS} [V]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{r} [V] or I_{r} [A]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_1 [°C]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>V_{GE}</td>
<td></td>
<td>0,0016</td>
<td></td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEO}</td>
<td></td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Collector-emitter cut-off diode</td>
<td>I_{ces}</td>
<td></td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{ges}</td>
<td></td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{int}</td>
<td></td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td></td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td></td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td></td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td></td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td></td>
<td>6280</td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td></td>
<td>25</td>
<td>400</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{cor}</td>
<td></td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gs}</td>
<td></td>
<td>15</td>
<td>480</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td>phase-change material $\lambda = 3,4$ W/mK</td>
<td>0,60</td>
</tr>
<tr>
<td>Boost Sw. Prot. Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{fs}</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td>phase-change material $\lambda = 3,4$ W/mK</td>
<td>0,80</td>
</tr>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{fs}</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{r}</td>
<td></td>
<td>600</td>
<td>25</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{rrm}</td>
<td></td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{r}</td>
<td></td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{r}</td>
<td></td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$(di/dt)_{max}$</td>
<td></td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td></td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td>phase-change material $\lambda = 3,4$ W/mK</td>
<td>0,80</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>25</td>
<td>22000</td>
</tr>
<tr>
<td>Deviation of $R_{th(j-s)}$</td>
<td>ΔR</td>
<td></td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>25</td>
<td>200</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>P_{diss}</td>
<td></td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/100)}$</td>
<td></td>
<td>25</td>
<td>3950</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/50)}$</td>
<td></td>
<td>25</td>
<td>3996</td>
</tr>
</tbody>
</table>
Buck

Figure 1

IGBT

Typical output characteristics

$I_C = f(V_{CE})$

![Graph showing typical output characteristics of an IGBT.](image)

At

- $t_p = 250 \ \mu s$
- $T_j = 25 \ ^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2

IGBT

Typical output characteristics

$I_C = f(V_{CE})$

![Graph showing typical output characteristics of an IGBT.](image)

At

- $t_p = 250 \ \mu s$
- $T_j = 150 \ ^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3

IGBT

Typical transfer characteristics

$I_C = f(V_{GE})$

![Graph showing typical transfer characteristics of an IGBT.](image)

At

- $t_p = 250 \ \mu s$
- $T_j = T_{j\text{max}} - 25 \ ^\circ C$
- V_{CE} = 10 V

Figure 4

FWD

Typical diode forward current as a function of forward voltage

$I_F = f(V_F)$

![Graph showing typical diode forward current characteristics.](image)

At

- $t_p = 250 \ \mu s$
- $T_j = 25 \ ^\circ C$
- $T_j = T_{j\text{max}} - 25 \ ^\circ C$
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at
\(T_J = 25/150 \, ^\circ C \)
\(V_{CE} = 350 \, V \)
\(V_{GE} = \pm 15 \, V \)
\(R_{gon} = 8 \, \Omega \)
\(I_C = 100 \, A \)

Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at
\(T_J = 25/150 \, ^\circ C \)
\(V_{CE} = 350 \, V \)
\(V_{GE} = \pm 15 \, V \)
\(R_{gon} = 8 \, \Omega \)
Typical switching times as a function of collector current
\[t = f(I_c) \]

With an inductive load at
- \(T_j = 150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 8 \, \Omega \)
- \(R_{goff} = 8 \, \Omega \)

Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_c) \]

At
- \(T_j = 25/150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 8 \, \Omega \)
Figure 13
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_{C}) \]

At

- \(T_{j} = 25/150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 8 \) Ω

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

At

- \(T_{j} = 25/150 \) °C
- \(V_{GE} = \pm 15 \) V
- \(I_{F} = 100 \) A
- \(V_{CE} = 350 \) V

Figure 15
Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_{C}) \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

At

- \(T_{j} = 25/150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_{F} = 100 \) A
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
\frac{dI}{dt}, \frac{dI_{\text{rec}}}{dt} = f(I_c)
\]

At

- \(T_J = 25/150 \, ^\circ\text{C}\)
- \(V_{CE} = 350 \, \text{V}\)
- \(V_{GE} = \pm 15 \, \text{V}\)
- \(R_{\text{gon}} = 8 \, \Omega\)

IGBT transient thermal impedance as a function of pulse width

\[
Z_{\text{th(j-s)}} = f(t_p)
\]

At

- \(D = t_p / T\)
- \(R_{\text{th(j-s)}} = 0.60 \, \text{K/W}\)

IGBT thermal model values

- \(R \, (\text{K/W})\) \(\tau\, (\text{s})\)
- 4,52E-02 \(\frac{4,36E+00}{2,76E-01} \frac{2,00E-01}{1,04E-01} \frac{1,37E-02}{5,77E-02} \frac{2,79E-03}{1,50E-02}\)

FWD transient thermal impedance as a function of pulse width

\[
Z_{\text{th(j-s)}} = f(t_p)
\]

At

- \(D = t_p / T\)
- \(R_{\text{th(j-s)}} = 1.01 \, \text{K/W}\)

FWD thermal model values

- \(R \, (\text{K/W})\) \(\tau\, (\text{s})\)
- 6,88E-02 \(\frac{2,96E+00}{1,71E-01} \frac{9,03E-02}{1,60E-01} \frac{4,84E-03}{3,19E-02}\)
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

Figure 21

At

\[T_j = 175 \; ^\circ\text{C} \]

Collector current as a function of heatsink temperature

\[I_C = f(T_s) \]

Figure 22

At

\[T_j = 175 \; ^\circ\text{C} \]

\[V_{GE} = 15 \; \text{V} \]

Power dissipation as a Forward current as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

Figure 23

At

\[T_j = 175 \; ^\circ\text{C} \]

Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

Figure 24

At

\[T_j = 175 \; ^\circ\text{C} \]
Figure 25
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

At
- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{GE} = \pm 15 \) V
- \(T_j = T_{jmax} \) °C

Figure 26
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At
- \(I_C = 100 \) A

Buck

Copyright Vincotech 11 17 May. 2016 / Revision 4
Figure 1 IGBT
Typical output characteristics
$I_C = f(V_{CE})$

At
$t_p = 250 \ \mu s$
$T_j = 25 \ ^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2 IGBT
Typical output characteristics
$I_C = f(V_{CE})$

At
$t_p = 250 \ \mu s$
$T_j = 150 \ ^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3 IGBT
Typical transfer characteristics
$I_C = f(V_{GE})$

At
$t_p = 250 \ \mu s$
$T_j = 25 \ ^\circ C$
$T_j = T_{j max} - 25 \ ^\circ C$

Figure 4 FWD
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$

At
$t_p = 250 \ \mu s$

Vincotech
Figure 5
Typical switching energy losses as a function of collector current
\[E = f(I_c) \]

![Graph showing typical switching energy losses](image)

With an inductive load at:
- \(T_j = 25/150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 15 \) V
- \(R_{gon} = 8 \) Ω
- \(I_C = 101 \) A

Figure 6
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

![Graph showing typical switching energy losses](image)

With an inductive load at:
- \(T_j = 25/150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 15 \) V
- \(I_C = 101 \) A

Figure 7
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_c) \]

![Graph showing typical reverse recovery energy loss](image)

With an inductive load at:
- \(T_j = 25/150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 15 \) V
- \(R_{gon} = 8 \) Ω

Figure 8
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]

![Graph showing typical reverse recovery energy loss](image)

With an inductive load at:
- \(T_j = 25/150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 15 \) V
- \(I_C = 101 \) A
Typical switching times as a function of collector current

\[t = f(I_c) \]

With an inductive load at:

- \(T_j = 150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 8 \, \Omega \)
- \(I_c = 101 \, \text{A} \)

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_c) \]

At:

- \(T_j = 25/150 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 8 \, \Omega \)
- \(I_c = 101 \, \text{A} \)
Figure 13 FWD
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

At
\[T_j = 25/150 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 8 \, \Omega \]

Figure 14 FWD
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

At
\[T_j = 25/150 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[I_f = 101 \, \text{A} \]
\[V_{GE} = \pm 15 \, \text{V} \]

Figure 15 FWD
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

At
\[T_j = 25/150 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 8 \, \Omega \]

Figure 16 FWD
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

At
\[T_j = 25/150 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[I_f = 101 \, \text{A} \]
\[V_{GE} = \pm 15 \, \text{V} \]
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
dI_0/dt, dI_{rec}/dt = f(I_C)
\]

At
- \(T_j = 25/150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 8 \) Ω

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[
dI_0/dt, dI_{rec}/dt = f(R_{gon})
\]

At
- \(T_j = 25/150 \) °C
- \(V_\text{gs} = 350 \) V
- \(I_f = 101 \) A
- \(V_{GE} = \pm 15 \) V

Figure 19
IGBT transient thermal impedance as a function of pulse width

\[
Z_{th(j-s)} = f(t_p)
\]

At
- \(D = t_p/T\)
- \(R_{th(j-s)} = 0.6 \) K/W

IGBT thermal model values

\[
R (K/W) \quad \text{Tau (s)}
\]

<table>
<thead>
<tr>
<th>Value</th>
<th>4,52E-02</th>
<th>4,36E+00</th>
<th>1,01E-01</th>
<th>9,48E-01</th>
<th>2,64E-01</th>
<th>2,00E-01</th>
<th>1,04E-01</th>
<th>6,20E-02</th>
<th>5,77E-02</th>
<th>1,50E-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>4,68E-02</td>
<td>4,82E+00</td>
<td>1,19E-01</td>
<td>8,49E-01</td>
<td>3,15E-01</td>
<td>1,49E-01</td>
<td>1,67E-01</td>
<td>3,91E-02</td>
<td>1,01E-01</td>
<td>9,01E-03</td>
</tr>
<tr>
<td>(T)</td>
<td>4,79E-02</td>
<td>1,14E-03</td>
<td>4,36E-02</td>
<td>1,49E-01</td>
<td>3,15E-01</td>
<td>1,67E-01</td>
<td>1,01E-01</td>
<td>9,01E-03</td>
<td>4,79E-02</td>
<td>1,14E-03</td>
</tr>
</tbody>
</table>

Figure 20
FWD transient thermal impedance as a function of pulse width

\[
Z_{th(j-s)} = f(t_p)
\]

At
- \(D = t_p/T\)
- \(R_{th(j-s)} = 0.8 \) K/W

FWD thermal model values

\[
R (K/W) \quad \text{Tau (s)}
\]

<table>
<thead>
<tr>
<th>Value</th>
<th>4,68E-02</th>
<th>4,82E+00</th>
<th>1,19E-01</th>
<th>8,49E-01</th>
<th>3,15E-01</th>
<th>1,49E-01</th>
<th>1,67E-01</th>
<th>3,91E-02</th>
<th>1,01E-01</th>
<th>9,01E-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>4,68E-02</td>
<td>4,82E+00</td>
<td>1,19E-01</td>
<td>8,49E-01</td>
<td>3,15E-01</td>
<td>1,49E-01</td>
<td>1,67E-01</td>
<td>3,91E-02</td>
<td>1,01E-01</td>
<td>9,01E-03</td>
</tr>
<tr>
<td>(T)</td>
<td>4,79E-02</td>
<td>1,14E-03</td>
<td>4,36E-02</td>
<td>1,49E-01</td>
<td>3,15E-01</td>
<td>1,67E-01</td>
<td>1,01E-01</td>
<td>9,01E-03</td>
<td>4,79E-02</td>
<td>1,14E-03</td>
</tr>
</tbody>
</table>
Figure 21
IGBT

Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At

\[T_j = 175 \, ^\circ\text{C} \]

Figure 22
IGBT

Collector current as a function of heatsink temperature

\[I_c = f(T_s) \]

At

\[T_j = 175 \, ^\circ\text{C} \]

\[V_{GE} = 15 \, \text{V} \]

Figure 23
FWD

Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At

\[T_j = 175 \, ^\circ\text{C} \]

Figure 24
FWD

Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At

\[T_j = 175 \, ^\circ\text{C} \]
Figure 25 Boost Inverse Diode
Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

\[T_0 = T_{j,0} = 25^\circ C \]
\[T_1 = 25^\circ C \]

At
\[t_p = 250 \mu s \]

Figure 26 Boost Inverse Diode
Diode transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

Figure 27 Boost Inverse Diode
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_s) \]

At
\[T_j = 175^\circ C \]

Figure 28 Boost Inverse Diode
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At
\[T_j = 175^\circ C \]
Figure 1

Typical NTC characteristic

as a function of temperature

\[R(T) = f(T) \]

Figure 2

Typical NTC resistance values

\[
R(T) = R_{25} \cdot e^{\left(\frac{B_{25}}{100} \left(\frac{1}{T} - \frac{1}{T_{25}}\right)\right)} \quad [\Omega]
\]

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>R (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-60</td>
<td>3036479</td>
</tr>
<tr>
<td>-50</td>
<td>1992973</td>
</tr>
<tr>
<td>-45</td>
<td>1346473</td>
</tr>
<tr>
<td>-40</td>
<td>924676</td>
</tr>
<tr>
<td>-35</td>
<td>645112</td>
</tr>
<tr>
<td>-30</td>
<td>450784</td>
</tr>
<tr>
<td>-25</td>
<td>327965</td>
</tr>
<tr>
<td>-20</td>
<td>238577</td>
</tr>
<tr>
<td>-15</td>
<td>175725</td>
</tr>
<tr>
<td>-10</td>
<td>139014</td>
</tr>
<tr>
<td>-5</td>
<td>99618</td>
</tr>
<tr>
<td>0</td>
<td>75983</td>
</tr>
<tr>
<td>5</td>
<td>57698</td>
</tr>
<tr>
<td>10</td>
<td>44794</td>
</tr>
<tr>
<td>15</td>
<td>39037</td>
</tr>
<tr>
<td>20</td>
<td>27654</td>
</tr>
<tr>
<td>25</td>
<td>22000</td>
</tr>
<tr>
<td>30</td>
<td>17635</td>
</tr>
</tbody>
</table>

[Copyright Vincotech 19 17 May. 2016 / Revision 4]
Vincotech

Switching Definitions BUCK

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>150 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>8 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>8 Ω</td>
</tr>
</tbody>
</table>

Figure 1

IGBT

Turn-off Switching Waveforms & definition of t_{doff} t_{Eoff}

(t_{Eoff} = integrating time for E_{off})

$V_{GE}(0\%) = -15$ V
$V_{GE}(100\%) = 15$ V
$V_{C}(100\%) = 350$ V
$I_{C}(100\%) = 100$ A
$t_{doff} = 0,30$ μs
$t_{Eoff} = 0,55$ μs

Figure 2

IGBT

Turn-on Switching Waveforms & definition of t_{don} t_{Eon}

(t_{Eon} = integrating time for E_{on})

$V_{GE}(0\%) = -15$ V
$V_{GE}(100\%) = 15$ V
$V_{C}(100\%) = 350$ V
$I_{C}(100\%) = 100$ A
$t_{don} = 0,19$ μs
$t_{Eon} = 0,39$ μs

Figure 3

IGBT

Turn-off Switching Waveforms & definition of t_f

$V_{C}(100\%) = 350$ V
$I_{C}(100\%) = 100$ A
$t_f = 0,12$ μs

Figure 4

IGBT

Turn-on Switching Waveforms & definition of t_r

$V_{C}(100\%) = 350$ V
$I_{C}(100\%) = 100$ A
$t_r = 0,03$ μs
Switching Definitions BUCK

Figure 5
Turn-off Switching Waveforms & definition of t_{Eoff}

- P_{off} (100%) = 34.85 kW
- E_{off} (100%) = 3.81 mJ
- $t_{Eoff} = 0.55 \mu s$

Figure 6
Turn-on Switching Waveforms & definition of t_{Eon}

- P_{on} (100%) = 34.85 kW
- E_{on} (100%) = 2.41 mJ
- $t_{Eon} = 0.39 \mu s$

Figure 7
Turn-off Switching Waveforms & definition of t_{rr}

- V_d (100%) = 350 V
- I_d (100%) = 100 A
- I_{RRM} (100%) = -113 A
- $t_{rr} = 0.16 \mu s$
Figure 8
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

$\% I_d (100\%) = 100$ A
$\% Q_{rr} (100\%) = 9,36$ μC
$t_{Qrr} = 0,33$ μs

Figure 9
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

$P_{rec} (100\%) = 34,85$ kW
$E_{rec} (100\%) = 2,24$ mJ
$t_{Erec} = 0,33$ μs

Measurement circuit

Figure 10
BUCK stage switching measurement circuit
Switching Definitions Boost

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>150 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>8 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>8 Ω</td>
</tr>
</tbody>
</table>

Figure 1
Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}
(t_{Eoff} = integrating time for E_{off})

- $V_{GE}(0\%) = -15$ V
- $V_{GE}(100\%) = -15$ V
- $V_C(0\%) = 350$ V
- $V_C(100\%) = 350$ V
- $I_C(0\%) = 100$ A
- $I_C(100\%) = 100$ A
- $t_{doff} = 0.30 \, \mu$s
- $t_{Eoff} = 0.57 \, \mu$s

Figure 2
Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}
(t_{Eon} = integrating time for E_{on})

- $V_{GE}(0\%) = -15$ V
- $V_{GE}(100\%) = -15$ V
- $V_C(0\%) = 350$ V
- $V_C(100\%) = 350$ V
- $I_C(0\%) = 100$ A
- $I_C(100\%) = 100$ A
- $t_{don} = 0.17 \, \mu$s
- $t_{Eon} = 0.36 \, \mu$s

Figure 3
Turn-off Switching Waveforms & definition of t_f

- $V_C(100\%) = 350$ V
- $I_C(100\%) = 100$ A
- $t_f = 0.12 \, \mu$s

Figure 4
Turn-on Switching Waveforms & definition of t_r

- $V_C(100\%) = 350$ V
- $I_C(100\%) = 100$ A
- $t_r = 0.03 \, \mu$s
Figure 5

IGBT

Turn-off Switching Waveforms & definition of t_{Eoff}

- P_{Eoff} (100%) = 35.15 kW
- E_{Eoff} (100%) = 4.27 mJ
- t_{Eoff} = 0.57 μs

Figure 6

IGBT

Turn-on Switching Waveforms & definition of t_{Eon}

- P_{Ein} (100%) = 35.15 kW
- E_{Ein} (100%) = 2.55 mJ
- t_{Ein} = 0.36 μs

Figure 7

FWD

Turn-off Switching Waveforms & definition of t_{rr}

- V_{d} (100%) = 350 V
- I_{d} (100%) = 100 A
- I_{d} (100%) = -90 A
- t_{rr} = 0.29 μs
Switching Definitions Boost

Figure 8

Turn-on Switching Waveforms & definition of t_{Qrr}

- i_Q (100%) = 100 A
- Q_{rr} (100%) = 9.27 μC
- t_{Qrr} = 0.57 μs

Figure 9

Turn-on Switching Waveforms & definition of t_{Erec}

- P_{rec} (100%) = 35.15 kW
- E_{rec} (100%) = 2.37 mJ
- t_{Erec} = 0.57 μs

Measurement circuit

Figure 10

BOOST stage switching measurement circuit
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 17mm housing, solder pins</td>
<td>10-F106NIA100SA-M135F</td>
</tr>
<tr>
<td>with thermal paste 17mm housing, solder pins</td>
<td>10-F106NIA100SA-M135F/3/</td>
</tr>
<tr>
<td>without thermal paste 17mm housing, Press-fit pins</td>
<td>10-P106NIA100SA-M135FY</td>
</tr>
<tr>
<td>without thermal paste 12mm housing, solder pins</td>
<td>10-PY06NIA100SA-M135FY</td>
</tr>
<tr>
<td>with thermal paste 12mm housing, solder pins</td>
<td>10-PY06NIA100SA-M135F08</td>
</tr>
<tr>
<td>without thermal paste 12mm housing, Press-fit pins</td>
<td>10-PY06NIA100SA-M135F08/2/</td>
</tr>
</tbody>
</table>

Pin table [mm]

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32.2</td>
<td>6.9</td>
<td>NTC1</td>
</tr>
<tr>
<td>2</td>
<td>32.2</td>
<td>0</td>
<td>NTC2</td>
</tr>
<tr>
<td>3</td>
<td>36.2</td>
<td>6.75</td>
<td>E37</td>
</tr>
<tr>
<td>4</td>
<td>33.2</td>
<td>7.9</td>
<td>G3</td>
</tr>
<tr>
<td>5</td>
<td>33.2</td>
<td>4.9</td>
<td>G7</td>
</tr>
<tr>
<td>6</td>
<td>9.2</td>
<td>5.75</td>
<td>E48</td>
</tr>
<tr>
<td>7</td>
<td>6.2</td>
<td>6.9</td>
<td>G4</td>
</tr>
<tr>
<td>8</td>
<td>6.2</td>
<td>3.9</td>
<td>G8</td>
</tr>
<tr>
<td>9</td>
<td>2.7</td>
<td>0</td>
<td>DC-</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>DC-</td>
</tr>
<tr>
<td>11</td>
<td>2.7</td>
<td>2.7</td>
<td>DC-</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>2.7</td>
<td>DC-</td>
</tr>
<tr>
<td>13</td>
<td>2.7</td>
<td>5.4</td>
<td>DC-</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>5.4</td>
<td>DC</td>
</tr>
<tr>
<td>15</td>
<td>2.7</td>
<td>12.75</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>12.75</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>2.7</td>
<td>15.45</td>
<td>GND</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>15.45</td>
<td>GND</td>
</tr>
<tr>
<td>19</td>
<td>2.7</td>
<td>22.8</td>
<td>DC+</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>22.8</td>
<td>DC+</td>
</tr>
<tr>
<td>21</td>
<td>2.7</td>
<td>25.5</td>
<td>DC+</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>25.5</td>
<td>DC+</td>
</tr>
<tr>
<td>23</td>
<td>2.7</td>
<td>28.2</td>
<td>DC+</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>28.2</td>
<td>DC+</td>
</tr>
<tr>
<td>25</td>
<td>18.3</td>
<td>22.45</td>
<td>E15</td>
</tr>
<tr>
<td>26</td>
<td>21.3</td>
<td>21.3</td>
<td>G5</td>
</tr>
<tr>
<td>27</td>
<td>21.3</td>
<td>24.3</td>
<td>G1</td>
</tr>
<tr>
<td>28</td>
<td>43</td>
<td>22.15</td>
<td>E26</td>
</tr>
<tr>
<td>29</td>
<td>46</td>
<td>21</td>
<td>G6</td>
</tr>
<tr>
<td>30</td>
<td>46</td>
<td>24</td>
<td>G2</td>
</tr>
<tr>
<td>31</td>
<td>52.2</td>
<td>20.1</td>
<td>OUT</td>
</tr>
<tr>
<td>32</td>
<td>49.5</td>
<td>22.8</td>
<td>OUT</td>
</tr>
<tr>
<td>33</td>
<td>52.2</td>
<td>22.8</td>
<td>OUT</td>
</tr>
<tr>
<td>34</td>
<td>49.5</td>
<td>25.5</td>
<td>OUT</td>
</tr>
<tr>
<td>35</td>
<td>52.2</td>
<td>25.5</td>
<td>OUT</td>
</tr>
<tr>
<td>36</td>
<td>49.5</td>
<td>28.2</td>
<td>OUT</td>
</tr>
<tr>
<td>37</td>
<td>52.2</td>
<td>28.2</td>
<td>OUT</td>
</tr>
</tbody>
</table>

17mm housing

12mm housing

Tolerance of geometric positions ±0.5 mm at the end of pins
Dimension of coordinate axis is only offset without tolerance
Ordering Code and Marking - Outline - Pinout

Pinout

```
Pinout

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1,T5, T4,T8</td>
<td>IGBT</td>
<td>600 V</td>
<td>100 A</td>
<td>Buck Switch</td>
<td></td>
</tr>
<tr>
<td>D9,D10</td>
<td>FWD</td>
<td>600 V</td>
<td>100 A</td>
<td>Buck Diode</td>
<td></td>
</tr>
<tr>
<td>T2,T6,T3,T7</td>
<td>IGBT</td>
<td>600 V</td>
<td>100 A</td>
<td>Boost Switch</td>
<td></td>
</tr>
<tr>
<td>D1,D5,D4,D8</td>
<td>FWD</td>
<td>600 V</td>
<td>100 A</td>
<td>Boost Diode</td>
<td></td>
</tr>
<tr>
<td>D2,D6,D3,D7</td>
<td>FWD</td>
<td>600 V</td>
<td>100 A</td>
<td>Boost Sw. Prot. Diode</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>NTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Copyright Vincotech 27 17 May. 2016 / Revision 4
Disclaimer

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

Life Support Policy

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Package Data

| Package data for flow | 1 packages see vincotech.com website. |

UL Recognition and File Number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

Handling Instruction

Handling instructions for flow 1 packages see vincotech.com website.

Packaging Instruction

<table>
<thead>
<tr>
<th>Packaging Instruction</th>
<th>Standard packaging quantity (SPQ)</th>
<th>>SPQ</th>
<th>Standard</th>
<th><SPQ</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Document No.: 17 May. 2016 / Revision 4

<table>
<thead>
<tr>
<th>Document No.</th>
<th>Date:</th>
<th>Modification:</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-xx06NIA100SA-M135Fxx-D4-14</td>
<td>17 May. 2016</td>
<td>New brand, new subtype added, new Rth values with PCM</td>
<td>all</td>
</tr>
</tbody>
</table>