Features
- Mixed voltage NPC topology
- Reactive power capability
- Low inductance layout
- Common collector neutral connection

Target Applications
- Solar Inverter
- UPS

Types
- 10-FZ07NMA100SM-M265F58
- 10-PZ07NMA100SM-M265F58Y

Maximum Ratings

Buck Switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>V_{CE}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_s = T_{max}$</td>
<td>79</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{DSM}</td>
<td>T_s limited by T_{max}</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>T_s</td>
<td></td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_s = T_{max}$</td>
<td>136</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Buck Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RSM}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Mean forward current</td>
<td>I_{FSD}</td>
<td>$T_s = T_{max}$</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_s = T_{max}$</td>
<td>69</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

$T_s = 25 °C$, unless otherwise specified
Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>V_{CES}</td>
<td>$T_j = T_{j\text{max}}$, $T_s = 80 , ^\circ C$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_{C}</td>
<td>r_s limited by $T_{j\text{max}}$</td>
<td>57</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CM}</td>
<td>$T_j \leq 150 , ^\circ C$, $V_{CE} < V_{CES}$</td>
<td>225</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>$T_j \leq 150 , ^\circ C$</td>
<td>$V_{CE} = 15 , V$</td>
<td>225</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j\text{max}}$, $T_s = 80 , ^\circ C$</td>
<td>82</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>$T_j = T_{j\text{max}}$, $V_{CE} = 15 , V$</td>
<td>±40</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>I_{SC}</td>
<td>$T_j \leq 150 , ^\circ C$, $V_{CE} = 15 , V$</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>360</td>
<td>µs</td>
</tr>
</tbody>
</table>

Boost Diode

Peak Repetitive Reverse Voltage	V_{BBM}	$T_j = T_{j\text{max}}$, $T_s = 80 \, ^\circ C$	650	V
Mean forward current	I_{FDM}	$T_j = T_{j\text{max}}$, $T_s = 80 \, ^\circ C$	47	A
Surge (non-repetitive) forward current	I_{FSM}	$T_s = 10 \, ms$	100	A
Repetitive peak forward current	I_{FPM}	r_s limited by $T_{j\text{max}}$	100	A
Power dissipation	P_{tot}	$T_j = T_{j\text{max}}$, $T_s = 80 \, ^\circ C$	70	W
Maximum Junction Temperature	$T_{j\text{max}}$		175	°C

Thermal Properties

| Storage temperature | T_{stg} | | -40..+125 | °C |
| Operation temperature under switching condition | T_{op} | | -40..+(T_{j\text{max}} - 25) | °C |

Isolation Properties

Isolation voltage	$r = 2 \, s$, DC Test Voltage*	4000	V
Creepage distance	Press-fit pins / Solder pins	min >12,7	mm
Clearance	Press-fit pins / Solder pins	9 / 9,15	mm
Comparative Tracking Index	CTI	>200	

*100% tested in production

$T_s = 25 \, ^\circ C$, unless otherwise specified
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>(V_{GE(th)})</td>
<td>(V_{GS} = V_{GE})</td>
<td>0,0005</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>(V_{CEO})</td>
<td>15</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>(I_{CES})</td>
<td>0</td>
<td>650</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>(I_{GE})</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>(R_{pin})</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{on})</td>
<td>(R_{pin} = 4 , \Omega)</td>
<td>015</td>
<td>150</td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_{r})</td>
<td>(R_{pin} = 4 , \Omega)</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{off})</td>
<td>(R_{pin} = 4 , \Omega)</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_{f})</td>
<td>(R_{pin} = 4 , \Omega)</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>(E_{on})</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>(E_{off})</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{in})</td>
<td>(f = 1 , \text{MHz})</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{oss})</td>
<td>(f = 1 , \text{MHz})</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{ies})</td>
<td>(f = 1 , \text{MHz})</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Gate charge</td>
<td>(Q_{G})</td>
<td>(R_{pin} = 4 , \Omega)</td>
<td>015</td>
<td>520</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{th(j-s)})</td>
<td>(λ_{paste} = 3,4 , \text{W/mK})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>(V_{F})</td>
<td>60</td>
<td>25</td>
<td>1,80</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(I_{rr})</td>
<td>(R_{pin} = 4 , \Omega)</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>(I_{RRM})</td>
<td>(R_{pin} = 4 , \Omega)</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{rr})</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>(Q_{rec})</td>
<td>(R_{pin} = 4 , \Omega)</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>((\frac{dI}{dt})_{max})</td>
<td>(R_{pin} = 4 , \Omega)</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>(E_{rec})</td>
<td>(R_{pin} = 4 , \Omega)</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{th(j-s)})</td>
<td>(λ_{paste} = 3,4 , \text{W/mK})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

copyright Vincotech
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>V_{GE}</td>
<td></td>
<td>0,0012</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CE}</td>
<td></td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>I_{CES}</td>
<td></td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{G}</td>
<td></td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_g</td>
<td></td>
<td>none</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{e(on)}$</td>
<td></td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>r</td>
<td></td>
<td>125</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{e(off)}$</td>
<td></td>
<td>150</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>r_f</td>
<td></td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td></td>
<td>144</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td></td>
<td>74</td>
<td>mWs</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td></td>
<td>25</td>
<td>µF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td>25</td>
<td>µF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_G</td>
<td></td>
<td>4620</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td>1,16</td>
<td>K/W</td>
</tr>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_F</td>
<td></td>
<td>50</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td></td>
<td>1</td>
<td>µA</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RM}</td>
<td></td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_r</td>
<td></td>
<td>50</td>
<td>µs</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{RM}</td>
<td></td>
<td>1</td>
<td>µC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>dQ/dt_{RM}</td>
<td></td>
<td>1</td>
<td>A/µs</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{RM}</td>
<td></td>
<td>50</td>
<td>mWs</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td>1,36</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>26</td>
<td>Ω</td>
</tr>
<tr>
<td>Deviation of R_{100}</td>
<td>R_{100}</td>
<td></td>
<td>22000</td>
<td>%</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>25</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>P_{const}</td>
<td></td>
<td>25</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>B</td>
<td></td>
<td>25</td>
<td>%</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td>B</td>
<td></td>
<td>25</td>
<td>%</td>
</tr>
</tbody>
</table>

Copyright Vincotech

4

17 Jan. 2019 / Revision 4
Buck
Buck Switch IGBT and Buck Diode FWD

figure 1.
IGBT

Typical output characteristics

$I_C = f(V_{CE})$

At

$t_f = 250 \ \mu s$

$T_j = 25 \ ^\circ C$

V_{CE} from 5 V to 15 V in steps of 1 V

figure 2.
IGBT

Typical output characteristics

$I_C = f(V_{CE})$

At

$t_f = 250 \ \mu s$

$T_j = 125 \ ^\circ C$

V_{CE} from 5 V to 15 V in steps of 1 V

figure 3.
IGBT

Typical transfer characteristics

$I_C = f(V_{GE})$

At

V_{GE} from 5 V to 15 V in steps of 1 V

figure 4.
FWD

Typical diode forward current as a function of forward voltage

$I_F = f(V_F)$

At

$V_{CE} = 10 \ \text{V}$

$T_j = 25/125 \ ^\circ C$

$t_f = 250 \ \mu s$
Buck
Buck Switch IGBT and Buck Diode FWD

Figure 5.
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 150 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(R_{goff} = 4 \) Ω

Figure 6.
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 150 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 50 \) A

Figure 7.
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 150 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 8.
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 150 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 50 \) A
Buck

Buck Switch IGBT and Buck Diode FWD

figure 9.
Typical switching times as a function of collector current
$t = f(I_C)$

With an inductive load at
$T_j = 125 \, ^\circ C$
$V_{CE} = 150 \, V$
$V_{GE} = \pm 15 \, V$
$R_{gon} = 4 \, \Omega$
$R_{goff} = 4 \, \Omega$

figure 11.
Typical reverse recovery time as a function of collector current
$t_{rr} = f(I_C)$

At
$T_j = 25/125 \, ^\circ C$
$V_{CE} = 150 \, V$
$V_{GE} = \pm 15 \, V$
$R_{gon} = 4 \, \Omega$

figure 10.
Typical switching times as a function of gate resistor
$t = f(R_g)$

With an inductive load at
$T_j = 125 \, ^\circ C$
$V_{CE} = 150 \, V$
$V_{GE} = \pm 15 \, V$
$I_C = 50 \, A$

figure 12.
Typical reverse recovery time as a function of IGBT turn on gate resistor
$t_{rr} = f(R_{gon})$

At
$T_j = 25/125 \, ^\circ C$
$V_s = 150 \, V$
$I_f = 50 \, A$
$V_{GE} = \pm 15 \, V$
Buck

Buck Switch IGBT and Buck Diode FWD

figure 13.
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 150 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 4 \, \Omega \)

figure 14.
Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

At
- \(T_j = 25/125 \, ^\circ C \)
- \(V_s = 150 \, V \)
- \(I_f = 50 \, A \)
- \(V_{GE} = \pm 15 \, V \)

figure 15.
Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

At
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 150 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_f = 50 \, A \)
- \(V_{GE} = \pm 15 \, V \)

figure 16.
Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

At
- \(T_j = 25/125 \, ^\circ C \)
- \(V_s = 150 \, V \)
- \(I_f = 50 \, A \)
- \(V_{GE} = \pm 15 \, V \)
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At
\[T_j = \frac{25}{125} \; ^\circ C \]
\[V_{CE} = 150 \; V \]
\[V_{GE} = \pm 15 \; V \]
\[R_{gon} = 4 \; \Omega \]

IGBT transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

At
\[D = \frac{t_p}{T} \]
\[R_{th(j-s)} = 0,70 \; K/W \]

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R ; (K/W))</th>
<th>(\tau_a ; (s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,67E-02</td>
<td>1,43E+00</td>
</tr>
<tr>
<td>1,15E-01</td>
<td>2,44E-01</td>
</tr>
<tr>
<td>2,87E-01</td>
<td>6,53E-02</td>
</tr>
<tr>
<td>1,30E-01</td>
<td>1,67E-02</td>
</tr>
<tr>
<td>5,73E-02</td>
<td>4,56E-03</td>
</tr>
</tbody>
</table>

FWD thermal model values

<table>
<thead>
<tr>
<th>(R ; (K/W))</th>
<th>(\tau_a ; (s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,15E-02</td>
<td>3,99E+00</td>
</tr>
<tr>
<td>2,02E-01</td>
<td>6,32E-01</td>
</tr>
<tr>
<td>7,09E-01</td>
<td>1,11E-01</td>
</tr>
<tr>
<td>2,16E-01</td>
<td>3,68E-02</td>
</tr>
<tr>
<td>9,74E-02</td>
<td>5,31E-03</td>
</tr>
</tbody>
</table>
Buck

Buck Switch IGBT and Buck Diode FWD

figure 21.
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At
\[T_j = 175 \degree C \]

figure 22.
Collector current as a function of heatsink temperature

\[I_C = f(T_s) \]

At
\[T_j = 175 \degree C \]
\[V_{GE} = 15 \, \text{V} \]

figure 23.
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At
\[T_j = 175 \degree C \]

figure 24.
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At
\[T_j = 175 \degree C \]
Buck

Buck Switch IGBT and Buck Diode FWD

figure 25.
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

figure 26.
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

figure 27.
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At
- \(D = \) single pulse
- \(T_s = 80 \degree C \)
- \(V_{CE} = \pm 15 \text{ V} \)
- \(T_j = T_{j\text{max}} \)

At
- \(I_C = 100 \text{ A} \)
- \(V_{CE} = 130 \text{ V} \)
- \(V_{CE} = 520 \text{ V} \)

At
- \(T_j = 125 \degree C \)
- \(R_{gon} = 4 \Omega \)
- \(R_{goff} = 4 \Omega \)

copyright Vincotech
Boost

Boost Switch IGBT and Boost Diode FWD

figure 1. IGBT

Typical output characteristics

$I_C = f(V_{CE})$

figure 2. IGBT

Typical output characteristics

$I_C = f(V_{CE})$

At

$t_P = 250 \ \mu s$

$T_J = 25 \ ^\circ C$

V_{CE} from 7 V to 17 V in steps of 1 V

figure 3. IGBT

Typical transfer characteristics

$I_C = f(V_{GE})$

figure 4. FWD

Typical diode forward current as a function of forward voltage

$I_F = f(V_F)$

At

$T_J = 25/125 \ ^\circ C$

$t_P = 250 \ \mu s$

$V_{CE} = 10 \ \text{V}$
Boost

Boost Switch IGBT and Boost Diode FWD

figure 5.

IGBT

Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_J = 25 \text{/} 125 \) °C
- \(V_{CE} = 150 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(I_C = 50 \) A

figure 6.

IGBT

Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_J = 25 \text{/} 125 \) °C
- \(V_{CE} = 150 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 50 \) A

figure 7.

FWD

Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_J = 25 \text{/} 125 \) °C
- \(V_{CE} = 150 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

figure 8.

FWD

Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

- \(T_J = 25 \text{/} 125 \) °C
- \(V_{CE} = 150 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 50 \) A
Boost Switch IGBT and Boost Diode FWD

Figure 9. IGBT

Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(T_j = 125 \ ^{\circ}C \)
- \(V_{CE} = 150 \ V \)
- \(V_{GE} = \pm 15 \ V \)
- \(R_{gon} = 4 \ \Omega \)
- \(I_C = 50 \ A \)

Figure 10. IGBT

Typical switching times as a function of gate resistor

\[t = f(R_G) \]

With an inductive load at

- \(T_j = 125 \ ^{\circ}C \)
- \(V_{CE} = 150 \ V \)
- \(V_{GE} = \pm 15 \ V \)
- \(I_C = 50 \ A \)

Figure 11. FWD

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At

- \(T_j = 25/125 \ ^{\circ}C \)
- \(V_{CE} = 150 \ V \)
- \(V_{GE} = \pm 15 \ V \)
- \(R_{gon} = 4 \ \Omega \)

Figure 12. FWD

Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At

- \(T_j = 25/125 \ ^{\circ}C \)
- \(V_a = 150 \ V \)
- \(I_f = 50 \ A \)
- \(V_{GE} = \pm 15 \ V \)
Boost

Boost Switch IGBT and Boost Diode FWD

Figure 13. Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At

- \(T_j = 25/125 \) °C
- \(V_{CE} = 150 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 14. Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

At

- \(T_j = 25/125 \) °C
- \(V_R = 150 \) V
- \(I_F = 50 \) A
- \(V_{GE} = \pm 15 \) V

Figure 15. Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

At

- \(T_j = 25/125 \) °C
- \(V_{CE} = 150 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 16. Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

At

- \(T_j = 25/125 \) °C
- \(V_R = 150 \) V
- \(I_F = 50 \) A
- \(V_{GE} = \pm 15 \) V
Boost Switch IGBT and Boost Diode FWD

Figure 17.
Typical rate of fall of forward and reverse recovery current as a function of collector current:
\[\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_C) \]

Figure 18.
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor:
\[\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

Figure 19.
IGBT transient thermal impedance as a function of pulse width:
\[Z_{th(j-s)} = f(t_p) \]

Figure 20.
FWD transient thermal impedance as a function of pulse width:
\[Z_{th(j-s)} = f(t_p) \]

Table: IGBT thermal model values

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,64E-02</td>
<td>4,97E+00</td>
</tr>
<tr>
<td>1,45E-01</td>
<td>9,35E-01</td>
</tr>
<tr>
<td>4,55E-01</td>
<td>1,51E-01</td>
</tr>
<tr>
<td>3,75E-01</td>
<td>4,97E-02</td>
</tr>
<tr>
<td>7,15E-02</td>
<td>5,37E-03</td>
</tr>
<tr>
<td>5,72E-02</td>
<td>3,97E-04</td>
</tr>
</tbody>
</table>

Table: FWD thermal model values

<table>
<thead>
<tr>
<th>R (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,09E-02</td>
<td>2,36E+00</td>
</tr>
<tr>
<td>1,41E-01</td>
<td>3,82E-01</td>
</tr>
<tr>
<td>6,52E-01</td>
<td>6,81E-02</td>
</tr>
<tr>
<td>2,75E-01</td>
<td>2,04E-02</td>
</tr>
<tr>
<td>1,29E-01</td>
<td>4,50E-03</td>
</tr>
<tr>
<td>1,02E-01</td>
<td>6,56E-04</td>
</tr>
</tbody>
</table>
Boost
Boost Switch IGBT and Boost Diode FWD

figure 21.
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]

figure 22.
Collector current as a function of heatsink temperature
\[I_C = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]
\[V_{GE} = 15 \, V \]

figure 23.
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]

figure 24.
Forward current as a function of heatsink temperature
\[I_F = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]
figure 1. Thermistor
Typical NTC characteristic as a function of temperature
$R_T = f(T)$
Buck Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_J)</td>
<td>125 °C</td>
</tr>
<tr>
<td>(R_{on})</td>
<td>4 Ω</td>
</tr>
<tr>
<td>(R_{off})</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Turn-off Switching Waveforms & definition of \(t_{doff} \), \(t_{Eoff} \)

\(t_{doff} = \text{integrating time for } E_{off} \)

Turn-on Switching Waveforms & definition of \(t_{don} \), \(t_{Eon} \)

\(t_{don} = \text{integrating time for } E_{on} \)

Figure 1.

- \(V_{CE} (0\%) = -15 \) V
- \(V_{CE} (100\%) = 15 \) V
- \(I_C (100\%) = 50 \) A
- \(t_{doff} = 0,094 \) µs
- \(t_{Eoff} = 0,171 \) µs

Figure 2.

- \(V_{CE} (0\%) = -15 \) V
- \(V_{CE} (100\%) = 15 \) V
- \(I_C (100\%) = 50 \) A
- \(t_{don} = 0,071 \) µs
- \(t_{Eon} = 0,151 \) µs

Figure 3.

- \(V_C (100\%) = 150 \) V
- \(I_C (100\%) = 50 \) A
- \(t_f = 0,022 \) µs

Figure 4.

- \(V_C (100\%) = 150 \) V
- \(I_C (100\%) = 50 \) A
- \(t_r = 0,021 \) µs
Buck Switching Definitions

figure 5. IGBT

Turn-off Switching Waveforms & definition of \(t_{E_{off}} \)

\[
P_{E_{off}} (100\%) = 7.49 \text{ kW}
\]

\[
E_{E_{off}} (100\%) = 0.32 \text{ mJ}
\]

\[
t_{E_{off}} = 0.171 \mu s
\]

figure 6. IGBT

Turn-on Switching Waveforms & definition of \(t_{E_{on}} \)

\[
P_{E_{on}} (100\%) = 7.49 \text{ kW}
\]

\[
E_{E_{on}} (100\%) = 0.27 \text{ mJ}
\]

\[
t_{E_{on}} = 0.151 \mu s
\]

figure 7. IGBT

Turn-off Switching Waveforms & definition of \(t_{rr} \)

\[
V_{d} (100\%) = 150 \text{ V}
\]

\[
i_{d} (100\%) = 50 \text{ A}
\]

\[
i_{rr} (100\%) = -59 \text{ A}
\]

\[
t_{rr} = 0.113 \mu s
\]
Buck Switching Definitions

Figure 8. Turn-on Switching Waveforms & definition of τ_{Qrr}
(τ_{Qrr} = integrating time for Q_{rr})

- I_d (100%) = 50 A
- Q_{rr} (100%) = 3,10 µC
- τ_{Qrr} = 0,227 µs

Figure 9. Turn-on Switching Waveforms & definition of τ_{Erec}
(τ_{Erec} = integrating time for E_{rec})

- P_{rec} (100%) = 7,49 kW
- E_{rec} (100%) = 0,31 mJ
- τ_{Erec} = 0,227 µs
Measurement circuits

Figure 10.
Buck stage switching measurement circuit
Boost Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_J)</td>
<td>125 °C</td>
</tr>
<tr>
<td>(R_{Gon})</td>
<td>4 Ω</td>
</tr>
<tr>
<td>(R_{Goff})</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Turn-off Switching Waveforms & definition of \(t_{doff} \), \(t_{Eoff} \)

\(t_{doff} \) = integrating time for \(E_{off} \)

\(t_{Eoff} \) = \(V_{CE} \) (0%) = -15 V
\(V_{CE} \) (100%) = 15 V
\(I_C \) (100%) = 50 A
\(t_{doff} \) = 0,156 µs
\(t_{Eoff} \) = 0,676 µs

Turn-on Switching Waveforms & definition of \(t_{don} \), \(t_{Eon} \)

\(t_{don} \) = integrating time for \(E_{on} \)

\(t_{Eon} \) = \(V_{CE} \) (0%) = -15 V
\(V_{CE} \) (100%) = 15 V
\(I_C \) (100%) = 50 A
\(t_{don} \) = 0,094 µs
\(t_{Eon} \) = 0,217 µs

Boost Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_C)</td>
<td>1%</td>
</tr>
<tr>
<td>(V_{CE})</td>
<td>90%</td>
</tr>
<tr>
<td>(V_{GE})</td>
<td>90%</td>
</tr>
<tr>
<td>(-25)</td>
<td>0</td>
</tr>
<tr>
<td>(0)</td>
<td>25</td>
</tr>
<tr>
<td>(25)</td>
<td>50</td>
</tr>
<tr>
<td>(50)</td>
<td>75</td>
</tr>
<tr>
<td>(75)</td>
<td>100</td>
</tr>
<tr>
<td>(100)</td>
<td>125</td>
</tr>
</tbody>
</table>

Turn-off Switching Waveforms & definition of \(t_f \)

\(V_{CE} \) (0%) = -15 V
\(V_{CE} \) (100%) = 15 V
\(I_C \) (100%) = 50 A
\(t_f \) = 0,097 µs

Turn-on Switching Waveforms & definition of \(t_r \)

\(V_{CE} \) (0%) = -15 V
\(V_{CE} \) (100%) = 15 V
\(I_C \) (100%) = 50 A
\(t_r \) = 0,017 µs
Boost Switching Definitions

figure 5. IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- P_{off} (100%) = 7.56 kW
- E_{off} (100%) = 0.95 mJ
- t_{Eoff} = 0.676 µs

figure 6. IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- P_{on} (100%) = 7.56 kW
- E_{on} (100%) = 0.25 mJ
- t_{Eon} = 0.217 µs

figure 7. IGBT
Turn-off Switching Waveforms & definition of t_{rr}

- V_{d} (100%) = 150 V
- I_{d} (100%) = 50 A
- I_{rrM} (100%) = -43 A
- t_{rr} = 0.290 µs
Boost Switching Definitions

Figure 8. Turn-on Switching Waveforms & definition of t_{Qrr}

$(t_{Qrr} = \text{integrating time for } Q_{rr})$

- $I_d (100\%) = 50$ A
- $Q_{rr} (100\%) = 4.21$ µC
- $t_{Qrr} = 1.00$ µs

Figure 9. Turn-on Switching Waveforms & definition of t_{Erec}

$(t_{Erec} = \text{integrating time for } E_{rec})$

- $P_{rec} (100\%) = 7.56$ kW
- $E_{rec} (100\%) = 0.52$ mJ
- $t_{Erec} = 1.00$ µs

Copyright Vincotech
Measurement circuits

Figure 10.
Boost stage switching measurement circuit
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12 mm housing with solder pins</td>
<td>10-FZ07NMA100SM-M265F58</td>
</tr>
<tr>
<td>with thermal paste 12 mm housing with solder pins</td>
<td>10-FZ07NMA100SM-M265F58/-3/</td>
</tr>
<tr>
<td>with thermal paste 12 mm housing with press-fit pins</td>
<td>10-PZ07NMA100SM-M265F58Y</td>
</tr>
<tr>
<td>with thermal paste 12 mm housing with press-fit pins</td>
<td>10-PZ07NMA100SM-M265F58Y/-3/</td>
</tr>
</tbody>
</table>

Pin table [mm]

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33,6</td>
<td>0</td>
<td>S2</td>
</tr>
<tr>
<td>2</td>
<td>30,8</td>
<td>0</td>
<td>G2</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>0</td>
<td>-DC</td>
</tr>
<tr>
<td>4</td>
<td>19,2</td>
<td>0</td>
<td>-DC</td>
</tr>
<tr>
<td>5</td>
<td>10,1</td>
<td>0</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>2,8</td>
<td>0</td>
<td>S4</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>G4</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>7,1</td>
<td>Line</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9,9</td>
<td>Line</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>12,7</td>
<td>Line</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>15,5</td>
<td>Line</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>22,6</td>
<td>G3</td>
</tr>
<tr>
<td>13</td>
<td>2,8</td>
<td>22,6</td>
<td>S3</td>
</tr>
<tr>
<td>14</td>
<td>10,1</td>
<td>22,6</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>19,2</td>
<td>22,6</td>
<td>+DC</td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>22,6</td>
<td>+DC</td>
</tr>
<tr>
<td>17</td>
<td>30,8</td>
<td>22,6</td>
<td>G1</td>
</tr>
<tr>
<td>18</td>
<td>33,6</td>
<td>22,6</td>
<td>S1</td>
</tr>
<tr>
<td>19</td>
<td>33,6</td>
<td>14,8</td>
<td>NTC1</td>
</tr>
<tr>
<td>20</td>
<td>33,6</td>
<td>8,2</td>
<td>NTC2</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>Not assembled</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outline

Solder pins

Press-fit pins

Tolerance of pinpositions: ±0.5mm at the end of pins

Dimension of coordinate axis is only offset without tolerance
Datasheet

Boost Switch

Boost Diode

Thermistor

Pinout

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, T2</td>
<td>IGBT</td>
<td>650 V</td>
<td>100 A</td>
<td>Buck Switch</td>
<td></td>
</tr>
<tr>
<td>D4, D3</td>
<td>FWD</td>
<td>600 V</td>
<td>60 A</td>
<td>Buck Diode</td>
<td></td>
</tr>
<tr>
<td>T4, T3</td>
<td>IGBT</td>
<td>600 V</td>
<td>75 A</td>
<td>Boost Switch</td>
<td></td>
</tr>
<tr>
<td>D1, D2</td>
<td>FWD</td>
<td>650 V</td>
<td>50 A</td>
<td>Boost Diode</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>NTC</td>
<td>650 V</td>
<td>50 A</td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
Packaging instruction

<table>
<thead>
<tr>
<th>Standard packaging quantity (SPQ)</th>
<th>>SPQ</th>
<th>Standard</th>
<th><SPQ</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Handling instruction

Handling instructions for flow 0 packages see vincotech.com website.

Package data

Package data for flow 0 packages see vincotech.com website.

UL recognition and file number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

<table>
<thead>
<tr>
<th>Document No.:</th>
<th>Date:</th>
<th>Modification:</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-xZ07NMA100SM-M265F588x-D4-14</td>
<td>17 Jan. 2019</td>
<td>Correct NTC coordinates</td>
<td>27</td>
</tr>
</tbody>
</table>

DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.