Maximum Ratings

$T_i = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-Bridge Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{CES}</td>
<td>$T_i = T_{j\text{max}}$</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_c</td>
<td>$T_i = T_{j\text{max}}$</td>
<td>29</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CRM}</td>
<td>I_c, limited by $T_{j\text{max}}$</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{j\text{max}}$</td>
<td>57</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{GES}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

\(T_i = 25 \, ^\circ C \), unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-Bridge Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_{f})</td>
<td>(T_i = T_{i_{max}}), (T_i = 80 , ^\circ C)</td>
<td>13</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{T})</td>
<td>(T_i = T_{i_{max}}), (T_i = 80 , ^\circ C)</td>
<td>25</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{j_{max}})</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Boost Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>(V_{CE})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>(I_{C})</td>
<td>(T_i = T_{i_{max}}), (T_i = 80 , ^\circ C)</td>
<td>29</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{PK})</td>
<td>(t_\text{p}) limited by (T_{i_{max}})</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{T})</td>
<td>(T_i = T_{i_{max}}), (T_i = 80 , ^\circ C)</td>
<td>57</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>(V_{GE})</td>
<td></td>
<td>(\pm 20)</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{j_{max}})</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_{f})</td>
<td>(T_i = T_{i_{max}}), (T_i = 80 , ^\circ C)</td>
<td>13</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{T})</td>
<td>(T_i = T_{i_{max}}), (T_i = 80 , ^\circ C)</td>
<td>25</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{j_{max}})</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Boost Sw.Prot. Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_{f})</td>
<td>(T_i = T_{i_{max}}), (T_i = 80 , ^\circ C)</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{PK})</td>
<td></td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{T})</td>
<td>(T_i = T_{i_{max}}), (T_i = 80 , ^\circ C)</td>
<td>39</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{j_{max}})</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_i = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ByPass Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>V_{RRM}</td>
<td>$T_i = T_{max}$</td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$T_i = T_{max}$</td>
<td>35</td>
<td>A</td>
</tr>
<tr>
<td>Surge (non-repetitive) forward current</td>
<td>I_{FSM}</td>
<td>$T_i = T_{max}$</td>
<td>270</td>
<td>A</td>
</tr>
<tr>
<td>Surge current capability</td>
<td>I_t</td>
<td>$t_p = 10 , ms , 50 , Hz , sine$</td>
<td>370</td>
<td>A2s</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{max}$</td>
<td>60</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>150</td>
<td>$^\circ C$</td>
</tr>
</tbody>
</table>

Module Properties

Thermal Properties

| Storage temperature | T_{stg} | | -40...+125 | $^\circ C$ |
| Operation temperature under switching condition | T_{jop} | | -40...($T_{max} - 25$) | $^\circ C$ |

Isolation Properties

Isolation voltage	V_{isol}	DC Test Voltage*	$t_p = 2 \, s$	6000	V
AC Voltage	$t_p = 1 \, min$	2500	V		
Creepage distance			min. 12,7	mm	
Clearance	Solder pin	8,66	mm		
	Press-fit pin	9,17	mm		
Comparative Tracking Index	CTI		> 200		

*100 % tested in production
Characteristic Values

H-Bridge Switch

Static

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE} = V_{CE}$</td>
<td>0,0003</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CES}</td>
<td>0</td>
<td>650</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_{g}</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>15</td>
<td>520</td>
</tr>
</tbody>
</table>

Thermal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>λpaste = 3,4 W/mK (PSX)</td>
<td>1,67</td>
</tr>
</tbody>
</table>

Dynamic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>$R_{on} = 16,,Ω$</td>
<td>25</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>$R_{off} = 16,,Ω$</td>
<td>25</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>$Q_{on} = 1,1,,μC$</td>
<td>25</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>$Q_{off} = 2,4,,μC$</td>
<td>25</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_G [V]</td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>V_G [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CE} [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{DS} [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_F [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_C [A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_D [A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_F [A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_j [°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H-Bridge Diode

Static

- **Forward voltage**
 - V_F
 - Conditions: 15 25 125 150
 - Value: 1,44 1,20 1,14 V

- **Reverse leakage current**
 - I_R
 - Conditions: 650 25
 - Value: 5 µA

Thermal

- **Thermal resistance junction to sink** $R_{th(j-s)}$
 - $\lambda_{paste} = 3,4 \text{ W/mK (PSX)}$
 - Value: 1,81 K/W

Dynamic

- **Peak recovery current**
 - I_{RMS}
 - Conditions: ±15 400 30
 - Value: 25 125 150
 - Value: 33 48 54 A

- **Reverse recovery time**
 - t_{rr}
 - Conditions: 25 125 150
 - Value: 89 115 129 ns

- **Recovered charge**
 - Q_d
 - $di/dt = 3260 \text{ A/µs}$ 25 125 150
 - Value: 1,08 2,37 3,50 µC

- **Reverse recovered energy**
 - E_{rec}
 - 25 125 150
 - Value: 0,198 0,481 0,888 mWs

- **Peak rate of fall of recovery current**
 - $(di/dt)_{max}$
 - Conditions: 25 125 150
 - Value: 2649 1253 1360 A/µs
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V_{GE}</td>
<td>$V_{GE} = V_{CE}$</td>
<td>0,003</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{ESAT}</td>
<td>15 30 25 125 163 1,65 2,22</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CES}</td>
<td>0 650 25 40</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td>20 0 25 120</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_s</td>
<td>none 1800</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>$f = 1$ MHz 0 25 25 25</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_g</td>
<td>15 520 30 25 70</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance to sink</td>
<td>$R_{th(j-s)}$</td>
<td>$λ_{PSX} = 3,4$ W/mK</td>
<td>1,67</td>
<td>K/W</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{(on)}$</td>
<td>25 125 150</td>
<td>20 19 17</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>r</td>
<td>$R_{on} = 16$ Ω 25 125 150 8 9 10</td>
<td>25 125 150 137 155 159</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{(off)}$</td>
<td>$R_{off} = 16$ Ω 0 / 15 400 30 25 125 150</td>
<td>25 125 150</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>f</td>
<td>25 125 150</td>
<td>4 9 10</td>
<td></td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>$Q_{E_{on}} = 1,1$ µC 25 125 150</td>
<td>0,618 0,894 0,962</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>$Q_{E_{off}} = 2,3$ µC 25 125 150</td>
<td>0,172 0,305 0,326</td>
<td>mWs</td>
</tr>
</tbody>
</table>

17 Sep. 2018 / Revision 4

Copyright Vincotech
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_C</td>
<td>15</td>
<td>25 125 150</td>
<td>1,44 1,20 1,14</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td>650</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td></td>
<td>1,81</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{RRM}</td>
<td>0/15</td>
<td>25 125 150</td>
<td>33 50 56</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>25</td>
<td>92 113 121</td>
<td>ns</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>Q_r</td>
<td>0 / 15</td>
<td>25 125 150</td>
<td>1,10 2,28 2,72</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>25</td>
<td>0,213 0,489 0,665</td>
<td>mWs</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$(di/dt)_{max}$</td>
<td>25 125 150</td>
<td>2721 1492 1645</td>
<td>A/μs</td>
</tr>
<tr>
<td>Boost Sw.Prot. Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_C</td>
<td>10</td>
<td>25 125</td>
<td>1,67 1,56 1,87</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td>650</td>
<td>25</td>
<td>0,14</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td></td>
<td>2,44</td>
</tr>
<tr>
<td>ByPass Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_C</td>
<td>13</td>
<td>25 125</td>
<td>0,99 0,90 1,21</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td>1600</td>
<td>25 150</td>
<td>50 1100</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td></td>
<td>1,16</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGE [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGS [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCE [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDS [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VF [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC [A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID [A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF [A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tj [°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Deviation of R<sub>25</sub></td>
<td>Δ<sub>R</sub></td>
<td>R<sub>25</sub> = 1486 Ω</td>
<td>100</td>
<td>-12</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>25</td>
<td>200</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>B-value</td>
<td>B(25/25)</td>
<td>Tol. ±3%</td>
<td>25</td>
<td>3950</td>
</tr>
<tr>
<td>B-value</td>
<td>B(25/100)</td>
<td>Tol. ±3%</td>
<td>25</td>
<td>3998</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>
H-Bridge Switch Characteristics

Figure 1. IGBT
Typical output characteristics
$I_C = f(V_{CE})$

Figure 2. IGBT
Typical output characteristics
$I_C = f(V_{GE})$

Figure 3. IGBT
Typical transfer characteristics
$I_C = f(V_{GE})$

Figure 4. IGBT
Transient thermal impedance as function of pulse duration
$\theta_{th(j-s)} = f(t_p)$
H-Bridge Switch Characteristics

Figure 5.
Gate voltage vs gate charge

\[V_{GE} = f(Q_G) \]

Figure 6.
Safe operating area

\[I_G = f(V_{CE}) \]

- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{CES} = \pm 15 \) V
- \(T_j = T_{jmax} \)

Figure 7.
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

- At \(T_j = 175 \) °C

Figure 8.
Collector current as a function of heatsink temperature

\[I_C = f(T_h) \]

- At \(T_j = 175 \) °C
 - \(V_{CE} = 15 \) V
H-Bridge Diode Characteristics

figure 1. Typical forward characteristics

\[I_F = f(V_F) \]

\[Z_{th(j-s)} = f(t_p) \]

\[t_p = 250 \mu s \]

\[T_j: \]

- 25 °C
- 125 °C
- 150 °C

figure 2. Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

\[D = \frac{t_p}{T_j} \]

\[R_{th(j-s)} = 1.81 \, \text{K/W} \]

FWD thermal model values

<table>
<thead>
<tr>
<th>(R_{th(j-s)})</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.18E-02</td>
<td>2.84E+00</td>
</tr>
<tr>
<td>2.48E-01</td>
<td>2.83E-01</td>
</tr>
<tr>
<td>8.26E-01</td>
<td>5.02E-02</td>
</tr>
<tr>
<td>3.94E-01</td>
<td>8.85E-03</td>
</tr>
<tr>
<td>2.67E-01</td>
<td>1.33E-03</td>
</tr>
</tbody>
</table>

figure 3. Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

\[T_j = 175 \, \text{°C} \]

figure 4. Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

\[T_j = 175 \, \text{°C} \]
Boost Switch Characteristics

Figure 1. IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

- \(t_p = 250 \mu s \)
- \(V_{CE} = 15 \text{ V} \)
- \(T_j = 25 \text{ °C} \)

Figure 2. IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

- \(t_p = 250 \mu s \)
- \(V_{CE} = 125 \text{ °C} \)
- \(V_{GE} \) from 7 V to 17 V in steps of 1 V

Figure 3. IGBT

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

- \(t_p = 100 \mu s \)
- \(V_{CE} = 10 \text{ V} \)
- \(T_j = 125 \text{ °C} \)

Figure 4. IGBT

Transient thermal impedance as a function of pulse duration

\[Z_{th(j-s)} = f(t_p) \]

- \(D = \frac{t_p}{T} \)
- \(R_{th(j-s)} = 1,67 \text{ K/W} \)
- IGBT thermal model values
 - \(R \) (K/W)
 - \(t \) (s)
 - 1,80E-01, 1,06E+00
 - 3,72E-01, 1,72E-01
 - 6,97E-01, 5,52E-02
 - 3,21E-01, 1,27E-02
 - 1,54E-01, 3,03E-03
Boost Switch Characteristics

figure 5. IGBT
Gate voltage vs gate charge

\[V_{GE} = f(Q_G) \]

\[I_C = 30 \text{ A} \]

\[D = \text{single pulse} \]
\[T_s = 80 \degree \text{C} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[T_j = T_{jmax} \]
\[V_{CE} = 130 \text{ V} \]
\[520 \text{ V} \]

figure 6. IGBT
Safe operating area

\[I_C = f(V_{CE}) \]

figure 7. IGBT
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

At
\[T_j = 175 \degree \text{C} \]

figure 8. IGBT
Collector current as a function of heatsink temperature

\[I_C = f(T_h) \]

At
\[T_j = 175 \degree \text{C} \]
\[V_{CE} = 15 \text{ V} \]
Boost Diode Characteristics

figure 1. Typical forward characteristics

\[I_F = f(V_F) \]

figure 2. Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

- \(t_p = 250 \ \mu s \)
- \(T_j = 25^\circ C \)
- \(T_j = 125^\circ C \)
- \(T_j = 150^\circ C \)

\[D = \frac{t_p}{T} \]

\[R_{th(j-s)} = 1.81 \ K/W \]

FWD thermal model values

\[R (K/W) \quad \tau (s) \]

- \(7.18E-02 \quad 2.84E+00 \)
- \(2.48E-01 \quad 2.83E-01 \)
- \(8.26E-01 \quad 5.02E-02 \)
- \(3.94E-01 \quad 8.85E-03 \)
- \(2.67E-01 \quad 1.33E-03 \)

figure 3. Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

- At \(T_j = 175^\circ C \)

figure 4. Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

- At \(T_j = 175^\circ C \)
Boost Sw. Prot. Diode Characteristics

Figure 1. Typical forward characteristics

\[I_F = f(V_F) \]

Figure 2. Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

Figure 3. Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

Figure 4. Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]
ByPass Diode Characteristics

Figure 1. Rectifier Diode

Typical forward characteristics

\[I_F = f(V_F) \]

![Graph showing typical forward characteristics of a rectifier diode.](image1)

- \(t_p = 250 \mu s \)
- \(T_j = 25 ^\circ C \)
- \(T_j = 125 ^\circ C \)

Figure 2. Rectifier Diode

Transient thermal impedance as a function of pulse width

\[Z_{th(t_p)} = f(t_p) \]

![Graph showing transient thermal impedance as a function of pulse width.](image2)

- \(D = \frac{t_p}{T} \)
- \(R_{th(j-s)} = 1.16 \text{ K/W} \)

Diode thermal model values

<table>
<thead>
<tr>
<th>(R (\text{K/W}))</th>
<th>(\tau (\text{s}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.14E-02</td>
<td>1.28E+01</td>
</tr>
<tr>
<td>1.22E-01</td>
<td>9.21E-01</td>
</tr>
<tr>
<td>5.42E-01</td>
<td>1.28E-01</td>
</tr>
<tr>
<td>3.74E-01</td>
<td>2.87E-02</td>
</tr>
<tr>
<td>9.37E-02</td>
<td>2.38E-03</td>
</tr>
</tbody>
</table>

Figure 3. Rectifier Diode

Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

![Graph showing power dissipation as a function of heatsink temperature.](image3)

At \(T_j = 175 ^\circ C \)

Figure 4. Rectifier Diode

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

![Graph showing forward current as a function of heatsink temperature.](image4)

At \(T_j = 175 ^\circ C \)
Thermistor Characteristics

Figure 1. Thermistor

Typical NTC characteristic as a function of temperature

$R = f(T)$

<table>
<thead>
<tr>
<th>R (Ω)</th>
<th>T (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25000</td>
<td>25</td>
</tr>
<tr>
<td>20000</td>
<td>50</td>
</tr>
<tr>
<td>15000</td>
<td>75</td>
</tr>
<tr>
<td>10000</td>
<td>100</td>
</tr>
<tr>
<td>5000</td>
<td>125</td>
</tr>
</tbody>
</table>

NTC-typical temperature characteristic
H-Bridge Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

$$E = E_F$$

With an inductive load at

- $V_{DS} = 400$ V
- $T_J = 125$ °C
- $R_{on} = 16$ Ω

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

$$E = E_{on}$$

With an inductive load at

- $V_{DS} = 400$ V
- $T_J = 125$ °C
- $I_C = 30$ A

Figure 3. FWD
Typical reverse recovered energy loss as a function of collector current

$$E_{rec} = E_{off}$$

With an inductive load at

- $V_{DS} = 400$ V
- $T_J = 125$ °C
- $I_C = 30$ A

Figure 4. FWD
Typical reverse recovered energy loss as a function of gate resistor

$$E_{rec} = E_{off}$$

With an inductive load at

- $V_{DS} = 400$ V
- $T_J = 125$ °C
- $I_C = 30$ A
H-Bridge Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at
- \(T_j = 150 \, ^\circ\text{C} \)
- \(V_{CE} = 400 \, \text{V} \)
- \(V_{GE} = \pm15 \, \text{V} \)
- \(R_{gon} = 16 \, \Omega \)
- \(I_C = 30 \, \text{A} \)

Figure 6. IGBT
Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at
- \(T_j = 150 \, ^\circ\text{C} \)
- \(V_{CE} = 400 \, \text{V} \)
- \(V_{GE} = \pm15 \, \text{V} \)
- \(R_{gon} = 16 \, \Omega \)
- \(I_C = 30 \, \text{A} \)

Figure 7. FWD
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

With an inductive load at
- \(T_j = 25 \, ^\circ\text{C} \)
- \(V_{CE} = 400 \, \text{V} \)
- \(V_{GE} = \pm15 \, \text{V} \)
- \(R_{gon} = 16 \, \Omega \)

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn-on gate resistor

\[t_{rr} = f(R_{gon}) \]

With an inductive load at
- \(T_j = 25 \, ^\circ\text{C} \)
- \(V_{CE} = 400 \, \text{V} \)
- \(V_{GE} = \pm15 \, \text{V} \)
- \(I_C = 30 \, \text{A} \)
H-Bridge Switching Characteristics

Figure 9. Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

With an inductive load at

- \(V_{CC} = 400 \text{ V} \)
- \(T_J = 25 \text{ °C} \)
- \(V_{CE} = 400 \text{ V} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(R_{gon} = 16 \text{ Ω} \)
- \(I_C = 30 \text{ A} \)

Figure 10. Typical recovered charge as a function of IGBT turn on gate resistor

\[Q_r = f(R_{gon}) \]

With an inductive load at

- \(V_{CC} = 400 \text{ V} \)
- \(T_J = 25 \text{ °C} \)
- \(V_{CE} = 400 \text{ V} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(I_C = 30 \text{ A} \)

Figure 11. Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

With an inductive load at

- \(V_{CC} = 400 \text{ V} \)
- \(T_J = 25 \text{ °C} \)
- \(V_{CE} = 400 \text{ V} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(R_{gon} = 16 \text{ Ω} \)

Figure 12a. Typical peak reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RM} = f(R_{gon}) \]

With an inductive load at

- \(V_{CC} = 400 \text{ V} \)
- \(T_J = 25 \text{ °C} \)
- \(V_{CE} = 400 \text{ V} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(I_C = 30 \text{ A} \)
H-Bridge Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
\frac{dI_F}{dt}, \frac{dI_{rr}}{dt} = f(I_C)
\]

With an inductive load at 25 °C
- \(V_{CE} = 400 \text{ V} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(R_{gon} = 16 \Omega \)
- \(I_C = 30 \text{ A} \)

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[
\frac{dI_F}{dt}, \frac{dI_{rr}}{dt} = f(R_{gon})
\]

With an inductive load at 25 °C
- \(V_{CE} = 400 \text{ V} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(I_C = 30 \text{ A} \)
- \(T_j = 125 \text{ °C} \)

Figure 15. IGBT
Reverse bias safe operating area
\[
I_t = f(V_{CE})
\]

At
- \(T_j = 125 \text{ °C} \)
- \(R_{gon} = 16 \Omega \)
- \(R_{goff} = 16 \Omega \)
H-Bridge Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_j</td>
<td>125 °C</td>
</tr>
<tr>
<td>$R_{g,on}$</td>
<td>16 Ω</td>
</tr>
<tr>
<td>$R_{g,off}$</td>
<td>16 Ω</td>
</tr>
</tbody>
</table>

Figure 1. IGBT
Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff} (t_{Eoff} = integrating time for E_{off})

- $V_{CE}(0\%)$ = -15 V
- $V_{CE}(100\%)$ = 15 V
- $I_C(100\%)$ = 30 A
- t_{doff} = 86 ns

Figure 2. IGBT
Turn-on Switching Waveforms & definition of t_{don}, t_{Eon} (t_{Eon} = integrating time for E_{on})

- $V_{CE}(0\%)$ = -15 V
- $V_{CE}(100\%)$ = 15 V
- $I_C(100\%)$ = 30 A
- t_{don} = 66 ns

Figure 3. IGBT
Turn-off Switching Waveforms & definition of t_f

- $V_{CE}(90\%)$ = 400 V
- $I_C(10\%)$ = 30 A
- t_f = 10 ns

Figure 4. IGBT
Turn-on Switching Waveforms & definition of t_r

- $V_{CE}(90\%)$ = 400 V
- $I_C(10\%)$ = 30 A
- t_r = 9 ns
H-Bridge Switching Characteristics

Figure 5. Turn-off Switching Waveforms & definition of t_{rr}

- $V_F (100\%) = 400 \text{ V}$
- $I_F (100\%) = 30 \text{ A}$
- $I_{RRM (100\%)} = 48 \text{ A}$
- $t_{rr} = 115 \text{ ns}$

Figure 6. Turn-on Switching Waveforms & definition of t_{Qr} (t_{Qr} = integrating time for Q_r)

- $I_{RRM (100\%)} = 2.37 \text{ μC}$

Copyright Vincotech
Boost Switching Characteristics

Figure 1. IGBT

Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

\[E_{on} \quad E_{off} \quad E_{on} \quad E_{off} \]

With an inductive load at 25 °C

- \(V_{DS} = 400 \) V
- \(T_J = 125 \) °C
- \(R_g = 16 \) Ω

- \(V_{DS} = 0 \) V / 15 V
- \(T_J = 150 \) °C

Figure 2. IGBT

Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

\[E_{on} \quad E_{off} \quad E_{on} \quad E_{off} \]

With an inductive load at 25 °C

- \(V_{DS} = 400 \) V
- \(T_J = 125 \) °C
- \(R_g = 16 \) Ω

- \(V_{DS} = 0 \) V / 15 V
- \(T_J = 150 \) °C

Figure 3. FWD

Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

\[E_{rec} \]

With an inductive load at 25 °C

- \(V_{DS} = 400 \) V
- \(T_J = 125 \) °C
- \(R_g = 16 \) Ω

- \(V_{DS} = 0 \) V / 15 V
- \(T_J = 150 \) °C

Figure 4. FWD

Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

\[E_{rec} \]

With an inductive load at 25 °C

- \(V_{DS} = 400 \) V
- \(T_J = 125 \) °C
- \(R_g = 16 \) Ω

- \(V_{DS} = 0 \) V / 15 V
- \(T_J = 150 \) °C
Boost Switching Characteristics

Figure 5. IGBT

Typical switching times as a function of collector current

$t_d(on) = f(I_C)$

With an inductive load at

- $T_j = 150 °C$
- $V_{CE} = 400 V$
- $V_{GE} = 0 / 15 V$
- $R_{gon} = 16 Ω$
- $I_C = 30 A$

$t_d(off) = f(I_C)$

Figure 6. IGBT

Typical switching times as a function of gate resistor

$t_d(on) = f(R_g)$

With an inductive load at

- $T_j = 150 °C$
- $V_{CE} = 400 V$
- $V_{GE} = 0 / 15 V$
- $R_{gon} = 16 Ω$
- $I_C = 30 A$

$t_d(off) = f(R_g)$

Figure 7. FWD

Typical reverse recovery time as a function of collector current

$t_{rr} = f(I_C)$

With an inductive load at

- $T_j = 25 °C$
- $V_{CE} = 400 V$
- $V_{GE} = 0 / 15 V$
- $R_{gon} = 16 Ω$

Figure 8. FWD

Typical reverse recovery time as a function of IGBT turn-on gate resistor

$t_{rr} = f(R_{gon})$

With an inductive load at

- $T_j = 25 °C$
- $V_{CE} = 400 V$
- $V_{GE} = 0 / 15 V$
- $R_{gon} = 16 Ω$
- $I_C = 30 A$

$t_{rr} = f(R_{gon})$
Boost Switching Characteristics

Figure 9.
Typical recovered charge as a function of collector current
\[Q_r = f(I_C) \]

With an inductive load at
\[V_{CC} = 400 \text{ V} \]
\[V_{GS} = 0 / 15 \text{ V} \]
\[R_{gon} = 16 \Omega \]

at 25 °C

Figure 10.
Typical recovered charge as a function of IGBT turn-on gate resistor
\[Q_r = f(R_{gon}) \]

With an inductive load at
\[V_{CC} = 400 \text{ V} \]
\[V_{GS} = 0 / 15 \text{ V} \]
\[I_c = 30 \text{ A} \]

at 25 °C

Figure 11.
Typical peak reverse recovery current as a function of collector current
\[I_{RM} = f(I_C) \]

With an inductive load at
\[V_{CC} = 400 \text{ V} \]
\[V_{GS} = 0 / 15 \text{ V} \]
\[R_{gon} = 16 \Omega \]

at 25 °C

Figure 12.
Typical peak reverse recovery current as a function of IGBT turn-on gate resistor
\[I_{RM} = f(R_{gon}) \]

With an inductive load at
\[V_{CC} = 400 \text{ V} \]
\[V_{GS} = 0 / 15 \text{ V} \]
\[I_c = 30 \text{ A} \]

at 25 °C
Boost Switching Characteristics

Figure 13. FWD

Typical rate of fall of forward and reverse recovery current as a function of collector current

\[\frac{d\text{i}_{\text{F}}}{dt}, \frac{d\text{i}_{\text{rr}}}{dt} = f(I_{\text{C}}) \]

With an inductive load at 25 °C

- \(V_{\text{CE}} = 400 \) V
- \(T_j = 125 \) °C
- \(R_{\text{gon}} = 16 \) Ω

Figure 14. FWD

Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[\frac{d\text{i}_{\text{F}}}{dt}, \frac{d\text{i}_{\text{rr}}}{dt} = f(R_{\text{gon}}) \]

With an inductive load at 25 °C

- \(V_{\text{CE}} = 400 \) V
- \(T_j = 125 \) °C
- \(V_{\text{GE}} = 0 / 15 \) V
- \(R_{\text{gon}} = 16 \) Ω
- \(I_{\text{C}} = 30 \) A

Figure 15. IGBT

Reverse bias safe operating area

\[I_{\text{C}} = f(V_{\text{CE}}) \]

At

- \(T_j = 125 \) °C
- \(R_{\text{gon}} = 16 \) Ω
- \(R_{\text{goff}} = 16 \) Ω
Boost Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{gss}</td>
<td>16 Ω</td>
</tr>
</tbody>
</table>

Figures

Figure 1. Turn-off Switching Waveforms & definition of t_{doff} (t_{Eoff} = integrating time for E_{off})

- $V_{GE}(0\%) = 0$ V
- $V_{CE}(0\%) = 15$ V
- $V_{GE}(100\%) = 400$ V
- $I_{C}(100\%) = 30$ A
- $t_{doff} = 155$ ns

Figure 2. Turn-on Switching Waveforms & definition of t_{don} (t_{Eon} = integrating time for E_{on})

- $V_{CE}(0\%) = 0$ V
- $V_{CE}(100\%) = 15$ V
- $V_{GE}(100\%) = 400$ V
- $I_{C}(100\%) = 30$ A
- $t_{don} = 19$ ns

Figure 3. Turn-off Switching Waveforms & definition of t_f

- $V_{CE}(1\%) = 400$ V
- $I_{C}(10\%) = 30$ A
- $t_f = 9$ ns

Figure 4. Turn-on Switching Waveforms & definition of t_r

- $V_{CE}(1\%) = 400$ V
- $I_{C}(10\%) = 30$ A
- $t_r = 9$ ns
Boost Switching Characteristics

Figure 5. FWD

Turn-off Switching Waveforms & definition of t\text{rr}

- \(V_F(100\%) = 400 \text{ V} \)
- \(I_F(100\%) = 30 \text{ A} \)
- \(I_{RRM}(100\%) = 50 \text{ A} \)
- \(t_{rr} = 113 \text{ ns} \)

Figure 6. FWD

Turn-on Switching Waveforms & definition of t\text{Qr} (t\text{Qr} = \text{integrating time for Qr})

- \(I_R(100\%) = 30 \text{ A} \)
- \(Q_r(100\%) = 2,28 \mu\text{C} \)
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12 mm housing with solder pins</td>
<td>10-FZ07BIA030SM02-P894E58</td>
</tr>
<tr>
<td>with thermal paste 12 mm housing with solder pins</td>
<td>10-FZ07BIA030SM02-P894E58-3/</td>
</tr>
<tr>
<td>without thermal paste 12 mm housing with Press-fit pins</td>
<td>10-PZ07BIA030SM02-P894E58</td>
</tr>
<tr>
<td>with thermal paste 12 mm housing with Press-fit pins</td>
<td>10-PZ07BIA030SM02-P894E58-3/</td>
</tr>
</tbody>
</table>

Pin table

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28.7</td>
<td>0</td>
<td>G4</td>
</tr>
<tr>
<td>2</td>
<td>25.9</td>
<td>0</td>
<td>S4</td>
</tr>
<tr>
<td>3</td>
<td>23.1</td>
<td>0</td>
<td>-INV</td>
</tr>
<tr>
<td>4</td>
<td>17.6</td>
<td>0</td>
<td>+INV</td>
</tr>
<tr>
<td>5</td>
<td>12.1</td>
<td>0</td>
<td>G3</td>
</tr>
<tr>
<td>6</td>
<td>9.3</td>
<td>0</td>
<td>S3</td>
</tr>
<tr>
<td>7</td>
<td>2.8</td>
<td>0</td>
<td>G5</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>S5</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>5.05</td>
<td>-DC</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>10.55</td>
<td>+DC</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>16.15</td>
<td>Sol</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>22.6</td>
<td>Boost</td>
</tr>
<tr>
<td>13</td>
<td>9.3</td>
<td>22.6</td>
<td>S1</td>
</tr>
<tr>
<td>14</td>
<td>12.1</td>
<td>22.6</td>
<td>G1</td>
</tr>
<tr>
<td>15</td>
<td>17.6</td>
<td>22.6</td>
<td>+INV</td>
</tr>
<tr>
<td>16</td>
<td>23.1</td>
<td>22.6</td>
<td>-INV</td>
</tr>
<tr>
<td>17</td>
<td>25.9</td>
<td>22.6</td>
<td>S2</td>
</tr>
<tr>
<td>18</td>
<td>28.7</td>
<td>22.6</td>
<td>G2</td>
</tr>
<tr>
<td>19</td>
<td>33.6</td>
<td>20.05</td>
<td>L1</td>
</tr>
<tr>
<td>20</td>
<td>33.6</td>
<td>14.55</td>
<td>R1</td>
</tr>
<tr>
<td>21</td>
<td>33.6</td>
<td>8.05</td>
<td>R2</td>
</tr>
<tr>
<td>22</td>
<td>33.6</td>
<td>2.55</td>
<td>L2</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>Not assembled</td>
</tr>
</tbody>
</table>
Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, T2, T3, T4</td>
<td>IGBT</td>
<td>650 V</td>
<td>30 A</td>
<td>H-Bridge Switch</td>
<td></td>
</tr>
<tr>
<td>D1, D2, D3, D4</td>
<td>FWD</td>
<td>650 V</td>
<td>15 A</td>
<td>H-Bridge Diode</td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>IGBT</td>
<td>650 V</td>
<td>30 A</td>
<td>Boost Switch</td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>FWD</td>
<td>650 V</td>
<td>15 A</td>
<td>Boost Diode</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>FWD</td>
<td>650 V</td>
<td>10 A</td>
<td>Boost Sw.Prot. Diode</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>Rectifier</td>
<td>1600 V</td>
<td>35 A</td>
<td>Bypass Diode</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>NTC</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
Packaging instruction

<table>
<thead>
<tr>
<th>Standard packaging quantity (SPQ)</th>
<th>>SPQ</th>
<th>Standard</th>
<th><SPQ</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Handling instruction

Handling instructions for flow 0 packages see vincotech.com website.

Package data

Package data for flow 0 packages see vincotech.com website.

UL recognition and file number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

PACKAGING INSTRUCTION

<table>
<thead>
<tr>
<th>Document No.:</th>
<th>Date:</th>
<th>Modification:</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-FZ07BIA030SM02-P894E58-D4-14</td>
<td>17 Sep. 2018</td>
<td>Corrected Power dissipation graphs and max current ratings, Added boost dynamic parameters</td>
<td>1, 2, 3, 6, 7, 9-16, 23-28</td>
</tr>
</tbody>
</table>