Features
- "PS: 75A parallel switch (75A and 99mΩ MOSFET)
- Neutral point clamped inverter
- Reactive power capability
- Low inductance layout

Target Applications
- Solar inverter
- UPS

Types
- 10-FZ06NRA084FP03-P969F78
- 10-PZ06NRA084FP03-P969F78Y

Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Inv. Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Forward current per diode</td>
<td>(I_{FAV})</td>
<td>DC current, (T_{j}=80°C)</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_{j}=80°C)</td>
<td>11</td>
<td>A</td>
</tr>
<tr>
<td>Maximum repetitive forward current</td>
<td>(I_{FRM})</td>
<td>(I_{f}=10\text{ms})</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_{j}=25°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2t-value</td>
<td>(I_{I2T})</td>
<td></td>
<td>9.5</td>
<td>A²s</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>(P_{D})</td>
<td>(T_{1}=T_{j}\text{max})</td>
<td>44</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_{j}=80°C)</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j}\text{max})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Buck IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>(V_{CE})</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>(I_C)</td>
<td>(T_{j}=T_{j}\text{max})</td>
<td>61</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_{j}=80°C)</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>(I_{pu})</td>
<td>(I_{p}, \text{limited by} \ T_{j}\text{max})</td>
<td>225</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td></td>
<td></td>
<td>225</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>(P_{D})</td>
<td>(T_{1}=T_{j}\text{max})</td>
<td>108</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_{j}=80°C)</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>(V_{GE})</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j}\text{max})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

Parameter	**Symbol**	**Condition**	**Value**	**Unit**
Buck Diode
Peak Repetitive Reverse Voltage | V_{max} | $T_j=25^\circ C$ | 600 | V
DC forward current | I_f | $T_j=T_{max}$ | 25 | A
$T_j=80^\circ C$ | 34 | A
Non-repetitive Peak Surge Current | I_{FSM} | 60Hz Single Half-Sine Wave | 300 | A
Power dissipation per Diode | P_{tot} | $T_j=T_{max}$ | 40 | W
$T_j=80^\circ C$ | 61 | W
Maximum Junction Temperature | $T_{j,max}$ | 150 | °C

Buck MOSFET
Drain to source breakdown voltage | V_{DS} | | 600 | V
DC drain current | I_D | $T_j=T_{max}$ | 17 | A
$T_j=80^\circ C$ | 21 | A
Pulsed drain current | I_{pulser} | I_p limited by $T_{j,max}$ | 112 | A
Power dissipation | P_{tot} | $T_j=T_{max}$ | 60 | W
$T_j=80^\circ C$ | 91 | W
Gate-source peak voltage | V_{gs} | | ≤ 20 | V
Maximum Junction Temperature | $T_{j,max}$ | 150 | °C

Boost IGBT
Collector-emitter break down voltage | V_{CE} | | 600 | V
DC collector current | I_C | $T_j=T_{max}$ | 58 | A
$T_j=80^\circ C$ | 75 | A
Pulsed collector current | I_{puls} | I_p limited by $T_{j,max}$ | 225 | A
Turn off safe operating area | | | 225 | A
Power dissipation per IGBT | P_{tot} | $T_j=T_{max}$ | 93 | W
$T_j=80^\circ C$ | 141 | W
Gate-emitter peak voltage | V_{GE} | | ≤ 20 | V
Short circuit ratings | I_{SC} | $T_j=150^\circ C$ | 6 | μA
$V_{GE}=15 V$ | 360 | μA
Maximum Junction Temperature | $T_{j,max}$ | 175 | °C

Boost Diode
Peak Repetitive Reverse Voltage | V_{max} | | 1200 | V
DC forward current | I_f | $T_j=T_{max}$ | 22 | A
$T_j=80^\circ C$ | 29 | A
Repetitive peak forward current | I_{FRM} | I_p limited by $T_{j,max}$, 20 kHz Square Wave | 70 | A
Power dissipation per Diode | P_{tot} | $T_j=T_{max}$ | 51 | W
$T_j=80^\circ C$ | 77 | W
Maximum Junction Temperature | $T_{j,max}$ | 175 | °C
Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40…+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40…+(Tjmax - 25)</td>
<td>°C</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>V_{in}</td>
<td>t=2s DC voltage</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
</tbody>
</table>
Characteristic Values

Buck Inv. Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td>Tj=25°C</td>
<td>9.44 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=125°C</td>
<td>7.24 V</td>
</tr>
<tr>
<td>Threshold voltage (for power loss calc. only)</td>
<td>V_{th}</td>
<td>Tj=25°C</td>
<td>8.32 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=125°C</td>
<td>6.62 V</td>
</tr>
<tr>
<td>Slope resistance (for power loss calc. only)</td>
<td>r_s</td>
<td>Tj=25°C</td>
<td>0.11 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=125°C</td>
<td>0.06 Ω</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_L</td>
<td>Tj=25°C</td>
<td>0.027 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=125°C</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td>2.17 K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to case per chip</td>
<td>R_{thJC}</td>
<td></td>
<td>1.43 K/W</td>
</tr>
</tbody>
</table>

Buck IGBT *

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>VCE=VGE</td>
<td>3.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=125°C</td>
<td>4.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td>0.00025</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=25°C</td>
<td>2.55 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=125°C</td>
<td>1.87 V</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I_ESS</td>
<td>15</td>
<td>250 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=25°C</td>
<td></td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td>0.020</td>
<td>±400 nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=25°C</td>
<td></td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{ig}</td>
<td></td>
<td>none</td>
</tr>
<tr>
<td>Input capacitance **</td>
<td>C_i</td>
<td>f=1MHz</td>
<td>4.47 nF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_o</td>
<td>0.025</td>
<td>400 pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td></td>
<td>115 pF</td>
</tr>
<tr>
<td>Gate charge**</td>
<td>Q_{Gate}</td>
<td>15</td>
<td>248±70 nC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=25°C</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness: 50µm $\lambda = 1 \text{W/mK}$</td>
<td>0.88 K/W</td>
</tr>
</tbody>
</table>

Buck Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_F</td>
<td>30</td>
<td>2.67 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=125°C</td>
<td>2.7 V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_L</td>
<td>600</td>
<td>2.76 µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=125°C</td>
<td></td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RRM}</td>
<td>$t=4 \Omega$</td>
<td>80 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=25°C</td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_r</td>
<td>350</td>
<td>90 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=25°C</td>
<td>22 ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rec}</td>
<td>$t=4 \Omega$</td>
<td>0.59 µC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=25°C</td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>dI/dt</td>
<td>$t=4 \Omega$</td>
<td>14099 A/µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=25°C</td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td>0.13 mWs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tj=125°C</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness: 50µm $\lambda = 1 \text{W/mK}$</td>
<td>1.73 K/W</td>
</tr>
</tbody>
</table>
Buck MOSFET

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static drain to source ON resistance</td>
<td>$R_{\text{g(on)}}$</td>
<td>10</td>
<td>16</td>
<td>mΩ</td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>$V_{\text{GS(th)}}$</td>
<td>0.0012</td>
<td>V_{GS}</td>
<td>V_{GE}</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>I_{DS}</td>
<td>20</td>
<td>8</td>
<td>mA</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_{DS}</td>
<td>0</td>
<td>600</td>
<td>μA</td>
</tr>
<tr>
<td>Turn On Delay Time</td>
<td>t_{ON}</td>
<td>15</td>
<td>350</td>
<td>40</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_{i}</td>
<td>30</td>
<td>125°C</td>
<td>1.05</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{OFF}</td>
<td>15</td>
<td>350</td>
<td>40</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>30</td>
<td>125°C</td>
<td>1.05</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td>5</td>
<td>100</td>
<td>2660</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td>5</td>
<td>100</td>
<td>2660</td>
</tr>
<tr>
<td>Total gate charge</td>
<td>Q_g</td>
<td>40</td>
<td>18.1</td>
<td>14</td>
</tr>
<tr>
<td>Gate to source charge</td>
<td>Q_{gs}</td>
<td>10</td>
<td>480</td>
<td>1.16</td>
</tr>
<tr>
<td>Gate to drain charge</td>
<td>Q_{gd}</td>
<td>10</td>
<td>480</td>
<td>1.16</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>0</td>
<td>100</td>
<td>2660</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>0</td>
<td>100</td>
<td>2660</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{JH}</td>
<td>0.0012</td>
<td>V_{JH}</td>
<td>V_{HE}</td>
</tr>
</tbody>
</table>

see schematic of the Gate-complex at characteristic figures

Boost IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter threshold voltage</td>
<td>$V_{\text{CE(th)}}$</td>
<td>0.0012</td>
<td>V_{CE}</td>
<td>V_{GS}</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEO}</td>
<td>15</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>I_{CES}</td>
<td>0</td>
<td>600</td>
<td>0</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GSS}</td>
<td>20</td>
<td>600</td>
<td>0</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gss}</td>
<td>10</td>
<td>18.1</td>
<td>14</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{ON}</td>
<td>15</td>
<td>350</td>
<td>50</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{i}</td>
<td>30</td>
<td>125°C</td>
<td>1.05</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{OFF}</td>
<td>15</td>
<td>350</td>
<td>50</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>30</td>
<td>125°C</td>
<td>1.05</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td>5</td>
<td>100</td>
<td>2660</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td>5</td>
<td>100</td>
<td>2660</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>0</td>
<td>100</td>
<td>2660</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>0</td>
<td>100</td>
<td>2660</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{iss}</td>
<td>0</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gss}</td>
<td>15</td>
<td>480</td>
<td>75</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{JH}</td>
<td>0.0012</td>
<td>V_{JH}</td>
<td>V_{HE}</td>
</tr>
</tbody>
</table>

see schematic of the Gate-complex at characteristic figures
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Conditions</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_F</td>
<td>V</td>
<td>$T_j=25,^\circ\text{C}$</td>
<td>2.23</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_r</td>
<td>µA</td>
<td>$T_j=25,^\circ\text{C}$</td>
<td>104</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{fmax}</td>
<td>A</td>
<td>$T_j=25,^\circ\text{C}$</td>
<td>79</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>ns</td>
<td>$T_j=25,^\circ\text{C}$</td>
<td>26</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>µC</td>
<td>$T_j=25,^\circ\text{C}$</td>
<td>3.00</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$s_{d} \left(\text{rec} \right)_{\text{max}}$</td>
<td>A/µs</td>
<td>$T_j=25,^\circ\text{C}$</td>
<td>11385</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td>mWs</td>
<td>$T_j=25,^\circ\text{C}$</td>
<td>7906</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{ch}</td>
<td>K/W</td>
<td>$T_j=25,^\circ\text{C}$</td>
<td>1.87</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td>Ω</td>
<td>$T_j=25,^\circ\text{C}$</td>
<td>21511</td>
</tr>
<tr>
<td>Deviation of R_{100}</td>
<td>$\Delta R , R_{100}$</td>
<td>%</td>
<td>$T_c=100,^\circ\text{C}$</td>
<td>-4.5</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>P</td>
<td>mW</td>
<td>$T_j=25,^\circ\text{C}$</td>
<td>210</td>
</tr>
<tr>
<td>A-value</td>
<td>$B_{(25/50)}$</td>
<td>K</td>
<td>$T_j=25,^\circ\text{C}$</td>
<td>3884</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/100)}$</td>
<td>K</td>
<td>$T_j=25,^\circ\text{C}$</td>
<td>3964</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Buck

Figure 1
Typical output characteristics
$I_C = f(V_{CE})$

<table>
<thead>
<tr>
<th>V_{CE} (V)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_C (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At
$t_p = 250 \mu s$
$T_j = 25 \degree C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics
$I_C = f(V_{CE})$

<table>
<thead>
<tr>
<th>V_{CE} (V)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_C (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At
$t_p = 250 \mu s$
$T_j = 125 \degree C$
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics
$I_C = f(V_{GE})$

<table>
<thead>
<tr>
<th>V_{GE} (V)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_C (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At
$t_p = 250 \mu s$
$T_j = T_{j,\text{max}} - 25 \degree C$
$V_{CE} = 10$ V

Figure 4
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$

<table>
<thead>
<tr>
<th>V_F (V)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_F (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At
$t_p = 250 \mu s$
$T_j = 25 \degree C$
$T_j = T_{j,\text{max}} - 25 \degree C$
$T_j = 25 \degree C$
Figure 5 MOSFET+IGBT
Typical switching energy losses
as a function of collector current
\[E = f(I_C) \]

![Graph showing energy losses as a function of collector current.]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{on} = 4 \) Ω
- \(R_{off} = 4 \) Ω

Figure 6 MOSFET+IGBT
Typical switching energy losses
as a function of gate resistor
\[E = f(R_G) \]

![Graph showing energy losses as a function of gate resistor.]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 40 \) A

Figure 7 FWD
Typical reverse recovery energy loss
as a function of collector current
\[E_{rec} = f(I_C) \]

![Graph showing reverse recovery energy loss as a function of collector current.]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{on} = 4 \) Ω

Figure 8 FWD
Typical reverse recovery energy loss
as a function of gate resistor
\[E_{rec} = f(R_G) \]

![Graph showing reverse recovery energy loss as a function of gate resistor.]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 40 \) A
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at:
- \(T_j = 125 \degree C \)
- \(V_{CE} = 350 \text{ V} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(R_{\text{on}} = 4 \Omega \)
- \(R_{\text{off}} = 4 \Omega \)

MOSFET turn off delayed with 350 nS

Figure 11

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At:
- \(T_j = 25/125 \degree C \)
- \(V_{CE} = 350 \text{ V} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(R_{\text{on}} = 4 \Omega \)

MOSFET turn off delayed with 350 nS

Figure 12

Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{\text{on}}) \]

At:
- \(T_j = 25/125 \degree C \)
- \(V_{CE} = 350 \text{ V} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(l_c = 40 \text{ A} \)
Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

![Graph showing typical reverse recovery charge as a function of collector current.]

At
- \(T_j = 25/125 \, ^\circ C\)
- \(V_{CE} = 350 \, V\)
- \(V_{GE} = \pm 15 \, V\)
- \(R_{gon} = 4 \, \Omega\)

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

![Graph showing typical reverse recovery charge as a function of IGBT turn on gate resistor.]

At
- \(T_j = 25/125 \, ^\circ C\)
- \(V_{GE} = 350 \, V\)
- \(I_F = 40 \, A\)
- \(V_{GE} = \pm 15 \, V\)

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

![Graph showing typical reverse recovery current as a function of collector current.]

At
- \(T_j = 25/125 \, ^\circ C\)
- \(V_{CE} = 350 \, V\)
- \(V_{GE} = \pm 15 \, V\)
- \(R_{gon} = 4 \, \Omega\)

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

![Graph showing typical reverse recovery current as a function of IGBT turn on gate resistor.]

At
- \(T_j = 25/125 \, ^\circ C\)
- \(V_{GE} = 350 \, V\)
- \(I_F = 40 \, A\)
- \(V_{GE} = \pm 15 \, V\)
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\(\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \)

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\(\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \)

Figure 19
IGBT transient thermal impedance as a function of pulse width
\(Z_{th, JH} = f(t_p) \)

Figure 20
FWD transient thermal impedance as a function of pulse width
\(Z_{th, JH} = f(t_p) \)

At
- \(T_j = 25/125 °C \)
- Gate on/off resistor of IGBT is fixed 4 \(Ω \)
- MOSFET turn off delayed with 350 nS
- \(V_R = 350 V \)
- \(V_{GE} = ±15 V \)
- \(I_F = 40 A \)
- \(R_{gon} = 4 Ω \)
- \(V_{CE} = 350 V \)

IGBT thermal model values
- \(R (C/W) \)
- \(\tau (s) \)
- 0.14, 1.8E+00
- 0.36, 2.1E-01
- 0.28, 7.5E-02
- 0.08, 1.2E-02
- 0.02, 1.1E-03

FWD thermal model values
- \(R (C/W) \)
- \(\tau (s) \)
- 0.08, 4.5E+00
- 0.17, 9.6E-01
- 0.63, 1.6E-01
- 0.53, 5.6E-02
- 0.20, 1.2E-02
- 0.12, 2.3E-03
Figure 21
Power dissipation as a function of heatsink temperature
$P_{\text{tot}} = f(T_h)$

At
$T_j = 175 \, ^\circ\text{C}$

Figure 22
Collector current as a function of heatsink temperature
$I_C = f(T_h)$

At
$T_j = 175 \, ^\circ\text{C}$
$V_{GE} = 15 \, \text{V}$

Figure 23
Power dissipation as a function of heatsink temperature
$P_{\text{tot}} = f(T_h)$

At
$T_j = 150 \, ^\circ\text{C}$

Figure 24
Forward current as a function of heatsink temperature
$I_F = f(T_h)$

At
$T_j = 150 \, ^\circ\text{C}$
Buck

Figure 25
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

Figure 26
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At

D = single pulse
Th = 80 °C
\[V_{GE} = \pm 15 \text{ V} \]
\[T_j = T_{jmax} \text{ °C} \]

Figure 27
MOSFET transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

Figure 28
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At

\[I_C = 75 \]

\[D_t = \frac{t_p}{T} \]

\[R_{thJH} = 1.16 \text{ K/W} \]

MOSFET thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>(\text{Tau}) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>4.7E+00</td>
</tr>
<tr>
<td>0.22</td>
<td>9.0E-01</td>
</tr>
<tr>
<td>0.39</td>
<td>1.7E-01</td>
</tr>
<tr>
<td>0.25</td>
<td>4.8E-02</td>
</tr>
<tr>
<td>0.10</td>
<td>1.3E-02</td>
</tr>
<tr>
<td>0.05</td>
<td>2.5E-03</td>
</tr>
</tbody>
</table>

MOSFET thermal model values

\[R (\text{C/W}) \quad \text{Tau} \quad \text{(s)} \]

\[0.11 \quad 4.7E+00 \]

\[0.22 \quad 9.0E-01 \]

\[0.39 \quad 1.7E-01 \]

\[0.25 \quad 4.8E-02 \]

\[0.10 \quad 1.3E-02 \]

\[0.05 \quad 2.5E-03 \]
Boost

Figure 1
Typical output characteristics
$I_c = f(V_{ce})$

- $t_p = 250 \, \mu$s
- $T_j = 25 \, \degree \mathrm{C}$
- V_{ce} from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics
$I_c = f(V_{ce})$

- $t_p = 250 \, \mu$s
- $T_j = 125 \, \degree \mathrm{C}$
- V_{ce} from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics
$I_c = f(V_{ge})$

Figure 4
Typical diode forward current as a function of forward voltage
$I_f = f(V_f)$

- $t_p = 250 \, \mu$s

V_{ce} from 10 V to 20 V in steps of 1 V

Copyright Vincotech
Figure 5
IGBT
Typical switching energy losses as a function of collector current
$E = f(I_C)$

With an inductive load at
$T_J = 25/125 \degree C$
$V_{CE} = 350 \text{ V}$
$V_{GE} = \pm 15 \text{ V}$
$R_{GS(on)} = 4 \Omega$
$R_{GS(off)} = 4 \Omega$

Figure 6
IGBT
Typical switching energy losses as a function of gate resistor
$E = f(R_G)$

With an inductive load at
$T_J = 25/125 \degree C$
$V_{CE} = 350 \text{ V}$
$V_{GE} = \pm 15 \text{ V}$
$I_C = 50 \text{ A}$

Figure 7
IGBT
Typical reverse recovery energy loss as a function of collector current
$E_{rec} = f(I_C)$

With an inductive load at
$T_J = 25/125 \degree C$
$V_{CE} = 350 \text{ V}$
$V_{GE} = \pm 15 \text{ V}$
$R_{GS(on)} = 4 \Omega$

Figure 8
IGBT
Typical reverse recovery energy loss as a function of gate resistor
$E_{rec} = f(R_G)$

With an inductive load at
$T_J = 25/125 \degree C$
$V_{CE} = 350 \text{ V}$
$V_{GE} = \pm 15 \text{ V}$
$I_C = 50 \text{ A}$
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at
- \(T_J = 125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 4 \, \Omega \)
- \(R_{goff} = 4 \, \Omega \)

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At
- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 4 \, \Omega \)
Boost

Figure 13
Typical reverse recovery charge as a function of collector current

\[
Q_{rr} = f(I_C)
\]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[
Q_{rr} = f(R_{gon})
\]

Figure 15
Typical reverse recovery current as a function of collector current

\[
I_{RRM} = f(I_C)
\]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor

\[
I_{RRM} = f(R_{gon})
\]
Figure 17: Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
\frac{dI_0}{dt}, \frac{dI_{\text{rec}}}{dt} = f(I_c)
\]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{\text{gon}} = 4 \) Ω

Figure 18: Typical rate of fall of forward and reverse recovery current as a function of pulse width
\[
\frac{dI_0}{dt}, \frac{dI_{\text{rec}}}{dt} = f(R_{\text{gon}})
\]

At
- \(T_j = 25/125 \) °C
- \(V_{R} = 350 \) V
- \(I_F = 50 \) A
- \(V_{GE} = \pm 15 \) V

Figure 19: IGBT transient thermal impedance as a function of pulse width
\[
Z_{THJH} = f(t_p)
\]

At
- \(D = \frac{t_p}{T} \)
- \(R_{\text{RTHJH}} = 1.02 \) K/W

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>4.3E+00</td>
</tr>
<tr>
<td>0.12</td>
<td>1.0E+00</td>
</tr>
<tr>
<td>0.47</td>
<td>1.5E-01</td>
</tr>
<tr>
<td>0.26</td>
<td>4.9E-02</td>
</tr>
</tbody>
</table>

Figure 20: FWD transient thermal impedance as a function of pulse width
\[
Z_{RTHJH} = f(t_p)
\]

At
- \(D = \frac{t_p}{T} \)
- \(R_{\text{RTHJH}} = 1.87 \) K/W

FWD thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>2.9E+00</td>
</tr>
<tr>
<td>0.22</td>
<td>4.4E-01</td>
</tr>
<tr>
<td>1.10</td>
<td>1.1E-01</td>
</tr>
<tr>
<td>0.21</td>
<td>3.3E-02</td>
</tr>
<tr>
<td>0.15</td>
<td>7.2E-03</td>
</tr>
<tr>
<td>0.12</td>
<td>1.0E-03</td>
</tr>
</tbody>
</table>
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At

\[T_j = 175 \, ^\circ\text{C} \]

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At

\[T_j = 175 \, ^\circ\text{C} \]

\[V_{GE} = 15 \, \text{V} \]
Boost Inv.

Figure 25 IGBT Inverse Diode

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

Figure 26 IGBT Inverse Diode

Diode transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

\[D = 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.000 \]

\[t_p = 250 \mu s \]

\[R_{thJH} = 2.17 \text{ K/W} \]

Figure 27 IGBT Inverse Diode

Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

\[T_j = 25^\circ C \]

\[T_j = T_{max} - 25^\circ C \]

At

\[t_p = 250 \mu s \]

Figure 28 IGBT Inverse Diode

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

\[T_j = 175^\circ C \]

At

\[T_j = 175^\circ C \]
Figure 1

Thermistor

Typical NTC characteristic as a function of temperature

$R_T = f(T)$
Switching Definitions BUCK IGBT & MOSFET

General conditions

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{\text{on,IGBT}})</td>
<td>4 (\Omega)</td>
</tr>
<tr>
<td>(R_{\text{off,IGBT}})</td>
<td>4 (\Omega)</td>
</tr>
<tr>
<td>(R_{\text{on,MOSFET}})</td>
<td>4 (\Omega)</td>
</tr>
<tr>
<td>(R_{\text{off,MOSFET}})</td>
<td>4 (\Omega)</td>
</tr>
</tbody>
</table>

MOSFET turn off delayed time with 350 nS

Figure 1
Turn-off Switching Waveforms & definition of \(t_{\text{off}} \), \(t_{\text{eff}} \)

\(t_{\text{off}} \) = Integrating time for \(E_{\text{off}} \)

- \(V_{\text{GE}} \) (0%) = -15 V
- \(V_{\text{GE}} \) (100%) = 15 V
- \(V_{\text{CE}} \) (100%) = 700 V
- \(I_{\text{C}} \) (100%) = 40 A
- \(t_{\text{off}} \) = 0.41 \(\mu \)s
- \(t_{\text{eff}} \) = 0.44 \(\mu \)s

Figure 2
Turn-on Switching Waveforms & definition of \(t_{\text{on}} \), \(t_{\text{eff}} \)

\(t_{\text{on}} \) = Integrating time for \(E_{\text{on}} \)

- \(V_{\text{GE}} \) (0%) = -15 V
- \(V_{\text{GE}} \) (100%) = 15 V
- \(V_{\text{CE}} \) (100%) = 700 V
- \(I_{\text{C}} \) (100%) = 40 A
- \(t_{\text{on}} \) = 0.04 \(\mu \)s
- \(t_{\text{eff}} \) = 0.06 \(\mu \)s

Figure 3
Turn-off Switching Waveforms & definition of \(t_{\text{f}} \)

- \(V_{\text{CE}} \) (100%) = 700 V
- \(I_{\text{C}} \) (100%) = 40 A
- \(t_{\text{f}} \) = 0.004 \(\mu \)s

Figure 4
Turn-on Switching Waveforms & definition of \(t_{\text{r}} \)

- \(V_{\text{CE}} \) (100%) = 700 V
- \(I_{\text{C}} \) (100%) = 40 A
- \(t_{\text{r}} \) = 0.003 \(\mu \)s
Switching Definitions BUCK IGBT&MOSFET

Figure 5
BUCK IGBT&MOSFET

Turn-off Switching Waveforms & definition of \(t_{\text{Eoff}} \)

- \(P_{\text{off}} \) (100%) = 28,07 kW
- \(E_{\text{off}} \) (100%) = 0,23 mJ
- \(t_{\text{Eoff}} \) = 0,44 \(\mu \)s

Figure 6
BUCK IGBT&MOSFET

Turn-on Switching Waveforms & definition of \(t_{\text{Eon}} \)

- \(P_{\text{on}} \) (100%) = 28,07 kW
- \(E_{\text{on}} \) (100%) = 0,28 mJ
- \(t_{\text{Eon}} \) = 0,06 \(\mu \)s

Figure 7
BUCK IGBT&MOSFET

Turn-off Switching Waveforms & definition of \(t_{\text{rr}} \)

- \(V_{\text{d}} \) (100%) = 700 V
- \(i_{\text{F}} \) (100%) = 40 A
- \(i_{\text{Fmin}} \) (100%) = -90 A
- \(t_{\text{rr}} \) = 0,02 \(\mu \)s

Figure 8
BUCK FWD

Turn-on Switching Waveforms & definition of \(t_{\text{Qrr}} \)

- \(V_{\text{d}} \) (100%) = 700 V
- \(i_{\text{F}} \) (100%) = 40 A
- \(Q_{\text{rr}} \) (100%) = 1,18 \(\mu \)C
- \(t_{\text{Qrr}} \) = 0,04 \(\mu \)s
Switching Definitions BUCK IGBT&MOSFET

Figure 9
BUCK FWD
Turn-on Switching Waveforms & definition of $t_{E_{rec}}$

$t_{E_{rec}}$ = integrating time for E_{rec}

P_{rec}(100%) = 28.07 kW

E_{rec}(100%) = 0.19 mJ

$t_{E_{rec}}$ = 0.04 μs

Measurement circuits

Figure 11
BUCK stage switching measurement circuit

Figure 12
BOOST stage switching measurement circuit

Cg is included in the module (T5,T6)
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12mm housing</td>
<td>10-FZ06NRA084FP03-P969F78</td>
<td>P969F78</td>
<td>P969F78Y</td>
</tr>
<tr>
<td>with PressFit</td>
<td>10-PZ06NRA084FP03-P969F78Y</td>
<td>P969F78Y</td>
<td>P969F78Y</td>
</tr>
<tr>
<td>without thermal paste 12mm housing</td>
<td>10-FZ06NRA084FP03-P969F78</td>
<td>P969F78</td>
<td>P969F78</td>
</tr>
<tr>
<td>with PressFit</td>
<td>10-PZ06NRA084FP03-P969F78Y</td>
<td>P969F78Y</td>
<td>P969F78Y</td>
</tr>
</tbody>
</table>

Outline

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>30.7</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>27.8</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>19.2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>11.4</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2.9</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9.9</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>12.7</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>15.5</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>19.7</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>22.6</td>
</tr>
<tr>
<td>14</td>
<td>10.1</td>
<td>22.6</td>
</tr>
<tr>
<td>15</td>
<td>17.9</td>
<td>22.6</td>
</tr>
<tr>
<td>16</td>
<td>20.8</td>
<td>22.6</td>
</tr>
<tr>
<td>17</td>
<td>27.8</td>
<td>22.6</td>
</tr>
<tr>
<td>18</td>
<td>30.7</td>
<td>22.6</td>
</tr>
<tr>
<td>19</td>
<td>33.6</td>
<td>22.6</td>
</tr>
<tr>
<td>20</td>
<td>33.6</td>
<td>14.8</td>
</tr>
<tr>
<td>21</td>
<td>33.6</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Pinout
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.