Features

- Neutral point clamped inverter
- Reactive power capability
- Low inductance layout

Target Applications

- Solar inverter
- UPS

Types

- 10-FZ06NRA075FU-P969F08
- 10-PZ06NRA075FU-P969F08Y

Maximum Ratings

\(T_j = 25 \degree C, \) unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>(V_{CE})</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>(I_C)</td>
<td>(T_j = T_{jmax}) (T_j = 80 \degree C)</td>
<td>65</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{CRM})</td>
<td>(T_j) limited by (T_{jmax})</td>
<td>225</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_j = T_{jmax}) (T_j = 80 \degree C)</td>
<td>113</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>(V_{GE})</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>(t_{sc})</td>
<td>(T_j \leq 150 \degree C)</td>
<td>5</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Turn off safe operating area (RBSOA)</td>
<td>(I_{off})</td>
<td>(V_{CE \ max} = 600V) (T_{j \ max} = 150\degree C)</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j \ max})</td>
<td></td>
<td>175</td>
<td>(\degree C)</td>
</tr>
<tr>
<td>Buck FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{REMM})</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_o)</td>
<td>(T_j = T_{jmax}) (T_j = 80 \degree C)</td>
<td>25</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{REMM})</td>
<td>(T_j) limited by (T_{jmax}) (T_j = 100 \degree C)</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_j = T_{jmax}) (T_j = 80 \degree C)</td>
<td>40</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j \ max})</td>
<td></td>
<td>150</td>
<td>(\degree C)</td>
</tr>
</tbody>
</table>
Maximum Ratings

*Note: *$T_j = 25 \, ^\circ\text{C}$, unless otherwise specified*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td>$T_j = T_{j,max}$, $T_s = 80 , ^\circ\text{C}$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>T_s limited by $T_{j,max}$</td>
<td>58</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{DSM}</td>
<td>T_s limited by $T_{j,max}$</td>
<td>225</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>T_s limited by $T_{j,max}$</td>
<td>93</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>T_j ≤ 150 °C, $V_{cc} = 15 , \text{V}$, $V_{cc} = 360 , \text{V}$</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{sc}</td>
<td>T_s limited by $T_{j,max}$</td>
<td>6</td>
<td>μs</td>
</tr>
<tr>
<td>Turn off safe operating area (RBSOA)</td>
<td>$I_{C,OFF} = 600 , \text{A}$</td>
<td>$T_{j} = 150 , ^\circ\text{C}$</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j,max}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{ASM}</td>
<td>$T_j = 25 , ^\circ\text{C}$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>T_s limited by $T_{j,max}$</td>
<td>22</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>T_s limited by $T_{j,max}$</td>
<td>44</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j,max}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{ASM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>T_s limited by $T_{j,max}$</td>
<td>22</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FSM}</td>
<td>T_s limited by $T_{j,max}$</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>T_s limited by $T_{j,max}$</td>
<td>43</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j,max}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>
$T_j = 25\, ^\circ C$, unless otherwise specified

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40...+$T_{jmax} - 25$</td>
<td>°C</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>V_{isol}</td>
<td>DC Test Voltage* $t_p = 2, s$</td>
<td>6000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC Voltage $t_p = 1, min$</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td>Solder pin / Press-fit pin</td>
<td>9,15 / 9,01</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td>>200</td>
<td>mm</td>
<td></td>
</tr>
</tbody>
</table>

*100% tested in production
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td></td>
<td>0,0025</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td>V_{CE}</td>
<td>0.0025</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I_{CES}</td>
<td>I_{DS}</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{LED}</td>
<td>20</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gint}</td>
<td></td>
<td>none</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td>350</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td>40</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>150</td>
<td>6</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td>25</td>
<td>0.30</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td>25</td>
<td>0.16</td>
<td>mWs</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>25</td>
<td>0.30</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>25</td>
<td>0.26</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td>25</td>
<td>0.16</td>
<td>pF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_s</td>
<td>25</td>
<td>24</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>$R_{th(j-s)}$</td>
<td>0.84</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Buck FWD				
Diode forward voltage	V_F	25	25	V
Reverse leakage current	I_r	25	25	µA
Peak reverse recovery current	I_{RMS}	25	25	A
Reverse recovery time	t_r	25	25	ns
Reverse recovered charge	Q_r	25	25	µC
Peak rate of fall of recovery current	$\frac{dI_{RMS}}{dt}$	25	25	A/µs
Reverse recovered energy	E_{off}	25	0.13	mWs
Thermal resistance junction to sink	$R_{th(j-s)}$	$R_{th(j-s)}$	1.73	K/W
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{th,GE}$</td>
<td>$V_{th} = V_{EE}$</td>
<td>0.0012</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(On)}$</td>
<td></td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>Collector-emitter cut-off diode</td>
<td>I_{DSS}</td>
<td></td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GE}</td>
<td></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gs}</td>
<td></td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td>$R_{gs} = 4 , \Omega$</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Rise time</td>
<td>r_{r}</td>
<td></td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td>$R_{gs} = 4 , \Omega$</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Fall time</td>
<td>f_{T}</td>
<td></td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td></td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td></td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{G}</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{S}(j-s)$</td>
<td>$T_{j} = 25 , \degree{}C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td></td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{S}(j-s)$</td>
<td>$T_{j} = 25 , \degree{}C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td></td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{R}</td>
<td></td>
<td>1200</td>
<td>25</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{PRR}</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td></td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{S}(j-s)$</td>
<td>$T_{j} = 25 , \degree{}C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R_{T}</td>
<td></td>
<td>25</td>
<td>22000</td>
</tr>
<tr>
<td>Deviation of R_{T}</td>
<td>ΔR_{T}</td>
<td>$R_{T} = 1486 , \Omega$</td>
<td>100</td>
<td>-5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{D}</td>
<td></td>
<td>25</td>
<td>210</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/50)}$</td>
<td>Tol. ±3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25/125)}$</td>
<td>Tol. ±3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10-FZ06NRA075FU-P969F08
10-PZ06NRA075FU-P969F08Y
datasheet

copyright Vincotech
Buck

figure 1. IGBT Typical output characteristics

\[I_C = f(V_{CE}) \]

At
\[t_p = 250 \ \mu s \]
\[T_j = 25 \ ^\circ C \]
\[V_{CE} \text{ from } 7 \text{ V to } 17 \text{ V in steps of } 1 \text{ V} \]

figure 2. IGBT Typical output characteristics

\[I_C = f(V_{CE}) \]

At
\[t_p = 250 \ \mu s \]
\[T_j = 125 \ ^\circ C \]
\[V_{CE} \text{ from } 7 \text{ V to } 17 \text{ V in steps of } 1 \text{ V} \]

figure 3. IGBT Typical transfer characteristics

\[I_C = f(V_{GE}) \]

At
\[t_p = 250 \ \mu s \]
\[V_{CE} = 10 \text{ V} \]

figure 4. FWD Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At
\[t_p = 250 \ \mu s \]
Buck

Figure 5. IGBT

Typical switching energy losses as a function of collector current

\[E = f(I_c) \]

With an inductive load at:

\[T_j = 25/125 \, ^\circ C \]

\[V_{CE} = 350 \, V \]

\[V_{GE} = \pm 15 \, V \]

\[R_{gon} = 8 \, \Omega \]

\[I_C = 40 \, A \]

Figure 6. IGBT

Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at:

\[T_j = 25/125 \, ^\circ C \]

\[V_{CE} = 350 \, V \]

\[V_{GE} = \pm 15 \, V \]

\[I_C = 40 \, A \]

Figure 7. FWD

Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_c) \]

With an inductive load at:

\[T_j = 25/125 \, ^\circ C \]

\[V_{CE} = 350 \, V \]

\[V_{GE} = \pm 15 \, V \]

\[R_{gon} = 8 \, \Omega \]

Figure 8. FWD

Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at:

\[T_j = 25/125 \, ^\circ C \]

\[V_{CE} = 350 \, V \]

\[V_{GE} = \pm 15 \, V \]

\[I_C = 40 \, A \]
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
- \(T_j = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 8 \) Ω
- \(I_C = 40 \) A

Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 8 \) Ω
Buck

Figure 13. Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At

- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 8 \, \Omega \)

Figure 14. Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

At

- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(I_f = 40 \, \text{A} \)
- \(V_{GE} = \pm 15 \, \text{V} \)

Figure 15. Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

At

- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_f = 40 \, \text{A} \)
- \(V_{GE} = \pm 15 \, \text{V} \)

Figure 16. Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

At

- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(I_f = 40 \, \text{A} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
Typical rate of fall of forward and reverse recovery current

\[
dI_0/dt, dI_{rec}/dt = f(I_C)
\]

At
\[
T_j = 25/125 \degree C
\]
\[
V_{CE} = 350 \text{ V}
\]
\[
V_{GE} = \pm 15 \text{ V}
\]
\[
R_{gon} = 8 \text{ } \Omega
\]

IGBT transient thermal impedance

\[
Z_{th(j-s)} = f(t_p)
\]

At
\[
D = t_p / T
\]
\[
R_{th(j-s)} = 0.84 \text{ K/W}
\]

IGBT thermal model values
\[
R (K/W) \text{ } \text{Tau (s)}
\]
\[
1.34E-01 1.78E+00
2.04E-01 2.71E-01
3.94E-01 9.06E-02
9.26E-02 1.42E-02
1.92E-02 2.31E-03
\]

FWD transient thermal impedance

\[
Z_{th(j-s)} = f(t_p)
\]

At
\[
D = t_p / T
\]
\[
R_{th(j-s)} = 1.73 \text{ K/W}
\]

FWD thermal model values
\[
R (K/W) \text{ } \text{Tau (s)}
\]
\[
8.04E-02 4.54E+00
1.74E-01 9.63E-01
6.34E-01 1.62E-01
5.25E-01 5.62E-02
2.03E-01 1.25E-02
1.15E-01 2.31E-03
\]
figure 21. IGBT
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

At
\[D = \text{single pulse} \]
\[T_s = 80 \, ^\circ \text{C} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[T_J = T_{J\text{max}} \]
Boost

figure 1. IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

- \(t_p = 250 \ \mu s \)
- \(T_j = 25 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

figure 2. IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

- \(t_p = 250 \ \mu s \)
- \(T_j = 125 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

figure 3. IGBT

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

figure 4. FWD

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

\(T_j = T_{jmax} - 25 \ ^\circ C \)

copyright Vincotech 12

07 May, 2018 / Revision 5
figure 5.
Typical switching energy losses
as a function of collector current
\[E = f(I_C) \]

![Graph](image)

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(I_C = 50 \) A

figure 6.
Typical switching energy losses
as a function of gate resistor
\[E = f(R_G) \]

![Graph](image)

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{goff} = 4 \) Ω
- \(I_C = 50 \) A

figure 7.
Typical reverse recovery energy loss
as a function of collector current
\[E_{rec} = f(I_C) \]

![Graph](image)

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

figure 8.
Typical reverse recovery energy loss
as a function of gate resistor
\[E_{rec} = f(R_G) \]

![Graph](image)

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{goff} = 4 \) Ω
- \(I_C = 50 \) A
Typical switching times as a function of collector current

\[t = f(I_{C}) \]

With an inductive load at:
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(I_C = 50 \) A

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_{C}) \]

At:
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(I_C = 50 \) A
Boost

figure 13.
Typical reverse recovery charge as a function of collector current

$$Q_{rr} = f(I_C)$$

![Graph showing typical reverse recovery charge as a function of collector current.](image1)

At
- $T_j = 25/125$ °C
- $V_{CE} = 350$ V
- $V_{GE} = \pm 15$ V
- $R_{gon} = 4$ Ω

figure 14.
Typical reverse recovery charge as a function of IGBT turn on gate resistor

$$Q_{rr} = f(R_{gon})$$

![Graph showing typical reverse recovery charge as a function of IGBT turn on gate resistor.](image2)

At
- $T_j = 25/125$ °C
- $V_{CE} = 350$ V
- $I_F = 50$ A
- $V_{GE} = \pm 15$ V

figure 15.
Typical reverse recovery current as a function of collector current

$$I_{RRM} = f(I_C)$$

![Graph showing typical reverse recovery current as a function of collector current.](image3)

At
- $T_j = 25/125$ °C
- $V_{CE} = 350$ V
- $V_{GE} = \pm 15$ V
- $I_F = 50$ A
- $V_{GE} = \pm 15$ V

figure 16.
Typical reverse recovery current as a function of IGBT turn on gate resistor

$$I_{RRM} = f(R_{gon})$$

![Graph showing typical reverse recovery current as a function of IGBT turn on gate resistor.](image4)

At
- $T_j = 25/125$ °C
- $V_{CE} = 350$ V
- $I_F = 50$ A
- $V_{GE} = \pm 15$ V
Boost

Figure 17.
Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c)
\]

At
- \(T_j = 25/125^\circ C\)
- \(V_{CE} = 350\) V
- \(V_{GE} = \pm 15\) V
- \(R_{gin} = 4\) Ω

Figure 18.
Typical rate of fall of forward and reverse recovery current as a function of reverse recovery current

\[
\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(R_{gin})
\]

At
- \(T_j = 25/125^\circ C\)
- \(V_R = 350\) V
- \(I_F = 50\) A
- \(V_{GE} = \pm 15\) V

Figure 19.
IGBT transient thermal impedance as a function of pulse width

\[
Z_{th(j,s)} = f(t_p)
\]

At
- \(D = 0.5\)
- \(0.2\)
- \(0.1\)
- \(0.05\)
- \(0.02\)
- \(0.01\)
- \(0.005\)
- \(0.000\)

\(D = \frac{t_y}{T}\)

Figure 20.
FWD transient thermal impedance as a function of pulse width

\[
Z_{th(j,s)} = f(t_p)
\]

At
- \(D = 0.5\)
- \(0.2\)
- \(0.1\)
- \(0.05\)
- \(0.02\)
- \(0.01\)
- \(0.005\)
- \(0.000\)

\(D = \frac{t_y}{T}\)

\(R_{th(j,s)} = 1.02\) K/W

\(R_{th(j,s)} = 1.87\) K/W
Boost

figure 21. Boost Inverse Diode
Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

figure 22. Boost Inverse Diode
Diode transient thermal impedance as a function of pulse width

\[Z_{th(j,s)} = f(t_p) \]

At

\[t_p = 250 \ \mu s \]

\[D = \frac{t_p}{T} \]

\[R_{on(s)} = 2.17 \ \text{K/W} \]
Thermistor

figure 1. Typical NTC characteristic as a function of temperature

\[R_T = f(T) \]

figure 2. Typical NTC resistance values

\[R(T) = R_{25} \cdot e^{\left(\frac{B_{3010}}{T} \cdot \frac{1}{T_{25}}\right)} \] [Ω]

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>(R_{\text{roll}}) [Ω]</th>
<th>(R_{\text{min}}) [Ω]</th>
<th>(R_{\text{max}}) [Ω]</th>
<th>(\Delta R/R) [% ±%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>71804.2</td>
<td>56974.4</td>
<td>83884</td>
<td>16.8</td>
</tr>
<tr>
<td>10</td>
<td>43780.4</td>
<td>37094.4</td>
<td>50466.5</td>
<td>15.3</td>
</tr>
<tr>
<td>20</td>
<td>23648.6</td>
<td>23648.6</td>
<td>31284.7</td>
<td>13.6</td>
</tr>
<tr>
<td>25</td>
<td>22000</td>
<td>19109.3</td>
<td>24890.7</td>
<td>13.1</td>
</tr>
<tr>
<td>30</td>
<td>17723.3</td>
<td>15512.2</td>
<td>19934.4</td>
<td>12.5</td>
</tr>
<tr>
<td>40</td>
<td>5467.9</td>
<td>4560.6</td>
<td>5695.1</td>
<td>8.9</td>
</tr>
<tr>
<td>50</td>
<td>3848.6</td>
<td>3546</td>
<td>4151.1</td>
<td>7.9</td>
</tr>
<tr>
<td>60</td>
<td>2757.7</td>
<td>2568.2</td>
<td>2947.1</td>
<td>6.9</td>
</tr>
<tr>
<td>70</td>
<td>2006.9</td>
<td>1899.7</td>
<td>2129.2</td>
<td>5.9</td>
</tr>
<tr>
<td>100</td>
<td>1486.1</td>
<td>1411.8</td>
<td>1560.4</td>
<td>5</td>
</tr>
<tr>
<td>150</td>
<td>400.2</td>
<td>364.8</td>
<td>435.7</td>
<td>8.8</td>
</tr>
</tbody>
</table>

copyright Vincotech
Switching Definitions BUCK IGBT

General conditions

\[
\begin{align*}
T_j & = 125 \, ^\circ C \\
R_{\text{on}} & = 8 \, \Omega \\
R_{\text{off}} & = 8 \, \Omega
\end{align*}
\]

figure 1.
Turn-off Switching Waveforms & definition of \(t_{\text{doff}} \), \(t_{\text{Eoff}} \)

\(t_{\text{Eoff}} \) = integrating time for \(E_{\text{off}} \)

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{CE}}) (0%)</td>
<td>-15 V</td>
</tr>
<tr>
<td>(V_{\text{CE}}) (100%)</td>
<td>700 V</td>
</tr>
<tr>
<td>(I_{\text{C}}) (100%)</td>
<td>40 A</td>
</tr>
<tr>
<td>(t_{\text{doff}})</td>
<td>0,17 μs</td>
</tr>
<tr>
<td>(t_{\text{Eoff}})</td>
<td>0,33 μs</td>
</tr>
</tbody>
</table>

figure 2.
Turn-on Switching Waveforms & definition of \(t_{\text{don}} \), \(t_{\text{Eon}} \)

\(t_{\text{Eon}} \) = integrating time for \(E_{\text{on}} \)

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{CE}}) (0%)</td>
<td>-15 V</td>
</tr>
<tr>
<td>(V_{\text{CE}}) (100%)</td>
<td>700 V</td>
</tr>
<tr>
<td>(I_{\text{C}}) (100%)</td>
<td>40 A</td>
</tr>
<tr>
<td>(t_{\text{don}})</td>
<td>0,09 μs</td>
</tr>
<tr>
<td>(t_{\text{Eon}})</td>
<td>0,15 μs</td>
</tr>
</tbody>
</table>

figure 3.
Turn-off Switching Waveforms & definition of \(t_f \)

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{C}}) (100%)</td>
<td>700 V</td>
</tr>
<tr>
<td>(I_{\text{C}}) (100%)</td>
<td>40 A</td>
</tr>
<tr>
<td>(t_f)</td>
<td>0,006 μs</td>
</tr>
</tbody>
</table>

figure 4.
Turn-on Switching Waveforms & definition of \(t_r \)

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{C}}) (100%)</td>
<td>700 V</td>
</tr>
<tr>
<td>(I_{\text{C}}) (100%)</td>
<td>40 A</td>
</tr>
<tr>
<td>(t_r)</td>
<td>0,01 μs</td>
</tr>
</tbody>
</table>
Switching Definitions BUCK IGBT

figure 5.
IGBT
Turn-off Switching Waveforms & definition of \(t_{Eoff} \)

\[
P_{off}(100\%) = 27.78 \text{ kW}
E_{off}(100\%) = 0.51 \text{ mJ}
\]
\(t_{Eoff} = 0.33 \mu s \)

figure 6.
IGBT
Turn-on Switching Waveforms & definition of \(t_{Eon} \)

\[
P_{on}(100\%) = 27.78 \text{ kW}
E_{on}(100\%) = 0.51 \text{ mJ}
\]
\(t_{Eon} = 0.15 \mu s \)

figure 7.
IGBT
Turn-off Switching Waveforms & definition of \(t_{rr} \)

\[
V_d (100\%) = 700 \text{ V}
I_d (100\%) = 40 \text{ A}
I_{swr} (100\%) = -57 \text{ A}
\]
\(t_{rr} = 0.03 \mu s \)

figure 8.
FWD
Turn-on Switching Waveforms & definition of \(t_{Qrr} \)
\((t_{Qrr} = \text{integrating time for } Q_{rr}) \)

\[
I_d (100\%) = 40 \text{ A}
Q_{rr} (100\%) = 1.04 \mu C
\]
\(t_{Qrr} = 0.09 \mu s \)
Switching Definitions BUCK IGBT

figure 9.
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

- P_{rec} (100%) = 27.78 kW
- E_{rec} (100%) = 0.13 mJ
- t_{Erec} = 0.09 μs

figure 10. BUCK stage switching measurement circuit

figure 11. BOOST stage switching measurement circuit

Measurement circuits
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Text</th>
<th>Name</th>
<th>Date code</th>
<th>UL & VIN</th>
<th>Lot</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWYY UL VIN LLLLL SSSS</td>
<td>10-FZ06NRA075FU-P969F08</td>
<td>WWYY UL VIN LLLLL SSSS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pin table [mm]

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.6</td>
<td>0</td>
<td>G6</td>
</tr>
<tr>
<td>2</td>
<td>30.7</td>
<td>0</td>
<td>S4/6</td>
</tr>
<tr>
<td>3</td>
<td>27.8</td>
<td>0</td>
<td>G4</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>0</td>
<td>-DC</td>
</tr>
<tr>
<td>5</td>
<td>19.2</td>
<td>0</td>
<td>-DC</td>
</tr>
<tr>
<td>6</td>
<td>11.4</td>
<td>0</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>S2</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2.9</td>
<td>G2</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9.9</td>
<td>Line</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>12.7</td>
<td>Line</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>15.5</td>
<td>Line</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>19.7</td>
<td>G1</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>22.6</td>
<td>S1</td>
</tr>
<tr>
<td>14</td>
<td>10.1</td>
<td>22.6</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>17.9</td>
<td>22.6</td>
<td>+DC</td>
</tr>
<tr>
<td>16</td>
<td>20.8</td>
<td>22.6</td>
<td>+DC</td>
</tr>
<tr>
<td>17</td>
<td>27.8</td>
<td>22.6</td>
<td>G3</td>
</tr>
<tr>
<td>18</td>
<td>30.7</td>
<td>22.6</td>
<td>S3/5</td>
</tr>
<tr>
<td>19</td>
<td>33.6</td>
<td>22.6</td>
<td>G5</td>
</tr>
<tr>
<td>20</td>
<td>33.6</td>
<td>14.8</td>
<td>NTC1</td>
</tr>
<tr>
<td>21</td>
<td>33.6</td>
<td>8.2</td>
<td>NTC2</td>
</tr>
</tbody>
</table>

Outline

- **Pin X/Y Function**
 - Pin 1: X=33.6, Y=0, Function: G6
 - Pin 2: X=30.7, Y=0, Function: S4/6
 - Pin 3: X=27.8, Y=0, Function: G4
 - Pin 4: X=22, Y=0, Function: -DC
 - Pin 5: X=19.2, Y=0, Function: -DC
 - Pin 6: X=11.4, Y=0, Function: GND
 - Pin 7: X=0, Y=0, Function: S2
 - Pin 8: X=0, Y=2.9, Function: G2
 - Pin 9: X=0, Y=9.9, Function: Line
 - Pin 10: X=0, Y=12.7, Function: Line
 - Pin 11: X=0, Y=15.5, Function: Line
 - Pin 12: X=0, Y=19.7, Function: G1
 - Pin 13: X=0, Y=22.6, Function: S1
 - Pin 14: X=10.1, Y=22.6, Function: GND
 - Pin 15: X=17.9, Y=22.6, Function: +DC
 - Pin 16: X=20.8, Y=22.6, Function: +DC
 - Pin 17: X=27.8, Y=22.6, Function: G3
 - Pin 18: X=30.7, Y=22.6, Function: S3/5
 - Pin 19: X=33.6, Y=22.6, Function: G5
 - Pin 20: X=33.6, Y=14.8, Function: NTC1
 - Pin 21: X=33.6, Y=8.2, Function: NTC2

- **Outline Image**: Diagram showing the pin layout and dimensions.
<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5, T6</td>
<td>IGBT</td>
<td>600 V</td>
<td>75 A</td>
<td>Buck IGBT</td>
<td></td>
</tr>
<tr>
<td>D3, D4</td>
<td>FWD</td>
<td>600 V</td>
<td>30 A</td>
<td>Buck FWD</td>
<td></td>
</tr>
<tr>
<td>T1, T2</td>
<td>IGBT</td>
<td>600 V</td>
<td>75 A</td>
<td>Boost IGBT</td>
<td></td>
</tr>
<tr>
<td>D1, D2</td>
<td>FWD</td>
<td>1200 V</td>
<td>30 A</td>
<td>Boost FWD</td>
<td></td>
</tr>
<tr>
<td>D9, D10</td>
<td>FWD</td>
<td>600 V</td>
<td>10 A</td>
<td>Boost Inverse Diode</td>
<td></td>
</tr>
<tr>
<td>D13, D14</td>
<td>FWD</td>
<td>600 V</td>
<td>10 A</td>
<td>Boost Sw. Prot. Diode</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>NTC</td>
<td>600 V</td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
Handling instruction

Handling instructions for flow 0 packages see vincotech.com website.

Package data

Package data for flow 0 packages see vincotech.com website.

UL recognition and file number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.