flowNPC 0

Features
- neutral point clamped inverter
- reactive power capability
- low inductance layout

Target Applications
- solar inverter
- UPS

Types
- 10-FZ06NRA041FS03-P965F78
- 10-PZ06NRA041FS03-P965F78Y

flow 0 12mm housing

Schematic

Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Inv. Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Forward current per diode</td>
<td>I_{FAV}</td>
<td>DC current</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>Maximum repetitive forward current</td>
<td>I_{FRM}</td>
<td>Tj=80°C Tc=80°C</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>I2t-value</td>
<td>I_{t}</td>
<td>t=10ms</td>
<td>9.5</td>
<td>A²s</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{mr}</td>
<td>Tj,Tj=25°C Tc=80°C</td>
<td>44</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>Tj=max</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{\text{max}})</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_f)</td>
<td>(T_r=T_{\text{max}}) (T_c=80°C) (T_r=80°C)</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>Non repetitive peack surge current</td>
<td>(I_{\text{RSM}})</td>
<td>(I_r) limited by (T_{\text{max}}) (60\text{Hz Single Half-Sine Wave}) (T_c=25°C)</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>(P_{\text{tot}})</td>
<td>(T_r=T_{\text{max}})</td>
<td>40</td>
<td>61</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{\text{max}})</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Buck MOSFET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain to source breakdown voltage</td>
<td>(V_{\text{DS}})</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC drain current</td>
<td>(I_d)</td>
<td>(T_r=T_{\text{max}}) (T_c=80°C) (T_r=80°C)</td>
<td>29</td>
<td>36</td>
</tr>
<tr>
<td>Pulsed drain current</td>
<td>(I_{\text{puls}})</td>
<td>(I_r) limited by (T_{\text{max}}) (T_c=25°C)</td>
<td>272</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{\text{tot}})</td>
<td>(T_r=T_{\text{max}})</td>
<td>78</td>
<td>118</td>
</tr>
<tr>
<td>Gate-source peak voltage</td>
<td>(V_{\text{gs}})</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{\text{max}})</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>(V_{\text{CE}})</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>(I_c)</td>
<td>(T_r=T_{\text{max}}) (T_c=80°C) (T_r=80°C)</td>
<td>58</td>
<td>77</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>(I_{\text{puls}})</td>
<td>(I_r) limited by (T_{\text{max}})</td>
<td>225</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td></td>
<td>(T_{\text{r}} \leq 175°C) (V_{\text{CE}}=V_{\text{CES}})</td>
<td>225</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>(P_{\text{tot}})</td>
<td>(T_r=T_{\text{max}}) (T_c=80°C) (T_r=80°C)</td>
<td>93</td>
<td>141</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>(V_{\text{GE}})</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>(I_{\text{SC}}) (V_{\text{CC}}) (T_{\text{r}} \leq 150°C) (V_{\text{CC}}=15\text{V})</td>
<td>6</td>
<td>360</td>
<td>μs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{\text{max}})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_f</td>
<td>$T_j=T_{\text{max}}$</td>
<td>$T_j=80^\circ \text{C}$</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_c=80^\circ \text{C}$</td>
<td>23</td>
</tr>
<tr>
<td>Repetitive peak surge current</td>
<td>I_{RM}</td>
<td>20kHz Square Wave</td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>$T_j=T_{\text{max}}$</td>
<td>$T_j=80^\circ \text{C}$</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_c=80^\circ \text{C}$</td>
<td>50</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{max}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40…+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40…+($T_{\text{max}} - 25$)</td>
<td>°C</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>V_i</td>
<td>$t=2s$</td>
<td>DC voltage</td>
<td>4000</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td></td>
<td>min 12.7</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td></td>
<td>min 12.7</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Inv. Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>(V_F)</td>
<td>10</td>
<td>Tj=25°C</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Tj=125°C</td>
<td>2.3</td>
</tr>
<tr>
<td>Threshold voltage (for power loss calc. only)</td>
<td>(V_{th})</td>
<td>10</td>
<td>Tj=25°C</td>
<td>0.0027</td>
</tr>
<tr>
<td>Slope resistance (for power loss calc. only)</td>
<td>(I_{DR})</td>
<td>10</td>
<td>Tj=25°C</td>
<td>0.005</td>
</tr>
<tr>
<td>Reverse current</td>
<td>(I_R)</td>
<td>600</td>
<td>Tj=25°C</td>
<td>100</td>
</tr>
<tr>
<td>Reverse resistance chip to heatsink per chip</td>
<td>(R_{thJH})</td>
<td></td>
<td></td>
<td>2.17</td>
</tr>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>(V_F)</td>
<td>30</td>
<td>Tj=25°C</td>
<td>2.8</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(I_{Th})</td>
<td>600</td>
<td>Tj=25°C</td>
<td>0.75</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>(I_{Ph})</td>
<td>350</td>
<td>Tj=25°C</td>
<td>0.95</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{rr})</td>
<td>30</td>
<td>Tj=25°C</td>
<td>58</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>(Q_{rr})</td>
<td>10</td>
<td>Tj=25°C</td>
<td>14</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(di/reverse)</td>
<td>350</td>
<td>Tj=25°C</td>
<td>0.06</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>(E_{rec})</td>
<td>10</td>
<td>Tj=25°C</td>
<td>17148</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{thJH})</td>
<td></td>
<td></td>
<td>1.74</td>
</tr>
<tr>
<td>Buck MOSFET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static drain to source ON resistance</td>
<td>(R_{dson})</td>
<td>10</td>
<td>Tj=25°C</td>
<td>41</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>(I_{gs})</td>
<td>20</td>
<td>Tj=25°C</td>
<td>3.8</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>(I_{bs})</td>
<td>0</td>
<td>Tj=25°C</td>
<td>100</td>
</tr>
<tr>
<td>Turn On Delay Time</td>
<td>(t_{on})</td>
<td>600</td>
<td>Tj=25°C</td>
<td>0.7</td>
</tr>
<tr>
<td>Rise Time</td>
<td>(t_{r})</td>
<td>10</td>
<td>Tj=25°C</td>
<td>0.05</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{off})</td>
<td>350</td>
<td>Tj=25°C</td>
<td>22</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_{f})</td>
<td>30</td>
<td>Tj=25°C</td>
<td>6</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>(E_{on})</td>
<td>0</td>
<td>Tj=25°C</td>
<td>5000</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>(E_{off})</td>
<td>10</td>
<td>Tj=25°C</td>
<td>290</td>
</tr>
<tr>
<td>Total gate charge</td>
<td>(Q_{g})</td>
<td>480</td>
<td>Tj=25°C</td>
<td>150</td>
</tr>
<tr>
<td>Gate to drain charge</td>
<td>(Q_{gd})</td>
<td>10</td>
<td>Tj=25°C</td>
<td>6530</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{iss})</td>
<td>0</td>
<td>Tj=25°C</td>
<td>360</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{oss})</td>
<td>0</td>
<td>Tj=25°C</td>
<td>0.7</td>
</tr>
<tr>
<td>Gate resistor</td>
<td>(R_{g})</td>
<td></td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{thJH})</td>
<td></td>
<td></td>
<td>0.90</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>(V_{GE} \text{ or } V_{GCE})</td>
<td>(V)</td>
<td>0,0012</td>
<td>(V)</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>(V_{CES} \text{ or } V_{CE})</td>
<td>(V)</td>
<td>30</td>
<td>1,05</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>(I_{CES} \text{ or } I_{CE})</td>
<td>(mA)</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>(I_{GES} \text{ or } I_{GE})</td>
<td>(nA)</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>(R_{gint})</td>
<td>(\Omega)</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{on})</td>
<td>(ns)</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_{r})</td>
<td>(ns)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{off})</td>
<td>(ns)</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_{f})</td>
<td>(ns)</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>(E_{on})</td>
<td>(mWs)</td>
<td>0,26</td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>(E_{off})</td>
<td>(mWs)</td>
<td>0,39</td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{in})</td>
<td></td>
<td>4620</td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{out})</td>
<td></td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{res})</td>
<td></td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>(Q_{gain})</td>
<td>(nC)</td>
<td>470</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{thJH})</td>
<td>(K/W)</td>
<td>1,02</td>
<td></td>
</tr>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>(V_{F})</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(I_{r})</td>
<td>(\mu A)</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>(I_{rms})</td>
<td>(A)</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{r})</td>
<td>(ns)</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>(Q_{re})</td>
<td>(nC)</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(di/\text{rec})</td>
<td>(A/\mu s)</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>(E_{rec})</td>
<td>(mWs)</td>
<td>4,72</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{th,J,H})</td>
<td>(K/W)</td>
<td>2,11</td>
<td></td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>(R)</td>
<td>(\Omega)</td>
<td>21511</td>
<td></td>
</tr>
<tr>
<td>Deviation of R25</td>
<td>(\Delta R/R)</td>
<td>(\Omega)</td>
<td>(-4,5)</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P)</td>
<td>(mW)</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>(P)</td>
<td>(mW/K)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>B-value</td>
<td>(B_{25})</td>
<td></td>
<td>3884</td>
<td></td>
</tr>
<tr>
<td>B-value</td>
<td>(B_{125})</td>
<td></td>
<td>3964</td>
<td></td>
</tr>
</tbody>
</table>

Vincotech NTC Reference | | | | |

Copyright Vincotech
Buck

Figure 1
Typical output characteristics
\[I_C = f(V_{CE}) \]

- At
 \[t_p = 250 \ \mu s \]
 \[T_j = 25 \ \degree C \]
 \[V_{CE} \text{ from } 0 \text{ V to } 20 \text{ V in steps of } 2 \text{ V} \]

Figure 2
Typical output characteristics
\[I_C = f(V_{CE}) \]

- At
 \[t_p = 250 \ \mu s \]
 \[T_j = 125 \ \degree C \]
 \[V_{CE} \text{ from } 0 \text{ V to } 20 \text{ V in steps of } 2 \text{ V} \]

Figure 3
Typical transfer characteristics
\[I_C = f(V_{GE}) \]

Figure 4
Typical diode forward current as a function of forward voltage
\[I_F = f(V_F) \]

- At
 \[t_p = 250 \ \mu s \]
 \[V_{CE} = 10 \text{ V} \]

copyright Vincotech
MOSFET

Figure 5
Typical switching energy losses as a function of collector current
\[E = f(I_c) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 10 \) V
- \(R_{on} = 2 \) Ω
- \(R_{off} = 2 \) Ω

Figure 6
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 10 \) V
- \(I_c = 30 \) A

FWD

Figure 7
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_c) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 10 \) V
- \(R_{on} = 2 \) Ω

Figure 8
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 10 \) V
- \(I_c = 30 \) A
Figure 9

Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(T_j = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 10 \) V
- \(R_{gOn} = 2 \) Ω
- \(R_{gOff} = 2 \) Ω

Figure 10

Typical switching times as a function of gate resistor

\[t = f(R_G) \]

With an inductive load at

- \(T_j = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 10 \) V
- \(I_c = 30 \) A

Figure 11

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At

- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 10 \) V
- \(R_{gOn} = 2 \) Ω

Figure 12

Typical reverse recovery time as a function of MOSFET turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At

- \(T_j = 25/125 \) °C
- \(V_{GE} = 350 \) V
- \(I_c = 30 \) A
- \(V_{GE} = 10 \) V

copyright Vincotech
Typical reverse recovery charge as a function of collector current

$$Q_{rr} = f(I_C)$$

At

- $T_J = 25/125 \degree C$
- $V_{CE} = 350 \ V$
- $V_{GE} = 10 \ V$
- $R_{gon} = 2 \ \Omega$

Typical reverse recovery current as a function of collector current

$$I_{RRM} = f(I_C)$$

At

- $T_J = 25/125 \degree C$
- $V_{CE} = 350 \ V$
- $V_{GE} = 10 \ V$
- $R_{gon} = 2 \ \Omega$
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\(\frac{dI_o}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \)

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 10 \) V
- \(R_{gon} = 2 \) Ω

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor
\(\frac{dI_o}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \)

At
- \(T_j = 25/125 \) °C
- \(V_{GE} = 10 \) V
- \(t_F = 30 \) A
- \(V_{CE} = 350 \) V

Figure 19
MOSFET transient thermal impedance as a function of pulse width
\(Z_{thJH} = f(t_p) \)

At
- \(D = 0.5 \)
- \(R_{thJH} = 0.90, 1.74 \) K/W

Figure 20
FWD transient thermal impedance as a function of pulse width
\(Z_{thJH} = f(t_p) \)

At
- \(D = 0.5 \)
- \(R_{thJH} = 3.4, 5.1, 1.0, 2.5, 4.5, 8.6 \) K/W

Table:
<table>
<thead>
<tr>
<th>(D)</th>
<th>(R_{thJH}) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>3.4E-00</td>
<td>0.05</td>
</tr>
<tr>
<td>0.23</td>
<td>5.1E-01</td>
<td>0.05</td>
</tr>
<tr>
<td>0.85</td>
<td>1.0E-01</td>
<td>0.05</td>
</tr>
<tr>
<td>0.33</td>
<td>2.5E-02</td>
<td>0.05</td>
</tr>
<tr>
<td>0.13</td>
<td>4.5E-03</td>
<td>0.05</td>
</tr>
<tr>
<td>0.11</td>
<td>8.6E-04</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At

\[T_j = 150 \, ^\circ C \]

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At

\[T_j = 150 \, ^\circ C \]

\[V_{GE} = 15 \, V \]
Figure 25: Safe operating area as a function of collector-emitter voltage
\(I_C = f(V_{CE}) \)

Figure 26: Gate voltage vs Gate charge
\(V_{GE} = f(Q_g) \)

At
- \(D = \) single pulse
- \(T_h = 80 \) °C
- \(V_{GE} = 15 \) V
- \(T_j = T_{j_{\max}} \) °C

Buck

\[V_{CE}(V) \]
\[I_C(A) \]

\[10^3 \]
\[10^2 \]
\[10^1 \]
\[10^0 \]

\[10^{-1} \]
\[10^{-2} \]

\[100 \mu S \]
\[1 \mu S \]
\[10 \mu S \]
\[100 \mu S \]

\[0 \]
\[50 \]
\[100 \]
\[150 \]
\[200 \]
\[250 \]

\[0 \]
\[5 \]
\[10 \]
\[15 \]
\[20 \]
\[25 \]

\[0 \]
\[2 \]
\[4 \]
\[6 \]

\(DC \)

\[120V \]
\[480V \]
Figure 1

IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 250 \, \mu s \)
- \(T_j = 25 \, ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

- \(t_p = 250 \, \mu s \)
- \(T_j = 125 \, ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 3

IGBT

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

At

- \(t_p = 250 \, \mu s \)
- \(V_{CE} = 10 \, V \)

Figure 4

FWD

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

- \(t_p = 250 \, \mu s \)
Typical switching energy losses as a function of collector current

\[E = f(I_c) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{DS} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(R_{goff} = 4 \) Ω

Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_c) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{DS} = \pm 15 \) V
- \(I_c = 30 \) A
Figure 9

Typical switching times as a function of collector current

$t = f(I_C)$

With an inductive load at

- $T_J = 25/125 \degree C$
- $V_{CE} = 350 \, V$
- $V_{GE} = \pm 15 \, V$
- $R_{gon} = 4 \, \Omega$
- $R_{goff} = 4 \, \Omega$

Figure 10

Typical switching times as a function of gate resistor

$t = f(R_{G})$

With an inductive load at

- $T_J = 25/125 \degree C$
- $V_{CE} = 350 \, V$
- $V_{GE} = \pm 15 \, V$
- $I_C = 30 \, A$

Figure 11

Typical reverse recovery time as a function of collector current

$t_r = f(I_C)$

At

- $T_J = 25/125 \degree C$
- $V_{CE} = 350 \, V$
- $V_{GE} = \pm 15 \, V$
- $R_{gon} = 4 \, \Omega$

Figure 12

Typical reverse recovery time as a function of IGBT turn on gate resistor

$t_r = f(R_{gon})$

At

- $T_J = 25/125 \degree C$
- $V_{TH} = 350 \, V$
- $I_C = 30 \, A$
- $V_{GE} = \pm 15 \, V$
Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

At
\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 4 \, \Omega \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

At
\[T_J = 25/125 \, ^\circ C \]
\[V_{BT} = 350 \, V \]
\[I_F = 30 \, A \]
\[V_{GE} = \pm 15 \, V \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

At
\[T_J = 25/125 \, ^\circ C \]
\[V_{GE} = \pm 15 \, V \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

At
\[T_J = 25/125 \, ^\circ C \]
\[V_{BT} = 350 \, V \]
\[I_F = 30 \, A \]
\[V_{GE} = \pm 15 \, V \]
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
dI/dt, dI_{rec}/dt = f(I_c)

At
T_j = 25/125 °C
V_{CE} = 350 V
V_{GE} = 15 V
R_{gon} = 4 Ω

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of pulse width

dI/dt, dI_{rec}/dt = f(\mu)

At
D = tp / T
R_{th,JH} = 1,02 K/W

IGBT thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,08</td>
<td>4,30E+00</td>
</tr>
<tr>
<td>0,12</td>
<td>9,99E-01</td>
</tr>
<tr>
<td>0,47</td>
<td>1,48E-01</td>
</tr>
<tr>
<td>0,26</td>
<td>4,85E-02</td>
</tr>
<tr>
<td>0,08</td>
<td>8,38E-03</td>
</tr>
<tr>
<td>0,04</td>
<td>2,72E-04</td>
</tr>
</tbody>
</table>

Figure 19
IGBT transient thermal impedance as a function of pulse width
Z_{th,JH} = f(\mu)

At
D = 0.5
0,2
0,1
0,05
0,02
0,01
0,005
0,000

Figure 20
FWD transient thermal impedance as a function of pulse width
Z_{th,JH} = f(\mu)

At
D = 0.5
0,2
0,1
0,05
0,02
0,01
0,005
0,000

FWD thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,04</td>
<td>6,53E+00</td>
</tr>
<tr>
<td>0,11</td>
<td>1,19E+00</td>
</tr>
<tr>
<td>0,53</td>
<td>1,77E-01</td>
</tr>
<tr>
<td>0,96</td>
<td>6,31E-02</td>
</tr>
<tr>
<td>0,30</td>
<td>5,77E-03</td>
</tr>
<tr>
<td>0,17</td>
<td>9,51E-04</td>
</tr>
</tbody>
</table>
Figure 21
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

At

\[T_j = 175°C \]

Figure 22
Collector current as a function of heatsink temperature

\[I_C = f(T_h) \]

At

\[T_j = 175°C \]

Figure 23
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

At

\[T_j = 150°C \]

Figure 24
Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At

\[T_j = 150°C \]

\[V_{GE} = 15V \]
Figure 25 IGBT Inverse Diode
Typical diode forward current as a function of forward voltage
I_F = f(V_F)

![Graph showing I_F vs V_F](image)

At
T_j = 250 µs

Figure 26 IGBT Inverse Diode
Diode transient thermal impedance as a function of pulse width
Z_θ_JH = f(t_p)

![Graph showing Z_θ_JH vs t_p](image)

At
D = t_p / T
R_θ_JH = 2.17 K/W

Figure 27 IGBT Inverse Diode
Power dissipation as a function of heatsink temperature
P_tot = f(T_h)

![Graph showing P_tot vs T_h](image)

At
T_j = T_jmax - 25°C

Figure 28 IGBT Inverse Diode
Forward current as a function of heatsink temperature
I_F = f(T_h)

![Graph showing I_F vs T_h](image)

At
T_j = 175 °C
Thermistor

Figure 1

Typical NTC characteristic
as a function of temperature

\[R_T = f(T) \]
Switching Definitions BUCK MOSFET

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_i</td>
<td>125 °C</td>
</tr>
<tr>
<td>$R_{DS(on)}$</td>
<td>2 Ω</td>
</tr>
<tr>
<td>$R_{Rug}IGBT$</td>
<td>2 Ω</td>
</tr>
</tbody>
</table>

Figure 1

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

$t_{doff} = 0,13 \, \mu s$
$t_{Eoff} = 0,15 \, \mu s$

$V_{GS}(0\%) = 0 \, V$
$V_{GS}(100\%) = 10 \, V$
$I_C(100\%) = 30 \, A$

Figure 2

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

$t_{don} = 0,02 \, \mu s$
$t_{Eon} = 0,05 \, \mu s$

$V_{GS}(0\%) = 0 \, V$
$V_{GS}(100\%) = 10 \, V$
$I_C(100\%) = 30 \, A$

Figure 3

Turn-off Switching Waveforms & definition of t_f

$t_f = 0,007 \, \mu s$

$V_C(100\%) = 700 \, V$
$I_C(100\%) = 30 \, A$

Figure 4

Turn-on Switching Waveforms & definition of t_r

$t_r = 0,006 \, \mu s$

$V_C(100\%) = 700 \, V$
$I_C(100\%) = 30 \, A$
Switching Definitions BUCK MOSFET

Figure 5
Turn-off Switching Waveforms & definition of t_{Eoff}

- \(P_{\text{off}} \) (100%) = 21.23 kW
- \(E_{\text{off}} \) (100%) = 0.070 mJ
- \(t_{\text{Eoff}} \) = 0.15 \(\mu \)s

Figure 6
Turn-on Switching Waveforms & definition of t_{Eon}

- \(P_{\text{on}} \) (100%) = 21.23 kW
- \(E_{\text{on}} \) (100%) = 0.28 mJ
- \(t_{\text{Eon}} \) = 0.05 \(\mu \)s

Figure 7
Turn-off Switching Waveforms & definition of \(t_r \)

- \(V_d \) (100%) = 700 V
- \(I_d \) (100%) = 30 A
- \(I_{\text{RMS}} \) (100%) = -75 A
- \(t_r \) = 0.02 \(\mu \)s

Figure 8
Turn-on Switching Waveforms & definition of \(t_{Qrr} \)
(\(t_{Qrr} \) = integrating time for \(Q_{\text{rr}} \))

- \(I_d \) (100%) = 30 A
- \(Q_{\text{rr}} \) (100%) = 0.95 \(\mu \)C
- \(t_{Qrr} \) = 0.05 \(\mu \)s
Switching Definitions BUCK MOSFET

Figure 9
Turn-on Switching Waveforms & definition of $t_{E_{rec}}$
($t_{E_{rec}}$ = integrating time for E_{rec})

- $P_{rec}(100\%) = 21.23$ kW
- $E_{rec}(100\%) = 0.14$ mJ
- $t_{E_{rec}} = 0.05$ µs

Measurement circuits

Figure 11
BUCK stage switching measurement circuit

Figure 12
BOOST stage switching measurement circuit
Swimming Definitions BOOST

General conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>$R_{on-IGBT}$</td>
<td>4 Ω</td>
</tr>
<tr>
<td>$R_{off-IGBT}$</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1

Turn-off Switching Waveforms & definition of t_{off}, t_{Eoff}

t_{Eoff} = integrating time for E_{off}

t_{off} = 0.24 μs
t_{Eoff} = 0.52 μs

$V_{GE}(0\%)$ = -15 V
$V_{GE}(100\%)$ = 15 V
$I_C(100\%)$ = 30 A

Figure 2

Turn-on Switching Waveforms & definition of t_{on}, t_{Eon}

t_{Eon} = integrating time for E_{on}

t_{on} = 0.08 μs
t_{Eon} = 0.10 μs

$V_{GE}(0\%)$ = -15 V
$V_{GE}(100\%)$ = 15 V
$I_C(100\%)$ = 30 A

Figure 3

Turn-off Switching Waveforms & definition of t_f

t_f = 0.09 μs

$V_C(100\%)$ = 350 V
$I_C(100\%)$ = 30 A

Figure 4

Turn-on Switching Waveforms & definition of t_r

t_r = 0.01 μs

$V_C(100\%)$ = 350 V
$I_C(100\%)$ = 30 A
Switching Definitions BOOST

Figure 5

BOOST IGBT

Turn-off Switching Waveforms & definition of \(t_{\text{Eoff}} \)

\[
P_{\text{off}} (100\%) = 10.46 \text{ kW} \\
E_{\text{off}} (100\%) = 1.36 \text{ mJ} \\
t_{\text{Eoff}} = 0.52 \mu\text{s}
\]

Figure 6

BOOST IGBT

Turn-on Switching Waveforms & definition of \(t_{\text{Eon}} \)

\[
P_{\text{on}} (100\%) = 10.46 \text{ kW} \\
E_{\text{on}} (100\%) = 0.39 \text{ mJ} \\
t_{\text{Eon}} = 0.10 \mu\text{s}
\]

Figure 7

BOOST IGBT

Turn-off Switching Waveforms & definition of \(t_{\text{r}} \)

\[
V_{\text{d}} (100\%) = 350 \text{ V} \\
I_{\text{d}} (100\%) = 30 \text{ A} \\
I_{\text{RRM}} (100\%) = -67 \text{ A} \\
t_{\text{r}} = 0.10 \mu\text{s}
\]

Figure 8

BOOST FWD

Turn-on Switching Waveforms & definition of \(t_{\text{Qrr}} \)

\[
I_{\text{d}} (100\%) = 30 \text{ A} \\
Q_{\text{r}} (100\%) = 4.72 \mu\text{C} \\
t_{\text{Qrr}} = 1.00 \mu\text{s}
\]
Switching Definitions BOOST

Figure 9

Turn-on Switching Waveforms & definition of $t_{E_{\text{rec}}}$

($t_{E_{\text{rec}}}$ = integrating time for E_{rec})

- P_{rec} (100%) = 10.46 kW
- E_{rec} (100%) = 1.45 mJ
- $t_{E_{\text{rec}}}$ = 1.00 µs

Measurement circuits

Figure 11

BUCK stage switching measurement circuit

Figure 12

BOOST stage switching measurement circuit
Ordering Code and Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o thermal paste 12mm housing solder pin</td>
<td>10-FZ06NRA041FS03-P965F78</td>
<td>P965F78</td>
<td>P965F78</td>
</tr>
<tr>
<td>w/o thermal paste 12mm housing Press-fit pin</td>
<td>10-PZ06NRA041FS03-P965F78Y</td>
<td>P965F78Y</td>
<td>P965F78Y</td>
</tr>
</tbody>
</table>

Outline

<table>
<thead>
<tr>
<th>Pin</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Pinout

DC+ 15, 16

GND 0, 14

Line 5, 10, 11

pin 3 and 17 are NOT CONNECTED

copyright Vincotech
DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.