Vincotech 10-FZ06NRA041FS02-P965F68

Features
- Neutral point clamped inverter
- Reactive power capability
- Low inductance layout

Target Applications
- Solar inverter
- UPS

Types
- 10-FZ06NRA041FS02-P965F68
- 10-PZ06NRA041FS02-P965F68Y

Schematic

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Inv. Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>$V_{	ext{RRM}}$</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Forward current per diode</td>
<td>$I_{	ext{FAV}}$</td>
<td>DC current $T_c=80^\circ\text{C}$</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=80^\circ\text{C}$</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>Maximum repetitive forward current</td>
<td>$I_{	ext{F RM}}$</td>
<td>$T_j=\text{max}$</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>I2t-value</td>
<td>$t_{	ext{I2}}$</td>
<td>$I_{	ext{F}}=10\text{ms}$</td>
<td>9.5</td>
<td>A2</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>$P_{	ext{D}}$</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>44</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_c=80^\circ\text{C}$</td>
<td>61</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Buck Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>$V_{	ext{RRM}}$</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{p}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>19</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_c=80^\circ\text{C}$</td>
<td>24</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{	ext{FRM}}$</td>
<td>I_{p} limited by $T_{j\text{max}}$</td>
<td>66</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>$P_{	ext{D}}$</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>32</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_c=80^\circ\text{C}$</td>
<td>49</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

Parameter	**Symbol**	**Condition**	**Value**	**Unit**

Buck MOSFET

<table>
<thead>
<tr>
<th>Drain to source breakdown voltage</th>
<th>V_{DS}</th>
<th></th>
<th>600</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC drain current</td>
<td>I_D</td>
<td>$T_J = T_{max}$, $T_C = 25°C$</td>
<td>29</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed drain current</td>
<td>I_D_{pul}</td>
<td>I_D limited by T_{max}, $T_C = 25°C$</td>
<td>272</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_J = T_{max}$, $T_C = 25°C$</td>
<td>78</td>
<td>W</td>
</tr>
<tr>
<td>Gate-source peak voltage</td>
<td>V_{GS}</td>
<td></td>
<td>≤20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{Jmax}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost IGBT

<table>
<thead>
<tr>
<th>Collector-emitter break down voltage</th>
<th>V_{CE}</th>
<th></th>
<th>600</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_J = T_{max}$, $T_C = 25°C$</td>
<td>58</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>I_{Cpul}</td>
<td>I_C limited by T_{max}, $T_C = 25°C$</td>
<td>225</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td></td>
<td>$T_J ≤ 150°C$, $V_{CE} ≤ V_{CES}$</td>
<td>225</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{tot}</td>
<td>$T_J = T_{max}$, $T_C = 25°C$</td>
<td>93</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>≤20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>I_{SC}</td>
<td>$T_J ≤ 150°C$, $V_{GE} = 15V$</td>
<td>6</td>
<td>μs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{Jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost Diode

<table>
<thead>
<tr>
<th>Peak Repetitive Reverse Voltage</th>
<th>V_{DRM}</th>
<th></th>
<th>1200</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_J = T_{max}$, $T_C = 25°C$</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak surge current</td>
<td>I_{FSM}</td>
<td>20kHz Square Wave</td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>$T_J = T_{max}$, $T_C = 25°C$</td>
<td>33</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{Jmax}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Properties

| Storage temperature | T_{stg} | | -40...+125 | °C |
| Operation temperature under switching condition | T_{op} | | -40...+(Tmax - 25) | °C |

Insulation Properties

Insulation voltage	V_{in}	$I=2s$	DC voltage	4000	V
Creepage distance				min 12.7	mm
Clearance				min 12.7	mm
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Inv. Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>(V_f)</td>
<td>10, 25°C, 125°C</td>
<td>1.25, 1.88, 1.95</td>
<td>V</td>
</tr>
<tr>
<td>Threshold voltage (for power loss calc. only)</td>
<td>(V_{th})</td>
<td>10, 25°C, 125°C</td>
<td>1.37, 0.70</td>
<td>V</td>
</tr>
<tr>
<td>Slope resistance (for power loss calc. only)</td>
<td>(t_r)</td>
<td>10, 25°C, 125°C</td>
<td>0.04, 0.04</td>
<td>Ω</td>
</tr>
<tr>
<td>Reverse current</td>
<td>(I_r)</td>
<td>600, 125°C</td>
<td>0.027</td>
<td>mA</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{thJH})</td>
<td>Thermal grease thickness 50um (λ = 1 \text{ W/mK})</td>
<td>2.17</td>
<td>kW</td>
</tr>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>(V_f)</td>
<td>10</td>
<td>1.61, 1.88</td>
<td>1.7</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(I_l)</td>
<td>600, 125°C</td>
<td>320</td>
<td>µA</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>(I_{rmax})</td>
<td>10</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{rr})</td>
<td>10, 125°C</td>
<td>10</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>(Q_{rr})</td>
<td>10</td>
<td>10</td>
<td>µC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(V_{dr})</td>
<td>2333</td>
<td>100</td>
<td>A/µs</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>(E_{rec})</td>
<td>1808</td>
<td>0.02</td>
<td>mWs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{thJH})</td>
<td>Thermal grease thickness 50um (λ = 1 \text{ W/mK})</td>
<td>2.16</td>
<td>kW</td>
</tr>
<tr>
<td>Buck MOSFET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static drain to source ON resistance</td>
<td>(R_{ds(on)})</td>
<td>10</td>
<td>41</td>
<td>mΩ</td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>(V_{GDON})</td>
<td>20</td>
<td>9</td>
<td>100</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>(I_{gs})</td>
<td>0</td>
<td>600</td>
<td>5</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>(I_{bs})</td>
<td>0</td>
<td>600</td>
<td>34</td>
</tr>
</tbody>
</table>
Boost IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emission threshold voltage</td>
<td>V_{GES}</td>
<td>V_{CES}</td>
<td>0.0012</td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{GE}</td>
<td>V_{CE}</td>
<td>16</td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>I_{CES}</td>
<td></td>
<td>30</td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td></td>
<td>20</td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{G}</td>
<td></td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{(on)}$</td>
<td></td>
<td></td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td></td>
<td></td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{(off)}$</td>
<td>$R_{g(0f)=4\ \Omega}$</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td></td>
<td></td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>$f=1\ \text{MHz}$</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>$f=1\ \text{MHz}$</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{riss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{Gmax}</td>
<td></td>
<td>15</td>
<td>480</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness 50µm $\lambda = 1\ \text{W/mK}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boost Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_F</td>
<td></td>
<td>18</td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_r</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{rr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>$t_{(rr)}$</td>
<td>$R_{g(on)=4\ \Omega}$</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>$R_{g(on)=4\ \Omega}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$dI_{(max)}$</td>
<td>$\text{di}(rec)_{max}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td></td>
<td></td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness 50µm $\lambda = 1\ \text{W/mK}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td></td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>Deviation of R_{25}</td>
<td>$\Delta R/R$</td>
<td></td>
<td></td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td></td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td></td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>B-value</td>
<td>B_{25}</td>
<td></td>
<td></td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>B-value</td>
<td>B_{25}</td>
<td></td>
<td></td>
<td>T_j=25°C</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

copyright by Vincotech
Buck

Figure 1 MOSFET

Typical output characteristics

\[I_C = f(V_{CE}) \]

- At
 - \(t_p = 250 \ \mu s \)
 - \(T_J = 25 \ ^\circ C \)
 - \(V_{CE} \) from 0 V to 20 V in steps of 2 V

Figure 2 MOSFET

Typical output characteristics

\[I_C = f(V_{CE}) \]

- At
 - \(t_p = 250 \ \mu s \)
 - \(T_J = 125 \ ^\circ C \)
 - \(V_{CE} \) from 0 V to 20 V in steps of 2 V

Figure 3 MOSFET

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

- At
 - \(t_p = 250 \ \mu s \)
 - \(V_{CE} = 10 \ \text{V} \)

Figure 4 FWD

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

- At
 - \(t_p = 250 \ \mu s \)
 - \(T_J = 25 \ ^\circ C \)
 - \(T_J = T_{J_{\text{max}}}-25 \ ^\circ C \)

copyright by Vincotech
Figure 5
MOSFET
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]

With an inductive load at
\[T_j = 25/125 \; ^\circ C \]
\[V_{CE} = 350 \; V \]
\[V_{GE} = 10 \; V \]
\[R_{g,on} = 8 \; \Omega \]
\[R_{g,off} = 8 \; \Omega \]

Figure 6
MOSFET
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
\[T_j = 25/125 \; ^\circ C \]
\[V_{CE} = 350 \; V \]
\[V_{GE} = 10 \; V \]
\[I_C = 20 \; A \]

Figure 7
FWD
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_C) \]

With an inductive load at
\[T_j = 25/125 \; ^\circ C \]
\[V_{CE} = 350 \; V \]
\[V_{GE} = 10 \; V \]
\[R_{g,off} = 8 \; \Omega \]

Figure 8
FWD
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
\[T_j = 25/125 \; ^\circ C \]
\[V_{CE} = 350 \; V \]
\[V_{GE} = 10 \; V \]
\[I_C = 20 \; A \]
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

\[T_j = 125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = 10 \, V \]
\[R_{gon} = 8 \, \Omega \]
\[R_{goff} = 8 \, \Omega \]

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At

\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = 10 \, V \]
\[R_{gon} = 8 \, \Omega \]
Figure 13 FWD
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

![Figure 13](image1)

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = 10 \, V \]
\[R_{g on} = 8 \, \Omega \]

Figure 14 FWD
Typical reverse recovery charge as a function of MOSFET turn on gate resistor

\[Q_{rr} = f(R_{g on}) \]

![Figure 14](image2)

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{OE} = 350 \, V \]
\[I_F = 20 \, A \]
\[V_{GE} = 10 \, V \]

Figure 15 FWD
Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

![Figure 15](image3)

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = 10 \, V \]
\[R_{g on} = 8 \, \Omega \]

Figure 16 FWD
Typical reverse recovery current as a function of MOSFET turn on gate resistor

\[I_{RRM} = f(R_{g on}) \]

![Figure 16](image4)

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{OE} = 350 \, V \]
\[I_F = 20 \, A \]
\[V_{GE} = 10 \, V \]
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\(\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \)

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = 10 \) V
- \(R_{gon} = 8 \) Ω

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor
\(\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \)

At
- \(T_j = 25/125 \) °C
- \(V_{HI} = 350 \) V
- \(I_f = 20 \) A
- \(V_{GE} = 10 \) V

Figure 19
MOSFET transient thermal impedance as a function of pulse width
\(Z_{thJH} = f(t_p) \)

At
- \(D = t_p / \tau \)
- \(R_{thJH} = 0,90 \) K/W

MOSFET thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,13</td>
<td>4,5E+00</td>
</tr>
<tr>
<td>0,26</td>
<td>1,1E+00</td>
</tr>
<tr>
<td>0,25</td>
<td>2,4E-01</td>
</tr>
<tr>
<td>0,18</td>
<td>8,4E-02</td>
</tr>
<tr>
<td>0,07</td>
<td>1,5E-02</td>
</tr>
<tr>
<td>0,03</td>
<td>1,1E-03</td>
</tr>
</tbody>
</table>

Figure 20
FWD transient thermal impedance as a function of pulse width
\(Z_{thJH} = f(t_p) \)

At
- \(D = t_p / \tau \)
- \(R_{thJH} = 2,16 \) K/W

FWD thermal model values

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,08</td>
<td>4,4E+00</td>
</tr>
<tr>
<td>0,13</td>
<td>8,2E-01</td>
</tr>
<tr>
<td>0,62</td>
<td>1,3E-01</td>
</tr>
<tr>
<td>0,67</td>
<td>4,6E-02</td>
</tr>
<tr>
<td>0,32</td>
<td>8,2E-03</td>
</tr>
<tr>
<td>0,25</td>
<td>1,9E-03</td>
</tr>
<tr>
<td>0,09</td>
<td>5,1E-04</td>
</tr>
</tbody>
</table>
Buck

Figure 21
MOSFET
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

\[I_C = f(T_h) \]

At
\[T_j = 150 \degree C \]

Figure 22
MOSFET
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

At
\[T_j = 150 \degree C \]
\[V_{GE} = 15 \text{ V} \]

Figure 23
FWD
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 150 \degree C \]

Figure 24
FWD
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 150 \degree C \]
Figure 25
Safe operating area as a function of collector-emitter voltage
$I_C = f(V_{CE})$

Figure 26
Gate voltage vs Gate charge
$V_{GE} = f(Q_g)$

At
- $D =$ single pulse
- $T_h =$ 80 °C
- $V_{GE} =$ 15 V
- $T_j =$ T_{jmax} °C

For Buck

- $I_{GREF} =$ 1 mA, $R_L =$ 15 Ω
Boost

Figure 1
Typical output characteristics

\[I_C = f(V_{CE}) \]

At
- \(t_p = 250 \mu s \)
- \(T_j = 25 \degree C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics

\[I_C = f(V_{CE}) \]

At
- \(t_p = 250 \mu s \)
- \(T_j = 125 \degree C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics

\[I_C = f(V_{GE}) \]

At
- \(t_p = 250 \mu s \)
- \(T_j = 25\degree C \)
- \(V_{CE} = 10\, V \)

Figure 4
Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At
- \(t_p = 250 \mu s \)
- \(T_j = T_{j\text{max}} - 25\degree C \)
Figure 5
IGBT

Typical switching energy losses

as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{g_{on}} = 4 \) Ω
- \(R_{g_{off}} = 4 \) Ω

Figure 6
IGBT

Typical switching energy losses

as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 30 \) A

Figure 7
IGBT

Typical reverse recovery energy loss

as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{g_{on}} = 4 \) Ω

Figure 8
IGBT

Typical reverse recovery energy loss

as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 30 \) A

copyright by Vincotech

13

Revision: 1
Figure 9
Typical switching times as a function of collector current
\(t = f(I_C) \)

With an inductive load at
\(T_j = 25/125 \) °C
\(V_{CE} = 350 \) V
\(V_{CE} = \pm 15 \) V
\(R_{gon} = 4 \) Ω
\(R_{goff} = 4 \) Ω

Figure 10
Typical switching times as a function of gate resistor
\(t = f(R_G) \)

With an inductive load at
\(T_j = 25/125 \) °C
\(V_{CE} = 350 \) V
\(V_{CE} = \pm 15 \) V
\(I_C = 30 \) A

Figure 11
Typical reverse recovery time as a function of collector current
\(t_{rr} = f(I_C) \)

At
\(T_j = 25/125 \) °C
\(V_{CE} = 350 \) V
\(V_{CE} = \pm 15 \) V
\(R_{gon} = 4 \) Ω

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
\(t_{rr} = f(R_{gon}) \)

At
\(T_j = 25/125 \) °C
\(V_{BE} = 350 \) V
\(I_C = 30 \) A
\(V_{GE} = \pm 15 \) V
Boost

Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

![Graph showing Qrr vs Ic]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

At
- \(T_j = 25/125 \) °C
- \(V_C = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

![Graph showing IRRM vs IC]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

At
- \(T_j = 25/125 \) °C
- \(V_C = 350 \) V
- \(I_F = 30 \) A
- \(V_{GE} = \pm 15 \) V
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{di_0}{dt}, \frac{di_{rec}}{dt} = f(I_c) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of reverse recovery current
\[\frac{di_0}{dt}, \frac{di_{rec}}{dt} = f(R_{gon}) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(I_f = 30 \) A
- \(V_{GE} = \pm 15 \) V

Figure 19
IGBT transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
- \(D = t_p / T \)
- \(R_{thJH} = 1,02 \) K/W

IGBT thermal model values
<table>
<thead>
<tr>
<th>(R) (C/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,08</td>
<td>4,30</td>
</tr>
<tr>
<td>0,12</td>
<td>1,00</td>
</tr>
<tr>
<td>0,47</td>
<td>0,15</td>
</tr>
<tr>
<td>0,26</td>
<td>0,05</td>
</tr>
<tr>
<td>0,08</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Figure 20
FWD transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
- \(D = t_p / T \)
- \(R_{thJH} = 2,11 \) K/W

FWD thermal model values
<table>
<thead>
<tr>
<th>(R) (C/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,04</td>
<td>6,53</td>
</tr>
<tr>
<td>0,11</td>
<td>1,19</td>
</tr>
<tr>
<td>0,53</td>
<td>0,18</td>
</tr>
<tr>
<td>0,96</td>
<td>0,06</td>
</tr>
<tr>
<td>0,30</td>
<td>0,01</td>
</tr>
<tr>
<td>0,17</td>
<td>0,00</td>
</tr>
</tbody>
</table>
Power dissipation as a function of heatsink temperature

Figure 21
$P_{\text{tot}} = f(T_h)$

At
$T_j = 175 \, ^{\circ}C$

Power dissipation as a function of heatsink temperature

Figure 23
$P_{\text{tot}} = f(T_h)$

At
$T_j = 150 \, ^{\circ}C$

Collector current as a function of heatsink temperature

Figure 22
$I_C = f(T_h)$

At
$T_j = 175 \, ^{\circ}C$

Forward current as a function of heatsink temperature

Figure 24
$I_F = f(T_h)$

At
$T_j = 150 \, ^{\circ}C$
Boost Inverse Diode

Figure 25
IGBT Inverse Diode
Typical diode forward current as a function of forward voltage
\[I_F = f(V_F) \]

![Diagram showing diode forward current as a function of forward voltage.]

At
\[t_p = 250 \mu s \]

Figure 26
IGBT Inverse Diode
Diode transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

![Diagram showing diode transient thermal impedance as a function of pulse width.]

At
\[D = \frac{t_p}{T} \]
\[R_{thJH} = 2.17 \text{ K/W} \]

Figure 27
IGBT Inverse Diode
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_j) \]

![Diagram showing power dissipation as a function of heatsink temperature.]

At
\[T_j = 175 ^\circ C \]

Figure 28
IGBT Inverse Diode
Forward current as a function of heatsink temperature
\[I_F = f(T_j) \]

![Diagram showing forward current as a function of heatsink temperature.]

At
\[T_j = 175 ^\circ C \]
Thermistor

Typical NTC characteristic as a function of temperature

\[R_T = f(T) \]

![Graph: NTC-typical temperature characteristic](image)

\[R(T) = R_{25} \cdot e^{\left(\frac{R_{25}}{T_{25}} - \frac{1}{T}\right)} \quad [\Omega] \]

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>R_min [Ω]</th>
<th>R_max [Ω]</th>
<th>ΔR/R [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>14500.6</td>
<td>186591.9</td>
<td>28.7</td>
</tr>
<tr>
<td>0</td>
<td>71804.2</td>
<td>85884.4</td>
<td>16.2</td>
</tr>
<tr>
<td>10</td>
<td>27484.6</td>
<td>50466.5</td>
<td>25.3</td>
</tr>
<tr>
<td>20</td>
<td>22009.3</td>
<td>31259.7</td>
<td>20.8</td>
</tr>
<tr>
<td>30</td>
<td>17723.3</td>
<td>19934.4</td>
<td>12.5</td>
</tr>
<tr>
<td>50</td>
<td>5467.0</td>
<td>5955.1</td>
<td>9.1</td>
</tr>
<tr>
<td>70</td>
<td>3848.8</td>
<td>4151.1</td>
<td>7.9</td>
</tr>
<tr>
<td>90</td>
<td>2757.7</td>
<td>2947.1</td>
<td>6.9</td>
</tr>
<tr>
<td>100</td>
<td>2008.9</td>
<td>2128.2</td>
<td>5.9</td>
</tr>
<tr>
<td>150</td>
<td>400.2</td>
<td>435.7</td>
<td>8.6</td>
</tr>
</tbody>
</table>
Switching Definitions BUCK

General conditions

- $T_j = 125 \, ^\circ C$
- $R_{ Thom \, IGBT } = 8 \, \Omega$
- $R_{ Eoff \, IGBT } = 8 \, \Omega$

Figure 1
BUCK MOSFET

Turn-off Switching Waveforms & definition of t_{Eoff}, t_{Eon}
(t_{Eoff} = integrating time for E_{off})

- $V_{GE}(0\%) = 0 \, V$
- $V_{GE}(100\%) = 10 \, V$
- $V_{CE}(100\%) = 700 \, V$
- $I_{C}(100\%) = 20 \, A$
- $t_{Eoff} = 0.29 \, \mu s$
- $t_{Eon} = 0.33 \, \mu s$

Figure 2
BUCK MOSFET

Turn-on Switching Waveforms & definition of t_{Eon}, t_{Eoff}
(t_{Eon} = integrating time for E_{on})

- $V_{GE}(0\%) = 0 \, V$
- $V_{GE}(100\%) = 10 \, V$
- $V_{CE}(100\%) = 700 \, V$
- $I_{C}(100\%) = 20 \, A$
- $t_{Eon} = 0.03 \, \mu s$
- $t_{Eoff} = 0.07 \, \mu s$

Figure 3
BUCK MOSFET

Turn-off Switching Waveforms & definition of t_T

- $V_{CE}(100\%) = 700 \, V$
- $I_{C}(100\%) = 20 \, A$
- $t_T = 2.756 \, \mu s$

Figure 4
BUCK MOSFET

Turn-on Switching Waveforms & definition of t_T

- $V_{CE}(100\%) = 700 \, V$
- $I_{C}(100\%) = 20 \, A$
- $t_T = 0.01 \, \mu s$

Copyright by Vincotech

Revision: 1
Switching Definitions BUCK

Figure 5 BUCK MOSFET
Turn-off Switching Waveforms & definition of \(t_{\text{Eoff}} \)

\[
\begin{align*}
P_{\text{off}} \,(100\%) & = 13.98 \, \text{kW} \\
E_{\text{off}} \,(100\%) & = 0.07 \, \text{mJ} \\
t_{\text{Eoff}} & = 0.33 \, \mu\text{s}
\end{align*}
\]

Figure 6 BUCK MOSFET
Turn-on Switching Waveforms & definition of \(t_{\text{Eon}} \)

\[
\begin{align*}
P_{\text{on}} \,(100\%) & = 13.98 \, \text{kW} \\
E_{\text{on}} \,(100\%) & = 0.15 \, \text{mJ} \\
t_{\text{Eon}} & = 0.07 \, \mu\text{s}
\end{align*}
\]

Figure 7 BUCK MOSFET
Turn-off Switching Waveforms & definition of \(t_{\text{Qrr}} \)

\[
\begin{align*}
V_{\text{d}} \,(100\%) & = 700 \, \text{V} \\
i_{\text{d}} \,(100\%) & = 20 \, \text{A} \\
i_{\text{RRM}} \,(100\%) & = -10 \, \text{A} \\
t_{\text{Qrr}} & = 0.02 \, \mu\text{s}
\end{align*}
\]

Figure 8 BUCK FWD
Turn-on Switching Waveforms & definition of \(t_{\text{Qrr}} \)

\[
\begin{align*}
i_{\text{d}} \,(100\%) & = 20 \, \text{A} \\
Q_{\text{r}} \,(100\%) & = 0.12 \, \mu\text{C} \\
t_{\text{Qrr}} & = 0.08 \, \mu\text{s}
\end{align*}
\]
Switching Definitions BUCK

Figure 9
BUCK FWD
Turn-on Switching Waveforms & definition of $t_{E_{rec}}$
($t_{E_{rec}}$ = integrating time for E_{rec})

![Graph showing turn-on switching waveforms and definition of $t_{E_{rec}}$.]

$P_{rec}(100\%) = 13.98$ kW
$E_{rec}(100\%) = 0.02$ mJ
$t_{E_{rec}} = 0.08$ μs

Figure 11
BUCK stage switching measurement circuit

Figure 12
BOOST stage switching measurement circuit

Measurement circuits

copyright by Vincotech
Switching Definitions BOOST

General conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>$R_{th,IGBT}$</td>
<td>4 Ω</td>
</tr>
<tr>
<td>$R_{th,IGBT}$</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1

Output inverter IGBT

Turn-off Switching Waveforms & definition of t_{off}, t_{Eoff}

t_{off} = Integrating time for E_{off}

t_{Eoff} = Integrating time for E_{on}

- $V_{GE}(0\%) = -15$ V
- $V_{GE}(100\%) = 15$ V
- $I_C(100\%) = 30$ A
- $t_{off} = 0.24 \mu$s
- $t_{Eoff} = 0.52 \mu$s

Figure 2

Output inverter IGBT

Turn-on Switching Waveforms & definition of t_{on}, t_{Eon}

t_{on} = Integrating time for E_{on}

t_{Eon} = Integrating time for E_{off}

- $V_{CE}(100\%) = 350$ V
- $I_C(100\%) = 30$ A
- $t_{on} = 0.08 \mu$s
- $t_{Eon} = 0.10 \mu$s

Figure 3

Output inverter IGBT

Turn-off Switching Waveforms & definition of t_{r}

- $V_{CE}(0\%) = -50$ V
- $V_{CE}(10\%) = 50$ V
- $V_{CE}(90\%) = 150$ V
- $I_C(10%) = 3,05$ A
- $I_C(90%) = 3,15$ A
- $t_{r} = 0,20 \mu$s

Figure 4

Output inverter IGBT

Turn-on Switching Waveforms & definition of t_f

- $V_{CE}(0\%) = -25$ V
- $V_{CE}(10\%) = 25$ V
- $V_{CE}(50\%) = 75$ V
- $I_C(10%) = 3,06$ A
- $I_C(90%) = 3,12$ A
- $t_f = 0,09 \mu$s

copyright by Vincotech
Switching Definitions BOOST

Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of $t_{E_{off}}$

- P_{off} (100%) = 10.46 kW
- E_{off} (100%) = 1.36 mJ
- $t_{E_{off}}$ = 0.52 µs

Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of $t_{E_{on}}$

- P_{on} (100%) = 10.46 kW
- E_{on} (100%) = 0.39 mJ
- $t_{E_{on}}$ = 0.10 µs

Figure 7
Output inverter IGBT
Turn-off Switching Waveforms & definition of $t_{Q_{rr}}$

- V_{d} (100%) = 350 V
- i_{d} (100%) = 30 A
- $i_{d_{90}}$ (100%) = -67 A
- $t_{Q_{rr}}$ = 0.10 µs

Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of $t_{Q_{rr}}$

- i_{d} (100%) = 30 A
- Q_{rr} (100%) = 4.72 µC
- $t_{Q_{rr}}$ = 1.00 µs

copyright by Vincotech
Switching Definitions BOOST

Figure 9
Output inverter FWD

Turn-on Switching Waveforms & definition of $t_{E_{rec}}$

($t_{E_{rec}}$ = integrating time for E_{rec})

$P_{rec}(100\%) = 10.46$ kW

$E_{rec}(100\%) = 1.45$ mJ

$t_{E_{rec}} = 1.00$ μs

Measurement circuits

Figure 11
BUCK stage switching measurement circuit

Figure 12
BOOST stage switching measurement circuit
Ordering Code and Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o thermal paste 12mm housing solder pin</td>
<td>10-FZ06NRA041FS02-P965F68</td>
<td>P965F68</td>
<td>P965F68</td>
</tr>
<tr>
<td>w/o thermal paste 12mm housing Press-fit pin</td>
<td>10-FZ06NRA041FS02-P965F68Y</td>
<td>P965F68Y</td>
<td>P965F68Y</td>
</tr>
</tbody>
</table>

Outline

Pinout

Pin 19: G3
Pin 18: S3
Pin 17: G2
Pin 16: S2
Pin 15: G1
Pin 14: S1
Pin 13: G0
Pin 12: S0
Pin 11: Line 9, 10, 11
Pin 10: NTC1
Pin 9: NTC2
Pin 8: G4
Pin 7: S4
Pin 6: G3, 17 are NOT CONNECTED
Pin 5: Line 4, 5
Pin 4: DC-
Pin 3: DC+
Pin 2: G4
Pin 1: S4

Copyright by Vincotech
DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.