Features
- Mixed voltage NPC topology
- Reactive power capability
- Low inductance layout
- Split output
- Enhanced LVRT capability

Target Applications
- Solar inverter
- UPS
- Active frontend

Types
- 10-FY12NMA160SH01-M820F18
- 10-PY12NMA160SH01-M820F18Y

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>V_{RSM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Forward current</td>
<td>I_{FAd}</td>
<td>DC current</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FPM}</td>
<td>$t_p=10\text{ms}$</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{j,max}$</td>
<td>31</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j,max}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Halfbridge IGBT Inverse Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CES}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_c</td>
<td>$T_j=T_{j,max}$</td>
<td>117</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>I_{CRM}</td>
<td>$t_p\text{ limited by }T_j{max}$</td>
<td>480</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td></td>
<td>$T_j\leq150\text{°C}$</td>
<td>480</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{j,max}$</td>
<td>260</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>$T_j\leq150\text{°C}$</td>
<td>10</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>V_{CC}</td>
<td>$V_{GE}=15\text{V}$</td>
<td>800</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j,max}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

\(T_j=25^\circ C \), unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>700</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_F)</td>
<td>(T_j=T_{j\max}) (T_h=80^\circ C)</td>
<td>53</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_j=T_{j\max}) (T_h=80^\circ C) (T_c=80^\circ C)</td>
<td>63</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j\max})</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>NP IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>(V_{CES})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>(I_C)</td>
<td>(T_j=T_{j\max}) (T_h=80^\circ C) (T_c=80^\circ C)</td>
<td>76</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>(I_{CRM})</td>
<td>(t_p) limited by (T_{j\max})</td>
<td>450</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>(P_{tot})</td>
<td>(T_j=T_{j\max}) (T_h=80^\circ C) (T_c=80^\circ C)</td>
<td>96</td>
<td>W</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(V_{CE}=15V)</td>
<td>145</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>(V_{GE})</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>(t_{SC})</td>
<td>(T_j\leq150^\circ C) (V_{CE}=15V)</td>
<td>6</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>(V_{CC})</td>
<td></td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j\max})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>NP Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_F)</td>
<td>(T_j=T_{j\max}) (T_h=80^\circ C) (T_c=80^\circ C)</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{CRM})</td>
<td>(t_p) limited by (T_{j\max})</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_j=T_{j\max}) (T_h=80^\circ C) (T_c=80^\circ C)</td>
<td>28</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j\max})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Halfbridge Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_F)</td>
<td>(T_j=T_{j\max}) (T_h=80^\circ C) (T_c=80^\circ C)</td>
<td>31</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{CRM})</td>
<td>(t_p) limited by (T_{j\max})</td>
<td>140</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_{tot})</td>
<td>(T_j=T_{j\max}) (T_h=80^\circ C) (T_c=80^\circ C)</td>
<td>61</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{j\max})</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>
$T_j=25{^\circ}C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC link Capacitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. DC voltage</td>
<td>V_{MAX}</td>
<td>$T_c=25{^\circ}C$</td>
<td>630</td>
<td>V</td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40...+(T_{\text{max}} - 25)</td>
<td>°C</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>V_{IS}</td>
<td>$t=2s$</td>
<td>DC voltage</td>
<td>4000</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td></td>
<td>min 12,7</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td></td>
<td>min 8,06</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_{ds}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_{r}</td>
<td>1200</td>
<td>7</td>
<td>$T_j=25^\circ\text{C}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$T_j=125^\circ\text{C}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$T_j=125^\circ\text{C}$</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease thickness≤50um $\lambda = 1 \text{ W/mK}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Halfbridge IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{CE}=V_{GE}$</td>
<td>0,006</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$T_j=125^\circ\text{C}$</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{ces}</td>
<td>15</td>
<td>160</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$T_j=125^\circ\text{C}$</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl. Diode</td>
<td>I_{ces}</td>
<td>0</td>
<td>1200</td>
<td>1</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{ge}</td>
<td>20</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gan}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td>Roff=4 Ω</td>
<td>45</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rgon=4 Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>$f=1\text{MHz}$</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{ies}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>± 15</td>
<td>960</td>
<td>160</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease thickness≤50um $\lambda = 1 \text{ W/mK}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NP Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{r}</td>
<td>700</td>
<td>1</td>
<td>$T_j=25^\circ\text{C}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$T_j=125^\circ\text{C}$</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{rr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>Rgon=4 Ω</td>
<td>86</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$T_j=125^\circ\text{C}$</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$(dV_{ds}/dt)_{max}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease thickness≤50um $\lambda = 1 \text{ W/mK}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>(V)</td>
<td>(</td>
<td>V</td>
</tr>
<tr>
<td>Current</td>
<td>(I)</td>
<td>(</td>
<td>I</td>
</tr>
<tr>
<td>Temperature</td>
<td>(T)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NP IGBT

- **Gate emitter threshold voltage**
 - \(V_{GE(th)} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(5 \), \(8 \), \(6.5 \) \(V \)
- **Collector-emitter saturation voltage**
 - \(V_{CEO} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(1.05 \), \(1.48 \), \(1.85 \) \(V \)
- **Collector-emitter cut-off incl diode**
 - \(I_{CES} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: 0.05 \(mA \)
- **Gate-emitter leakage current**
 - \(I_{GE} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: 700 \(nA \)
- **Integrated Gate resistor**
 - \(R_{gm} \)
 - Value: none \(\Omega \)
- **Turn-on delay time**
 - \(t_{(on)} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(0.008 \) \(ms \)
- **Rise time**
 - \(t_{r} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(0.15 \) \(ns \)
- **Turn-off delay time**
 - \(t_{(off)} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(350 \) \(ns \)
- **Fall time**
 - \(t_{f} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(100 \) \(ns \)
- **Turn-on energy loss per pulse**
 - \(E_{on} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(1.23 \) \(mW \)
- **Turn-off energy loss per pulse**
 - \(E_{off} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(1.99 \) \(mW \)
- **Input capacitance**
 - \(C_{sc} \)
 - Conditions: \(f=1MHz \)
 - Value: \(0.276 \) \(pF \)
- **Output capacitance**
 - \(C_{so} \)
 - Conditions: \(T=25°C \)
 - Value: \(0.274 \) \(pF \)
- **Reverse transfer capacitance**
 - \(C_{rss} \)
 - Conditions: \(T=100°C \)
 - Value: \(0.033 \) \(pF \)
- **Thermal resistance chip to heatsink**
 - \(R_{(j-Q)} \)
 - Conditions: Thermal grease thickness 50um \(\lambda = 1 \) \(W/mK \)
 - Value: \(0.99 \) \(K/W \)

NP Inverse Diode

- **Diode forward voltage**
 - \(V_{F} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(1.23 \) \(V \)
- **Thermal resistance chip to heatsink**
 - \(R_{(j-Q)} \)
 - Conditions: Thermal grease thickness 50um \(\lambda = 1 \) \(W/mK \)
 - Value: \(3.43 \) \(K/W \)

Halfbridge Diode

- **Diode forward voltage**
 - \(V_{F} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(1.23 \) \(V \)
- **Reverse leakage current**
 - \(I_{r} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(200 \) \(mA \)
- **Peak reverse recovery current**
 - \(I_{(off)} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(3.5 \) \(mA \)
- **Reverse recovery time**
 - \(t_{r} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(3.3 \) \(ms \)
- **Reverse recovered charge**
 - \(Q_{sc} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(6.17 \) \(\mu C \)
- **Peak rate of fall of recovery current**
 - \((d_{i}/dt)_{max} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(2952 \) \(A/\mu s \)
- **Reverse recovery energy**
 - \(E_{sc} \)
 - Conditions: \(T=25°C \) or \(T=125°C \)
 - Value: \(1.66 \) \(mWs \)
- **Thermal resistance chip to heatsink**
 - \(R_{(j-Q)} \)
 - Conditions: Thermal grease thickness 50um \(\lambda = 1 \) \(W/mK \)
 - Value: \(1.15 \) \(K/W \)

DC link Capacitor

- **C value**
 - \(C \)
 - Conditions: \(80 \), \(100 \), \(120 \) \(nF \)

Thermistor

- **Rated resistance**
 - \(R \)
 - Conditions: \(T=25°C \)
 - Value: \(21511 \) \(\Omega \)
- **Deviation of R100**
 - \(A_{\pm 100} \)
 - Conditions: \(R100=1486 \) \(\Omega \)
 - Value: \(-4.5 \) to \(+4.5 \) \%)
- **Power dissipation**
 - \(P \)
 - Conditions: \(T=25°C \)
 - Value: \(210 \) \(mW \)
- **Power dissipation constant**
 - \(B \)
 - Conditions: \(T=25°C \)
 - Value: \(3.5 \) \(mW/K \)
- **B-value**
 - \(B \)
 - Conditions: \(T=25°C \)
 - Value: \(3964 \) \(K \)

10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
 datasheet

copyright Vincotech
Half Bridge

Half Bridge IGBT and Neutral Point FWD

Figure 1
Typical output characteristics

$I_C = f(V_{CE})$

At

- $t_P = 250 \ \mu s$
- $T_j = 25 ^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics

$I_C = f(V_{CE})$

At

- $t_P = 250 \ \mu s$
- $T_j = 125 ^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics

$I_C = f(V_{CE})$

At

- $t_P = 250 \ \mu s$
- V_{CE} = 10 V

Figure 4
Typical diode forward current as a function of forward voltage

$I_F = f(V_F)$

At

- $t_P = 250 \ \mu s$

$T_j = T_{jmax} - 25 ^\circ C$

V_{CE} = 10 V

Copyright Vincotech 2015 / Revision 2
Figure 5

Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

\[T_j = 25/125 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[R_{gon} = 4 \Omega \]
\[I_C = 100 \text{ A} \]

Figure 6

Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

\[T_j = 25/125 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[R_{gon} = 4 \Omega \]
\[I_C = 100 \text{ A} \]

Figure 7

Typical reverse recovery energy loss as a function of collector current

\[E_{\text{rec}} = f(I_C) \]

With an inductive load at

\[T_j = 25/125 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[R_{goff} = 4 \Omega \]

Figure 8

Typical reverse recovery energy loss as a function of gate resistor

\[E_{\text{rec}} = f(R_G) \]

With an inductive load at

\[T_j = 25/125 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[R_{goff} = 4 \Omega \]
\[I_C = 100 \text{ A} \]
Half Bridge
Half Bridge IGBT and Neutral Point FWD

Figure 9
Typical switching times as a function of collector current
\(t = f(I_C) \)

With an inductive load at
- \(T_j = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(R_{goff} = 4 \) Ω

Figure 10
Typical switching times as a function of gate resistor
\(t = f(R_G) \)

With an inductive load at
- \(T_j = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 100 \) A

Figure 11
Typical reverse recovery time as a function of collector current
\(t_{rr} = f(I_C) \)

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
\(t_{rr} = f(R_{gon}) \)

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(I_F = 100 \) A
- \(V_{GE} = \pm 15 \) V
Half Bridge
Half Bridge IGBT and Neutral Point FWD

Figure 13
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At
\[T_J = 25/125 \ \degree C \]
\[V_{CE} = 350 \ \text{V} \]
\[V_{GE} = \pm 15 \ \text{V} \]
\[R_{gon} = 4 \ \Omega \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

At
\[T_J = 25/125 \ \degree C \]
\[V_R = 350 \ \text{V} \]
\[I_F = 100 \ \text{A} \]
\[V_{GE} = \pm 15 \ \text{V} \]

Figure 15
Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

At
\[T_J = 25/125 \ \degree C \]
\[V_R = 350 \ \text{V} \]
\[I_F = 100 \ \text{A} \]
\[V_{GE} = \pm 15 \ \text{V} \]
Half Bridge

Half Bridge IGBT and Neutral Point FWD

Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[I_F = 100 \, A \]
\[R_{gon} = 4 \, \Omega \]

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_r = 350 \, V \]
\[I_r = 100 \, A \]
\[V_{GE} = \pm 15 \, V \]

Figure 19
IGBT transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
\[D = \frac{t_p}{T} \]
\[R_{\infty} = 0.37 \, K/W \]

IGBT thermal model values

\[R \, (K/W) \, \tau \, (s) \]
\[0.06, 2.4E+00 \]
\[0.15, 4.0E-01 \]
\[0.12, 1.0E-01 \]
\[0.03, 1.3E-02 \]
\[0.01, 8.4E-04 \]

Figure 20
FWD transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
\[D = \frac{t_p}{T} \]
\[R_{\infty} = 1.11 \, K/W \]

FWD thermal model values

\[R \, (K/W) \, \tau \, (s) \]
\[0.07, 6.8E+00 \]
\[0.25, 1.2E+00 \]
\[0.57, 2.8E-01 \]
\[0.12, 6.0E-02 \]
\[0.06, 1.3E-02 \]
\[0.03, 1.1E-03 \]

copyright Vincotech
Half Bridge
Half Bridge IGBT and Neutral Point FWD

Figure 21
IGBT
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \ \degree C \]

Figure 22
IGBT
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

At
\[T_j = 175 \ \degree C \]
\[V_{GS} = 15 \ \text{V} \]

Figure 23
FWD
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 150 \ \degree C \]

Figure 24
FWD
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 150 \ \degree C \]
Half Bridge
Half Bridge IGBT and Neutral Point FWD

Figure 25
Safe operating area as a function of collector-emitter voltage
\[I_C = f(V_{CE}) \]

Figure 26
Gate voltage vs Gate charge
\[V_{GE} = f(Q_g) \]

At
- Single pulse
- \(T_J = 80 \) °C
- \(V_{GE} = \pm 15 \) V
- \(T_J = T_{JMAX} \) °C

At
- \(I_C = 160 \) A
Neutral Point
Neutral Point IGBT and Half Bridge FWD

Figure 1
Typical output characteristics

$I_C = f(V_{CE})$

At

$t_p = 250 \mu s$

$T_j = 25 ^\circ C$

V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics

$I_C = f(V_{CE})$

At

$t_p = 250 \mu s$

$T_j = 125 ^\circ C$

V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics

$I_C = f(V_{GE})$

At

$t_p = 250 \mu s$

$V_{CE} = 10 V$

$T_j = T_{j_{max}} - 25 ^\circ C$

Figure 4
Typical diode forward current as a function of forward voltage

$I_F = f(V_F)$

At

$t_p = 250 \mu s$

$T_j = T_{j_{max}} - 25 ^\circ C$

V_F from 0 V to 12 V
Neutral Point
Neutral Point IGBT and Half Bridge FWD

Figure 5
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)
- \(I_C = 100 \, \text{A} \)

Figure 6
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 100 \, \text{A} \)

Figure 7
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

Figure 8
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]
Neutral Point
Neutral Point IGBT and Half Bridge FWD

Figure 9
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
- \(T_j = 125 ^\circ C \)
- \(V_{CE} = 350 \) V
- \(V_{sel} = \pm 15 \) V
- \(R_{gon} = 4 \) \(\Omega \)
- \(R_{goff} = 4 \) \(\Omega \)

Figure 10
Typical switching times as a function of gate resistor
\[t = f(R_g) \]

With an inductive load at
- \(T_j = 125 ^\circ C \)
- \(V_{CE} = 350 \) V
- \(V_{sel} = \pm 15 \) V
- \(I_C = 100 \) A

Figure 11
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
- \(T_j = 25/125 ^\circ C \)
- \(V_{CE} = 350 \) V
- \(V_{sel} = \pm 15 \) V
- \(R_{ges} = 4 \) \(\Omega \)

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{gon}) \]

At
- \(T_j = 25/125 ^\circ C \)
- \(V_{CE} = 350 \) V
- \(I_f = 100 \) A
- \(V_{sel} = \pm 15 \) V
Neutral Point
Neutral Point IGBT and Half Bridge FWD

Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

![Graph showing typical reverse recovery charge](image)

At
\[T_j = 25/125 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{on} = 4 \, \Omega \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{on}) \]

![Graph showing typical reverse recovery charge](image)

At
\[T_j = 25/125 \, ^\circ\text{C} \]
\[V_{R} = 350 \, \text{V} \]
\[I_f = 100 \, \text{A} \]
\[V_{GE} = \pm 15 \, \text{V} \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

![Graph showing typical reverse recovery current](image)

At
\[T_j = 25/125 \, ^\circ\text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{on} = 4 \, \Omega \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{on}) \]

![Graph showing typical reverse recovery current](image)

At
\[T_j = 25/125 \, ^\circ\text{C} \]
\[V_{R} = 350 \, \text{V} \]
\[I_f = 100 \, \text{A} \]
\[V_{GE} = \pm 15 \, \text{V} \]
Neutral Point IGBT and Half Bridge FWD

Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI_f}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_F = 100 \) A
- \(R_{gon} = 4 \) Ω

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI_f}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(I_F = 100 \) A
- \(V_{GE} = \pm 15 \) V

Figure 19
IGBT transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
- \(D = t_p / T \)
- \(R_{thJH} = 0,99 \) K/W

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,08</td>
<td>6,3E+00</td>
</tr>
<tr>
<td>0,24</td>
<td>1,1E+00</td>
</tr>
<tr>
<td>0,52</td>
<td>2,8E-01</td>
</tr>
<tr>
<td>0,09</td>
<td>6,6E-02</td>
</tr>
<tr>
<td>0,55</td>
<td>1,3E-02</td>
</tr>
<tr>
<td>0,02</td>
<td>1,2E-03</td>
</tr>
</tbody>
</table>

Figure 20
FWD transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
- \(D = t_p / T \)
- \(R_{thJH} = 1,15 \) K/W

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05</td>
<td>4,9E+00</td>
</tr>
<tr>
<td>0,13</td>
<td>8,2E-01</td>
</tr>
<tr>
<td>0,59</td>
<td>1,8E-01</td>
</tr>
<tr>
<td>0,22</td>
<td>4,7E-02</td>
</tr>
<tr>
<td>0,10</td>
<td>7,8E-03</td>
</tr>
<tr>
<td>0,07</td>
<td>9,8E-04</td>
</tr>
</tbody>
</table>
Neutral Point
Neutral Point IGBT and Half Bridge FWD

Figure 21
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

Figure 22
Collector current as a function of heatsink temperature

\[I_C = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

Figure 23
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 150 \, ^\circ\text{C} \]

Figure 24
Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At
\[T_j = 150 \, ^\circ\text{C} \]
NP IGBT Inverse Diode

Figure 25
Typical diode forward current as a function of forward voltage
\[I_F = f(V_F) \]

![Graph showing typical diode forward current as a function of forward voltage.](image)

At
\[t_p = 250 \ \mu s \]

Figure 26
Diode transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

![Graph showing diode transient thermal impedance as a function of pulse width.](image)

At
\[D = \frac{t_p}{T} \]
\[R_{thH} = 3.43 \ \text{K/W} \]

Figure 27
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

![Graph showing power dissipation as a function of heatsink temperature.](image)

At
\[T_j = 175 \ ^\circ C \]

Figure 28
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

![Graph showing forward current as a function of heatsink temperature.](image)

At
\[T_j = 175 \ ^\circ C \]
Half Bridge Inverse Diode

Figure 1
Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At
\[t_p = 250 \mu s \]

Figure 2
Diode transient thermal impedance as a function of pulse width

\[Z_{th} = f(t_p) \]

At
\[D = \frac{t_p}{T}, \quad R_{th} = 2.24 \text{ K/W} \]

Figure 3
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

At
\[T_j = 150 ^\circ C \]

Figure 4
Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At
\[T_j = 150 ^\circ C \]
Thermistor

Figure 1: Typical NTC characteristic as a function of temperature

\[R_T = f(T) \]
Switching Definitions Half Bridge

General conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>4 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1
Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

$V_{CE}(0\%) = -15$ V
$V_{CE}(100\%) = 15$ V
$I_C(100\%) = 100$ A
$t_{doff} = 0.27$ µs
$t_{Eoff} = 0.64$ µs

Figure 2
Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

$V_{CE}(0\%) = -15$ V
$V_{CE}(100\%) = 15$ V
$I_C(100\%) = 700$ V
$I_C(100\%) = 100$ A
$t_{don} = 0.13$ µs
$t_{Eon} = 0.28$ µs

Figure 3
Turn-off Switching Waveforms & definition of t_f

$V_C (100\%) = 700$ V
$I_C (100\%) = 100$ A
$t_f = 0.06$ µs

Figure 4
Turn-on Switching Waveforms & definition of t_r

$V_C (100\%) = 700$ V
$I_C (100\%) = 100$ A
$t_r = 0.03$ µs
Switching Definitions Half Bridge

Figure 5 Half Bridge IGBT
Turn-off Switching Waveforms & definition of $t_{E\text{off}}$

$P_{\text{off}} (100\%) = 70,11$ kW
$E_{\text{off}} (100\%) = 4,19$ mJ
$t_{E\text{off}} = 0,64$ µs

Figure 6 Half Bridge IGBT
Turn-on Switching Waveforms & definition of $t_{E\text{on}}$

$P_{\text{on}} (100\%) = 70,11$ kW
$E_{\text{on}} (100\%) = 2,60$ mJ
$t_{E\text{on}} = 0,28$ µs

Figure 7 NP FWD
Turn-off Switching Waveforms & definition of t_{rr}

$V_d (100\%) = 700$ V
$I_d (100\%) = 100$ A
$I_{R\text{RM}} (100\%) = -113$ A
$t_{rr} = 0,11$ µs
Switching Definitions Half Bridge

Figure 8
Turn-on Switching Waveforms & definition of t_{Qrr}
($t_{Qrr} = \text{integrating time for } Q_{rr}$)

- I_d (100%) = 100 A
- Q_{rr} (100%) = 7.16 μC
- t_{Qrr} = 0.22 μs

Figure 9
Turn-on Switching Waveforms & definition of t_{Erec}
($t_{Erec} = \text{integrating time for } E_{rec}$)

- P_{rec} (100%) = 70.11 kW
- E_{rec} (100%) = 1.38 mJ
- t_{Erec} = 0.22 μs

Measurement circuits

Figure 10
BUCK stage switching measurement circuit
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste with solder pins</td>
<td>10-FY12NMA160SH01-M820F18</td>
<td>M820F</td>
<td>M820-F</td>
</tr>
<tr>
<td>without thermal paste with pressfit pins</td>
<td>10-PY12NMA160SH01-M820F18Y</td>
<td>M820FY</td>
<td>M820-FY</td>
</tr>
</tbody>
</table>

Outline

![Outline Diagram](image)

Pinout

![Pinout Diagram](image)

Low current connection
DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.