Maximum Ratings

$T_i = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{CES}</td>
<td>$T_i = T_{j(max)}$ $T_s = 80 , ^\circ\text{C}$</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_c</td>
<td>$T_i = T_{j(max)}$ $T_s = 80 , ^\circ\text{C}$</td>
<td>94</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CRM}</td>
<td>T_i limited by $T_{j(max)}$</td>
<td>600</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{j(max)}$ $T_s = 80 , ^\circ\text{C}$</td>
<td>145</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{GES}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{j(max)}$</td>
<td></td>
<td>175</td>
<td>^\circ\text{C}</td>
</tr>
</tbody>
</table>

Features

- NPC inverter topology
- Optimized for full rated bi-directional usage (4 quadrant)
- High-speed IGBT in all switch positions
- Integrated NTC
- Low inductive design with integrated DC capacitor
- flow 1 12mm package

Target applications

- Industrial Drives
- Solar Inverters
- UPS

Types

- 10-FY07NPA200SM02-L366F08
- 10-PY07NPA200SM02-L366F08Y
Maximum Ratings

\(T_j = 25 \, ^\circ C \), unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_s) (T_j = T_{j\max}) (T_s = 80 , ^\circ C)</td>
<td>107</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{FSM})</td>
<td></td>
<td>400</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{tot}) (T_j = T_{j\max}) (T_s = 80 , ^\circ C)</td>
<td>131</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{j\max})</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Out. Boost Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>(V_{CES})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>(I_C) (T_j = T_{j\max}) (T_s = 80 , ^\circ C)</td>
<td>94</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{FSM}) (t_p) limited by (T_{j\max})</td>
<td>600</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{tot}) (T_j = T_{j\max}) (T_s = 80 , ^\circ C)</td>
<td>145</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>(V_{GES})</td>
<td>±20</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{j\max})</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Out. Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_s) (T_j = T_{j\max}) (T_s = 80 , ^\circ C)</td>
<td>107</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{FSM})</td>
<td></td>
<td>400</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{tot}) (T_j = T_{j\max}) (T_s = 80 , ^\circ C)</td>
<td>131</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{j\max})</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Out. Boost Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_s) (T_j = T_{j\max}) (T_s = 80 , ^\circ C)</td>
<td>124</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{FSM})</td>
<td></td>
<td>400</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{tot}) (T_j = T_{j\max}) (T_s = 80 , ^\circ C)</td>
<td>164</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{j\max})</td>
<td></td>
<td>175</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>DC Link Capacitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum DC voltage</td>
<td>(V_{MAX})</td>
<td></td>
<td>500</td>
<td>V</td>
</tr>
<tr>
<td>Operation Temperature</td>
<td>(T_{op})</td>
<td>-55...+125</td>
<td>(^\circ C)</td>
<td></td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_i = 25 \degree C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{jop}</td>
<td></td>
<td>-40...(T_{jmax} - 25)</td>
<td>°C</td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>V_{isol}</td>
<td>DC Test Voltage* $t_p = 2$ s</td>
<td>6000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC Voltage $t_p = 1$ min</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min. 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td>solder pin \ press-fit pin</td>
<td>8.07 \ 7.86</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td></td>
<td>> 200</td>
<td></td>
</tr>
</tbody>
</table>

*100 % tested in production
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{GE} = V_{CE}$</td>
<td>0.002</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CE}</td>
<td>15</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CS}</td>
<td>0</td>
<td>650</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_g</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>$f = 1$ Mhz</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>$f = 1$ Mhz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_g</td>
<td>15</td>
<td>520</td>
<td>200</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>$\lambda = 3.4$ W/mK (PSX)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td>$R_{on} = 4$ Ω</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td>$R_{off} = 4$ Ω</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td>25</td>
<td>125</td>
<td>158</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td>25</td>
<td>125</td>
<td>7</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>$Q_{on} = 4.6$ μC</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>$Q_{off} = 9.1$ μC</td>
<td>25</td>
<td>125</td>
</tr>
</tbody>
</table>

Buck Switch

Static

- **Gate-emitter threshold voltage**
 \[V_{GE(th)} = V_{GE} = V_{CE} \]
 - Min: 0.002 V
 - Typ: 3.2 V
 - Max: 4 V
 - Units: V

- **Collector-emitter saturation voltage**
 \[V_{CE} \]
 - Min: 15 V
 - Typ: 200 V
 - Max: 150 V
 - Units: V

- **Collector-emitter cut-off current**
 \[I_{CS} \]
 - Min: 0 μA
 - Typ: 650 μA
 - Max: 250 μA
 - Units: μA

- **Gate-emitter leakage current**
 \[I_{GES} \]
 - Min: 20 nA
 - Typ: 0 nA
 - Max: 250 nA
 - Units: nA

- **Internal gate resistance**
 \[r_g \]
 - Min: none
 - Typ: |Val
 - Max: |Val
 - Units: Ω

- **Input capacitance**
 \[C_{in} \]
 - Min: 0 pF
 - Typ: 25 pF
 - Max: 13120 pF
 - Units: pF

- **Output capacitance**
 \[C_{out} \]
 - Min: 0 pF
 - Typ: 25 pF
 - Max: 194 pF
 - Units: pF

- **Reverse transfer capacitance**
 \[C_{res} \]
 - Min: 0 pF
 - Typ: 25 pF
 - Max: 42 pF
 - Units: pF

- **Gate charge**
 \[Q_g \]
 - Min: 15 pC
 - Typ: 520 pC
 - Max: 200 pC
 - Units: pC

Thermal

- **Thermal resistance junction to sink**
 \[R_{th(j-s)} = 3.4 \text{ W/mK (PSX)} \]
 - Min: 0.65 K/W
 - Typ: |Val
 - Max: |Val
 - Units: K/W

Dynamic

- **Turn-on delay time**
 \[t_{d(on)} \]
 - Min: 25 ns
 - Typ: 125 ns
 - Max: 67 ns

- **Rise time**
 \[t_r \]
 - Min: 25 ns
 - Typ: 125 ns
 - Max: 11 ns

- **Turn-off delay time**
 \[t_{d(off)} \]
 - Min: 25 ns
 - Typ: 125 ns
 - Max: 158 ns

- **Fall time**
 \[t_f \]
 - Min: 25 ns
 - Typ: 125 ns
 - Max: 7 ns

- **Turn-on energy (per pulse)**
 \[E_{on} \]
 - Min: 25 mWs
 - Typ: 125 mWs
 - Max: 1,101 mWs

- **Turn-off energy (per pulse)**
 \[E_{off} \]
 - Min: 25 mWs
 - Typ: 125 mWs
 - Max: 0.576 mWs
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td>200</td>
<td>1,65</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td>650</td>
<td>10,6</td>
<td>μA</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td>$0,73$</td>
<td>K/W</td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{rr}</td>
<td>$-5 / 15$</td>
<td>114</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_r</td>
<td>350</td>
<td>91</td>
<td>ns</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>Q_{rd}</td>
<td>$di/dt = 9293 A/μs$</td>
<td>$4,639$</td>
<td>μC</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td>$0,966$</td>
<td>mWs</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$(di/dt)_{max}$</td>
<td>25</td>
<td>3621</td>
<td>A/μs</td>
</tr>
</tbody>
</table>

Buck Diode

Static

- Forward voltage V_F
- Reverse leakage current I_R

Thermal

- Thermal resistance junction to sink $R_{th(j-s)}$
- Thermal paste $λ_{paste} = 3,4 W/mK$

Dynamic

- Peak recovery current I_{rr}
- Reverse recovery time t_r
- Recovered charge Q_{rd}
- Reverse recovered energy E_{rec}
- Peak rate of fall of recovery current $(di/dt)_{max}$
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V_{GE} [V]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{GS} [V]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_{D} [A]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_{F} [A]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{CE} [V]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_{j} [°C]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Out. Boost Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{CE} = 0$, 0,002</td>
<td>25</td>
<td>3,2</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td>15</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{BS}</td>
<td>0</td>
<td>650</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GE}</td>
<td>20</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_{g}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>$f = 1$ MHz</td>
<td>25</td>
<td>13120</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{os}</td>
<td>0</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>15</td>
<td>520</td>
<td>200</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>$h_{muc} = 3,4$ W/mK (PSX)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>$R_{son} = 4$ Ω</td>
<td>-5 / 15</td>
<td>350</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>$R_{sa} = 4$ Ω</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>$R_{sof} = 4$ Ω</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>25</td>
<td>125</td>
<td>7</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>$Q_{on} = 4,5$ μC</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>$Q_{off} = 9,2$ μC</td>
<td>25</td>
<td>125</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
</tbody>
</table>

Out. Boost Diode

Static

Forward voltage

- V_c
 - 200
 - 25
 - 125
 - 150
 - 1,65
 - 1,60
 - 1,58
 - 2,65
 - V

Reverse leakage current

- I_r
 - 650
 - 25
 - 10,6
 - µA

Thermal

Thermal resistance junction to sink

- R_{th}
 - $\lambda_{paste} = 3,4 \text{ W/mK}$
 - (PSX)
 - 0,73
 - K/W

Dynamic

Peak recovery current

- I_{rrm}
 - $-5 / 15$
 - 350
 - 120
 - 25
 - 125
 - 91
 - 129
 - A

Reverse recovery time

- t_{rr}
 - $di/dt = 6472 \text{ A/µs}$
 - $di/dt = 5169 \text{ A/µs}$
 - 25
 - 125
 - 70
 - 103
 - ns

Recovered charge

- Q_r
 - $di/dt = 6472 \text{ A/µs}$
 - $di/dt = 5169 \text{ A/µs}$
 - 25
 - 125
 - 4,495
 - 9,160
 - µC

Reverse recovered energy

- E_{rec}
 - $di/dt = 6472 \text{ A/µs}$
 - $di/dt = 5169 \text{ A/µs}$
 - 25
 - 125
 - 0,800
 - 1,676
 - mWs

Peak rate of fall of recovery current

- $(di/dt)_{max}$
 - $-5 / 15$
 - 350
 - 120
 - 25
 - 125
 - 2015
 - 1571
 - A/µs

Out. Boost Inverse Diode

Static

Forward voltage

- V_c
 - 200
 - 25
 - 125
 - 150
 - 1,77
 - 1,69
 - 1,66
 - 1,95
 - V

Reverse leakage current

- I_r
 - 650
 - 25
 - 2,4
 - µA

Thermal

Thermal resistance junction to sink

- R_{th}
 - $\lambda_{paste} = 3,4 \text{ W/mK}$
 - (PSX)
 - 0,58
 - K/W

DC Link Capacitor

Capacitance

- C
 - 300
 - nF

Tolerance

- $f = 1 \text{ kHz}$
 - -10
 - +10
 - %

Dissipation factor

- $f = 1 \text{ kHz}$
 - 25
 - 2,5
 - %
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{GE}</td>
<td>[V]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{GS}</td>
<td>[V]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CE}</td>
<td>[V]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{DS}</td>
<td>[V]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{F}</td>
<td>[V]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{C}</td>
<td>[A]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{D}</td>
<td>[A]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{F}</td>
<td>[A]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{j}</td>
<td>[$^\circ$C]</td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
</tbody>
</table>

Thermistor
- **Rated resistance**
 - $R_{25} = 22\, \text{k}\Omega$
- **Deviation of R_{100}**
 - $\Delta R/R_{100} = 1484\, \Omega$
 - $R_{100} = 100\, \Omega$
 - Min: -5%
 - Typ: 5%
- **Power dissipation**
 - $P_{25} = 5\, \text{mW}$
- **Power dissipation constant**
 - $P_{25} = 1.5\, \text{mW/K}$
- **B-value**
 - $B(25/50) = 3962\, \text{K}$
 - $B(25/100) = 4000\, \text{K}$
- **Vincotech NTC Reference**

Copyright Vincotech
Buck Switch Characteristics

figure 1.
Typical output characteristics

\[I_C = f(V_{CE}) \]

- \(t_p = 250 \ \mu s \)
- \(V_{CE} = 15 \ \text{V} \)
- \(T_j: \ 25^\circ \text{C} \)
- \(125^\circ \text{C} \)
- \(150^\circ \text{C} \)

figure 2.
Typical output characteristics

\[I_C = f(V_{GE}) \]

- \(t_p = 250 \ \mu s \)
- \(V_{GE} \) from \(7 \ \text{V} \) to \(17 \ \text{V} \) in steps of \(1 \ \text{V} \)
- \(T_j = 150^\circ \text{C} \)

figure 3.
Typical transfer characteristics

\[I_C = f(V_{GE}) \]

- \(t_p = 100 \ \mu s \)
- \(V_{CE} = 0 \ \text{V} \)
- \(T_j: \ 25^\circ \text{C} \)
- \(125^\circ \text{C} \)
- \(150^\circ \text{C} \)

figure 4.
Transient thermal impedance as function of pulse duration

\[Z_{th(j-s)} = f(t_p) \]

- \(D = t_p / T \)
- \(R_{00(i)} = 0.65 \ \text{K/W} \)

IGBT thermal model values

\[
\begin{array}{ccc}
R & T & A \\
\text{K/W} & \text{s} & \text{K/W} \\
7,51E-02 & 3,22E+00 & 1,27E-01 & 5,1E+00 \\
3,27E-01 & 1,11E-01 & 7,19E-02 & 2,69E-02 \\
3,44E-02 & 6,17E-03 & 1,81E-02 & 5,82E-04 \\
\end{array}
\]
Buck Switch Characteristics

figure 5.
Gate voltage vs gate charge

\[V_{GE} = f(Q_G) \]

- \(V_{GE} \): Gate voltage
- \(Q_G \): Gate charge

figure 6.
Safe operating area

- \(I_C \): Collector current
- \(V_{CE} \): Collector-emitter voltage

Conditions:
- \(I_C = 200 \) A
- \(D = \) single pulse
- \(T_j = 80 \) °C
- \(V_{GE} = \pm 15 \) V
- \(T_j = T_{jmax} \)
Buck Diode Characteristics

Typical forward characteristics

$\text{I}_F = f(\text{V}_F)$

Transient thermal impedance as a function of pulse width

$\text{Z}_\text{th}(\text{t}_\text{p}) = f(\text{t}_\text{p})$

$t_p = 250 \mu s$

$\text{D} = \frac{t_p}{\text{T}}$

$R_{\text{th(j-s)}} = 0.73 \text{ K/W}$

$R_{\text{th}} \text{(K/W)}$

$\tau \text{(s)}$

8.64E-02 3.05E+00
1.38E-01 6.75E-01
3.34E-01 1.25E-01
1.06E-01 3.99E-02
4.34E-02 6.89E-03
1.90E-02 7.34E-04

V_j: 0 100 200 300 400 500

I_F (A)

V_F (V)
Out. Boost Switch Characteristics

Figure 1. IGBT
Typical output characteristics
$I_C = f(V_{CE})$

<table>
<thead>
<tr>
<th>V_{CE} (V)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_C (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$t_p = 250 \, \mu s$
$V_{CE} = 15 \, V$
$T_j: 25 \degree C$
$125 \degree C$
$150 \degree C$

Figure 2. IGBT
Typical output characteristics
$I_C = f(V_{CE})$

<table>
<thead>
<tr>
<th>V_{CE} (V)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_C (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$t_p = 250 \, \mu s$
V_{CE} from 7 V to 17 V in steps of 1 V
$T_j: 150 \degree C$

Figure 3. IGBT
Typical transfer characteristics
$I_C = f(V_{GE})$

<table>
<thead>
<tr>
<th>V_{GE} (V)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_C (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$t_p = 100 \, \mu s$
$V_{CE} = 0 \, V$
$T_j: 25 \degree C$
$125 \degree C$
$150 \degree C$

Figure 4. IGBT
Transient thermal impedance as function of pulse duration
$Z_{th}(j-s) = f(t_p)$

<table>
<thead>
<tr>
<th>t_p (s)</th>
<th>10^{-3}</th>
<th>10^{-2}</th>
<th>10^{-1}</th>
<th>10^{0}</th>
<th>10^{1}</th>
<th>10^{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_{th}(K/W)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

datasheet

Copyright Vincotech
Out. Boost Switch Characteristics

figure 5. IGBT Gate voltage vs gate charge

\[V_G = f(Q_G) \]

\[I_C = f(V_{CE}) \]

- \(I_C = 200 \, \text{A} \)
- \(D = \) single pulse
- \(T_s = 80 \, ^\circ\text{C} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(T_j = T_{jmax} \)

figure 6. IGBT Safe operating area

\[I_C = f(V_{CE}) \]
Out. Boost Diode Characteristics

Figure 1. Typical forward characteristics

\[I_F = f(V_F) \]

Figure 2. Transient thermal impedance as a function of pulse width

\[Z_{th}(t_p) = f(t_p) \]

- \(t_p = 250 \mu s \)
- \(25 \, ^\circ C \)
- \(125 \, ^\circ C \)
- \(150 \, ^\circ C \)

<table>
<thead>
<tr>
<th>D = (t_p / T)</th>
<th>(R_{th}(K/W))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>8.64E-02</td>
</tr>
<tr>
<td>0.01</td>
<td>1.38E-01</td>
</tr>
<tr>
<td>0.02</td>
<td>3.34E-01</td>
</tr>
<tr>
<td>0.05</td>
<td>1.06E-01</td>
</tr>
<tr>
<td>0.1</td>
<td>4.34E-02</td>
</tr>
<tr>
<td>0.2</td>
<td>1.90E-02</td>
</tr>
<tr>
<td>0.5</td>
<td>3.05E+00</td>
</tr>
<tr>
<td>1.0</td>
<td>6.75E-01</td>
</tr>
<tr>
<td>2.0</td>
<td>1.25E-01</td>
</tr>
<tr>
<td>5.0</td>
<td>3.99E-02</td>
</tr>
</tbody>
</table>

- \(\tau = 3.05E+00 \) s
- \(1.38E-01 \) s
- \(3.34E-01 \) s
- \(1.06E-01 \) s
- \(4.34E-02 \) s
Out. Boost Inverse Diode Characteristics

figure 1.
FWD
Typical forward characteristics

\[I_F = f(V_F) \]

\[T_i: \begin{align*}
25 \, ^\circ C & \quad \text{dotted} \\
125 \, ^\circ C & \quad \text{solid} \\
150 \, ^\circ C & \quad \text{dashed}
\end{align*} \]

\[t_p = 250 \, \mu s \]

figure 2.
FWD
Transient thermal impedance as a function of pulse width

\[Z_{th}(j\omega) = f(t_p) \]

\[D = \frac{t_p}{T} \]

Thermistor Characteristics

figure 1.
Thermistor
Typical NTC characteristic as a function of temperature

\[R = f(T) \]

\[R \, (\Omega): \begin{align*}
25,000 & \quad \text{at} \ 25 \, ^\circ C \\
20,000 & \quad \text{at} \ 50 \, ^\circ C \\
15,000 & \quad \text{at} \ 75 \, ^\circ C \\
10,000 & \quad \text{at} \ 100 \, ^\circ C \\
5,000 & \quad \text{at} \ 125 \, ^\circ C
\end{align*} \]
Buck Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(V_{in} = 350 \text{ V} \)
- \(T_J = 25 \text{ °C} \)
- \(T_J = 125 \text{ °C} \)
- \(R_{rson} = 4 \text{ Ω} \)
- \(I_C = 120 \text{ A} \)

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at

- \(V_{in} = 350 \text{ V} \)
- \(V_{in} = -5 / 15 \text{ V} \)
- \(R_{goff} = 4 \text{ Ω} \)
- \(I_C = 120 \text{ A} \)

Figure 3. FWD
Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(V_{in} = 350 \text{ V} \)
- \(T_J = 25 \text{ °C} \)
- \(T_J = 125 \text{ °C} \)
- \(R_{rson} = 4 \text{ Ω} \)
- \(I_C = 120 \text{ A} \)

Figure 4. FWD
Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at

- \(V_{in} = 350 \text{ V} \)
- \(V_{in} = -5 / 15 \text{ V} \)
- \(R_{goff} = 4 \text{ Ω} \)
- \(I_C = 120 \text{ A} \)
Buck Switching Characteristics

Figure 5. IGBT

Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(T_J = 125 \, ^\circ\text{C} \)
- \(V_C = 350 \, \text{V} \)
- \(V_{GE} = -5 / 15 \, \text{V} \)
- \(R_{ON} = 4 \, \Omega \)
- \(R_{OFF} = 4 \, \Omega \)

Figure 6. IGBT

Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at

- \(T_J = 125 \, ^\circ\text{C} \)
- \(V_C = 350 \, \text{V} \)
- \(V_{GE} = -5 / 15 \, \text{V} \)
- \(I_C = 120 \, \text{A} \)

Figure 7. FWD

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

With an inductive load at

- \(T_J = 25 \, ^\circ\text{C} \)
- \(V_C = 350 \, \text{V} \)
- \(V_{GE} = -5 / 15 \, \text{V} \)
- \(R_{ON} = 4 \, \Omega \)

Figure 8. FWD

Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{ON}) \]

With an inductive load at

- \(T_J = 25 \, ^\circ\text{C} \)
- \(V_C = 350 \, \text{V} \)
- \(V_{GE} = -5 / 15 \, \text{V} \)
- \(I_C = 120 \, \text{A} \)
Buck Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

With an inductive load at
- \(V_{CC} = 350 \text{ V} \)
- \(V_{IN} = -5 / 15 \text{ V} \)
- \(R_{gon} = 4 \Omega \)

Temperature ranges:
- \(T_j = 25 \text{ °C} \)
- \(T_j = 125 \text{ °C} \)

Figure 10. FWD
Typical recovered charge as a function of IGBT turn on gate resistor

\[Q_r = f(R_{oon}) \]

With an inductive load at
- \(V_{CC} = 350 \text{ V} \)
- \(V_{IN} = -5 / 15 \text{ V} \)
- \(I_C = 120 \text{ A} \)

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

With an inductive load at
- \(V_{CC} = 350 \text{ V} \)
- \(V_{IN} = -5 / 15 \text{ V} \)
- \(R_{gon} = 4 \Omega \)

Figure 12. FWD
Typical peak reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RM} = f(R_{oon}) \]

With an inductive load at
- \(V_{CC} = 350 \text{ V} \)
- \(V_{IN} = -5 / 15 \text{ V} \)
- \(I_C = 120 \text{ A} \)
Buck Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dV}{dt}, \frac{dV_t}{dt} = f(I_C) \]

With an inductive load at
- \(V_{CE} = 350 \text{ V} \)
- \(T_J = 25 \text{ °C} \)
- \(V_{IN} = -5 / 15 \text{ V} \)
- \(R_{gon} = 4 \text{ Ω} \)

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dV}{dt}, \frac{dV_t}{dt} = f(R_{gon}) \]

With an inductive load at
- \(V_{CE} = 350 \text{ V} \)
- \(T_J = 25 \text{ °C} \)
- \(V_{IN} = -5 / 15 \text{ V} \)
- \(I_C = 120 \text{ A} \)

Figure 15. IGBT
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At
- \(T_J = 125 \text{ °C} \)
- \(R_{pm} = 4 \text{ Ω} \)
- \(R_{goff} = 4 \text{ Ω} \)
Buck Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{son}</td>
<td>4 Ω</td>
</tr>
<tr>
<td>R_{goff}</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Turn-off Switching Waveforms & definition of t_{doff} and t_{Eoff}

- **V_{CE}** (0%) = -5 V
- **V_{CE}** (100%) = 15 V
- **I_C** (100%) = 120 A
- t_{Eoff} = 174 ns

Turn-on Switching Waveforms & definition of t_{don} and t_{Eon}

- **V_{CE}** (100%) = 350 V
- **V_{CE}** (90%) = 350 V
- **I_C** (100%) = 120 A
- t_{Eon} = 66 ns

Switching characteristics

<table>
<thead>
<tr>
<th>Condition</th>
<th>V_{CE} (%)</th>
<th>I_C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>350 V</td>
<td>10%</td>
</tr>
<tr>
<td>90%</td>
<td>350 V</td>
<td>90%</td>
</tr>
<tr>
<td>60%</td>
<td>350 V</td>
<td>60%</td>
</tr>
<tr>
<td>40%</td>
<td>350 V</td>
<td>40%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>V_{CE} (%)</th>
<th>I_C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>350 V</td>
<td>10%</td>
</tr>
<tr>
<td>90%</td>
<td>350 V</td>
<td>90%</td>
</tr>
<tr>
<td>60%</td>
<td>350 V</td>
<td>60%</td>
</tr>
<tr>
<td>40%</td>
<td>350 V</td>
<td>40%</td>
</tr>
</tbody>
</table>

Figures

- **Figure 1:** IGBT
- **Figure 2:** IGBT
- **Figure 3:** IGBT
- **Figure 4:** IGBT
Buck Switching Characteristics

Figure 5. Turn-off Switching Waveforms & definition of \(t_{Qr} \)

<table>
<thead>
<tr>
<th>%</th>
<th>(t_{tr})</th>
<th>(t_{rr})</th>
<th>(t_{t})</th>
</tr>
</thead>
<tbody>
<tr>
<td>33%</td>
<td>(V_F)</td>
<td>(I_F)</td>
<td>(I_r)</td>
</tr>
<tr>
<td>(V_F) (100%)</td>
<td>350 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_F) (100%)</td>
<td>120 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_r) (100%)</td>
<td>160 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{rr})</td>
<td>91 ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6. Turn-on Switching Waveforms & definition of \(t_{Qr} \) (integrating time for \(Q_r \))

<table>
<thead>
<tr>
<th>%</th>
<th>(t_{tr})</th>
<th>(t_{rr})</th>
<th>(t_{Qr})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>(I_F)</td>
<td>(Q_r)</td>
<td>(t_{Qr})</td>
</tr>
<tr>
<td>(I_F) (100%)</td>
<td>120 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Q_r) (100%)</td>
<td>9.11 (\mu)C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Boost Switching Characteristics

Figure 1. IGBT

Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(V_{CC} = 350 \text{ V} \)
- \(V_{CC} = -5 / 15 \text{ V} \)
- \(R_{gon} = 4 \text{ } \Omega \)
- \(I_C = 120 \text{ A} \)

Figure 2. IGBT

Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at

- \(V_{CC} = 350 \text{ V} \)
- \(V_{CC} = -5 / 15 \text{ V} \)
- \(I_C = 120 \text{ A} \)

Figure 3. FWD

Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(V_{CC} = 350 \text{ V} \)
- \(V_{CC} = -5 / 15 \text{ V} \)
- \(R_{gon} = 4 \text{ } \Omega \)

Figure 4. FWD

Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at

- \(V_{CC} = 350 \text{ V} \)
- \(V_{CC} = -5 / 15 \text{ V} \)
- \(I_C = 120 \text{ A} \)
Boost Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

\[t = f(I_C) \]

- With an inductive load at
 - \(T_J = 125 \, ^\circ C \)
 - \(V_{CE} = 350 \, V \)
 - \(V_{GSS} = -5 / 15 \, V \)
 - \(R_{gon} = 4 \, \Omega \)
 - \(I_C = 120 \, A \)

Figure 6. IGBT
Typical switching times as a function of gate resistor

\[t = f(R_g) \]

- With an inductive load at
 - \(T_J = 125 \, ^\circ C \)
 - \(V_{CE} = 350 \, V \)
 - \(V_{GSS} = -5 / 15 \, V \)
 - \(I_C = 120 \, A \)

Figure 7. FWD
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

- With an inductive load at
 - \(T_J = 25 \, ^\circ C \)
 - \(V_{CE} = 350 \, V \)
 - \(V_{GSS} = -5 / 15 \, V \)
 - \(R_{gon} = 4 \, \Omega \)

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

- With an inductive load at
 - \(T_J = 25 \, ^\circ C \)
 - \(V_{CE} = 350 \, V \)
 - \(V_{GSS} = -5 / 15 \, V \)
 - \(I_C = 120 \, A \)
Boostr Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

![Graph showing Qr as a function of IC with IC values on the x-axis and Qr values on the y-axis.]

With an inductive load at
- Vcc = 350 V
- VCE = -5/15 V
- Rgon = 4 Ω

At 25 °C

Figure 10. FWD
Typical recovered charge as a function of IGBT turn on gate resistor

![Graph showing Qr as a function of Rgon with Rgon values on the x-axis and Qr values on the y-axis.]

With an inductive load at
- Vcc = 350 V
- VCE = -5/15 V
- Ic = 120 A

At 25 °C

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

![Graph showing IrM as a function of IC with IC values on the x-axis and IrM values on the y-axis.]

With an inductive load at
- Vcc = 350 V
- VCE = -5/15 V
- Rgon = 4 Ω

At 25 °C

Figure 12a. FWD
Typical peak reverse recovery current as a function of IGBT turn on gate resistor

![Graph showing IrM as a function of Rgon with Rgon values on the x-axis and IrM values on the y-axis.]

With an inductive load at
- Vcc = 350 V
- VCE = -5/15 V
- Ic = 120 A

At 25 °C
Boost Switching Characteristics

Figure 13. FWD

Typical rate of fall of forward and reverse recovery current as a function of collector current

$$\frac{d}{dt}I_F, \frac{d}{dt}I_{Rr} = f(I_C)$$

With an inductive load at $V_{CE}=350\,V$, $T_j=25\,C$

$V_{Gm}=\pm 5 / 15\,V$

$R_{gon}=4\,\Omega$

Figure 14. FWD

Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

$$\frac{d}{dt}I_F, \frac{d}{dt}I_{Rr} = f(R_{gon})$$

With an inductive load at $V_{CE}=350\,V$, $T_j=125\,C$

$V_{Gm}=\pm 5 / 15\,V$

$I_C=120\,A$

Figure 15. IGBT

Reverse bias safe operating area

$I_c=f(V_{CE})$

$T_j=125\,C$

$R_{gm}=4\,\Omega$

$R_{goff}=4\,\Omega$
Boost Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>4 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1:
Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff} (t_{Eoff} is integrating time for E_{off}).

- $V_{GE}(0\%) = -5$ V
- $V_{CE}(0\%) = 15$ V
- $I_C(100\%) = 120$ A
- $t_{doff} = 171$ ns

Figure 2:
Turn-on Switching Waveforms & definition of t_{don}, t_{Eon} (t_{Eon} is integrating time for E_{on}).

- $V_{GE}(100\%) = 15$ V
- $V_{CE}(100\%) = 350$ V
- $I_C(10\%) = 120$ A
- $t_{don} = 62$ ns

Figure 3:
Turn-off Switching Waveforms & definition of t_f.

- $V_{CE}(1\%) = 350$ V
- $I_C(10\%) = 120$ A
- $t_f = 12$ ns

Figure 4:
Turn-on Switching Waveforms & definition of t_r.

- $V_{CE}(1\%) = 350$ V
- $I_C(10\%) = 120$ A
- $t_r = 14$ ns
Boost Switching Characteristics

Figure 5. Turn-off Switching Waveforms & definition of t_{rr}

- $V_F(100\%) = 350\ V$
- $I_F(100\%) = 120\ A$
- $I_{Fmax}(100\%) = 129\ A$
- $t_{rr} = 103\ \text{ns}$

Figure 6. Turn-on Switching Waveforms & definition of Q_r (t_{Qr} = integrating time for Q_r)

- $I_r(100\%) = 120\ A$
- $Q_r(100\%) = 9,16\ \mu\text{C}$
10-FY07NPA200SM02-L366F08 / 10-PY07NPA200SM02-L366F08Y datasheet

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12mm housing with solder pins</td>
<td>10-FY07NPA200SM02-L366F08</td>
</tr>
<tr>
<td>with thermal paste 12mm housing with solder pins</td>
<td>10-FY07NPA200SM02-L366F08Y</td>
</tr>
<tr>
<td>with thermal paste 12mm housing with press-fit pins</td>
<td>10-FY07NPA200SM02-L366F08Y/3/</td>
</tr>
</tbody>
</table>

Datamatrix

<table>
<thead>
<tr>
<th>Text</th>
<th>Name</th>
<th>Date code</th>
<th>UL & VIN</th>
<th>Lot</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL & VIN WWYY</td>
<td>UL & VIN LLLLL</td>
<td>Serial SSSS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outline

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52,2</td>
<td>6,9</td>
<td>Therm1</td>
</tr>
<tr>
<td>2</td>
<td>52,2</td>
<td>0</td>
<td>Therm2</td>
</tr>
<tr>
<td>3</td>
<td>36,2</td>
<td>6,75</td>
<td>S4</td>
</tr>
<tr>
<td>4</td>
<td>33,2</td>
<td>7,9</td>
<td>G14</td>
</tr>
<tr>
<td>5</td>
<td>33,2</td>
<td>4,9</td>
<td>G18</td>
</tr>
<tr>
<td>6</td>
<td>9,2</td>
<td>5,75</td>
<td>S2</td>
</tr>
<tr>
<td>7</td>
<td>6,2</td>
<td>6,9</td>
<td>G12</td>
</tr>
<tr>
<td>8</td>
<td>6,2</td>
<td>3,9</td>
<td>G16</td>
</tr>
<tr>
<td>9</td>
<td>2,7</td>
<td>0</td>
<td>DC-</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>DC-</td>
</tr>
<tr>
<td>11</td>
<td>2,7</td>
<td>2,7</td>
<td>DC-</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>2,7</td>
<td>DC-</td>
</tr>
<tr>
<td>13</td>
<td>2,7</td>
<td>5,4</td>
<td>DC-</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>5,4</td>
<td>DC-</td>
</tr>
<tr>
<td>15</td>
<td>2,7</td>
<td>12,75</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>12,75</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>2,7</td>
<td>15,45</td>
<td>GND</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>15,45</td>
<td>GND</td>
</tr>
<tr>
<td>19</td>
<td>2,7</td>
<td>22,8</td>
<td>DC+</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>22,8</td>
<td>DC+</td>
</tr>
<tr>
<td>21</td>
<td>2,7</td>
<td>25,5</td>
<td>DC+</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>25,5</td>
<td>DC+</td>
</tr>
<tr>
<td>23</td>
<td>2,7</td>
<td>28,2</td>
<td>DC+</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>28,2</td>
<td>DC+</td>
</tr>
<tr>
<td>25</td>
<td>18,3</td>
<td>22,45</td>
<td>S1</td>
</tr>
<tr>
<td>26</td>
<td>21,3</td>
<td>21,3</td>
<td>G15</td>
</tr>
<tr>
<td>27</td>
<td>21,3</td>
<td>24,3</td>
<td>G11</td>
</tr>
<tr>
<td>28</td>
<td>43</td>
<td>22,15</td>
<td>S3</td>
</tr>
<tr>
<td>29</td>
<td>46</td>
<td>21</td>
<td>G17</td>
</tr>
<tr>
<td>30</td>
<td>46</td>
<td>24</td>
<td>G13</td>
</tr>
<tr>
<td>31</td>
<td>52,2</td>
<td>20,1</td>
<td>Ph</td>
</tr>
<tr>
<td>32</td>
<td>49,5</td>
<td>22,8</td>
<td>Ph</td>
</tr>
<tr>
<td>33</td>
<td>52,2</td>
<td>22,8</td>
<td>Ph</td>
</tr>
<tr>
<td>34</td>
<td>49,5</td>
<td>25,5</td>
<td>Ph</td>
</tr>
<tr>
<td>35</td>
<td>52,2</td>
<td>25,5</td>
<td>Ph</td>
</tr>
<tr>
<td>36</td>
<td>49,5</td>
<td>28,2</td>
<td>Ph</td>
</tr>
<tr>
<td>37</td>
<td>52,2</td>
<td>28,2</td>
<td>Ph</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Pinout

<table>
<thead>
<tr>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11, T12, T15, T16</td>
<td>650V</td>
<td>100A</td>
<td>IGBT</td>
<td>Buck Switch</td>
</tr>
<tr>
<td>D11, D12</td>
<td>650V</td>
<td>200A</td>
<td>FWD</td>
<td>Buck Diode</td>
</tr>
<tr>
<td>T13, T14, T17, T18</td>
<td>650V</td>
<td>100A</td>
<td>IGBT</td>
<td>Out. Boost Switch</td>
</tr>
<tr>
<td>D13, D14, D17, D18</td>
<td>650V</td>
<td>100A</td>
<td>FWD</td>
<td>Out. Boost Diode</td>
</tr>
<tr>
<td>D43, D44, D47, D48</td>
<td>650V</td>
<td>100A</td>
<td>FWD</td>
<td>Out. Boost Inverse Diode</td>
</tr>
<tr>
<td>C1, C2</td>
<td>630V</td>
<td>-</td>
<td>Capacitor</td>
<td>DC Link Capacitor</td>
</tr>
<tr>
<td>Rt</td>
<td>NTC</td>
<td>-</td>
<td>-</td>
<td>Thermistor</td>
</tr>
</tbody>
</table>
Packaging instruction

<table>
<thead>
<tr>
<th>Standard packaging quantity (SPQ)</th>
<th>>SPQ</th>
<th>Standard</th>
<th><SPQ</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Handling instruction

Handling instructions for if no series packaging available packages see vincotech.com website.

Package data

Package data for if no series packaging available packages see vincotech.com website.

UL recognition and file number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.