Maximum Ratings

\(T = 25 \, ^\circ C \), unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>(V_{CE})</td>
<td>(T_j = T_{j_{max}}), (T_s = 80 , ^\circ C)</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>(I_c)</td>
<td>(T_j = T_{j_{max}}), (T_s = 80 , ^\circ C)</td>
<td>118</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{PK})</td>
<td>(T_j = T_{j_{max}})</td>
<td>800</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{DD})</td>
<td>(T_j = T_{j_{max}}), (T_s = 80 , ^\circ C)</td>
<td>171</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>(V_{GE})</td>
<td>(T_j = T_{j_{max}})</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{j_{max}})</td>
<td>(T_j = T_{j_{max}})</td>
<td>175</td>
<td>^\circ C</td>
</tr>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>(V_{RRM})</td>
<td>(T_j = T_{j_{max}})</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_F)</td>
<td>(T_j = T_{j_{max}}), (T_s = 80 , ^\circ C)</td>
<td>95</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{PK})</td>
<td>(T_j = T_{j_{max}})</td>
<td>640</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{DD})</td>
<td>(T_j = T_{j_{max}}), (T_s = 80 , ^\circ C)</td>
<td>123</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{j_{max}})</td>
<td>(T_j = T_{j_{max}})</td>
<td>175</td>
<td>^\circ C</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_j = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out. Boost Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{CES}</td>
<td>$T_j = T_{j_{\text{max}}}$</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_C</td>
<td>$T_j = T_{j_{\text{max}}}$</td>
<td>104</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{PEAK}</td>
<td>t_s limited by $T_{j_{\text{max}}}$</td>
<td>640</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j_{\text{max}}}$</td>
<td>159</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{GES}</td>
<td></td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>$V_{ds} = 15 , \text{V}$, $V_{cc} = 360 , \text{V}$</td>
<td>2</td>
<td>μs</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{j_{\text{max}}}$</td>
<td></td>
<td>175</td>
<td>$^\circ\text{C}$</td>
</tr>
<tr>
<td>Out. Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$T_j = T_{j_{\text{max}}}$</td>
<td>79</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FRM}</td>
<td></td>
<td>400</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j_{\text{max}}}$</td>
<td>108</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{j_{\text{max}}}$</td>
<td></td>
<td>175</td>
<td>$^\circ\text{C}$</td>
</tr>
<tr>
<td>Out. Boost Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>I_F</td>
<td>$T_j = T_{j_{\text{max}}}$</td>
<td>79</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FRM}</td>
<td></td>
<td>400</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{j_{\text{max}}}$</td>
<td>108</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{j_{\text{max}}}$</td>
<td></td>
<td>175</td>
<td>$^\circ\text{C}$</td>
</tr>
<tr>
<td>Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>$^\circ\text{C}$</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>$T_{j_{op}}$</td>
<td>$T_j = T_{j_{\text{max}}}$</td>
<td>-40...($T_{j_{\text{max}}}$ - 25)</td>
<td>$^\circ\text{C}$</td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>V_{isol}</td>
<td>$t_p = 2 , \text{s}$</td>
<td>6000</td>
<td>V</td>
</tr>
<tr>
<td>AC Voltage</td>
<td>$c_i = 1 , \text{min}$</td>
<td></td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td>min. 12,7</td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td>solder pin \ press-fit pin</td>
<td>8,07 \ 7,86</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td>> 200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*100 % tested in production
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td>15</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CEO}</td>
<td>0</td>
<td>650</td>
<td>25</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td>30</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>15</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>$λ_{paste} = 3,4 , \text{W/mK}$</td>
<td>(PSX)</td>
<td>0,56</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{(on)}$</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>$R_{gs} = 4 , \Omega$</td>
<td>$R_{ds} = 4 , \Omega$</td>
<td>25</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{(off)}$</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>$\Theta_{PEAK} = 6,5 , \mu C$</td>
<td>$\Theta_{PEAK} = 9,7 , \mu C$</td>
<td>$\Theta_{PEAK} = 11 , \mu C$</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>25</td>
<td>125</td>
<td>150</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td>160</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_L</td>
<td>650</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$\theta_{th(j-s)}$</td>
<td>λ paste = 3.4 W/mK (PSX)</td>
<td>0,77</td>
<td>K/W</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{RRM}</td>
<td>-5 / 15</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>τ_r</td>
<td>350</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>Q_r</td>
<td>-5 / 15</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>25</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$(di/dt)_{max}$</td>
<td>25</td>
<td></td>
<td>125</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGE</td>
<td>[V]</td>
<td>5</td>
<td>0,1142</td>
<td>25</td>
</tr>
<tr>
<td>VGS</td>
<td>[V]</td>
<td>15</td>
<td>160</td>
<td>125</td>
</tr>
<tr>
<td>VCE</td>
<td>[V]</td>
<td>15</td>
<td>25</td>
<td>650</td>
</tr>
<tr>
<td>VDS</td>
<td>[V]</td>
<td>30</td>
<td>0</td>
<td>400</td>
</tr>
<tr>
<td>IF</td>
<td>[A]</td>
<td>15</td>
<td>400</td>
<td>160</td>
</tr>
<tr>
<td>Tj</td>
<td>°C</td>
<td>0</td>
<td>1,69</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>25</td>
<td>1,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>125</td>
<td>1,962</td>
</tr>
</tbody>
</table>

Out. Boost Switch

Static
- **Gate-emitter threshold voltage**: $V_{GE(th)} = 5 \leq 0,1142 \leq 7$ V
- **Collector-emitter saturation voltage**: $V_{CEsat} = 15 \leq 1,65 \leq 1,9$ V
- **Collector-emitter cut-off current**: $I_{CEO} = 650 \leq 20 \mu A$
- **Gate-emitter leakage current**: $I_{GE} = 30 \leq 400 \mu A$
- **Internal gate resistance**: $r_g = \text{none}$ Ω
- **Input capacitance**: $C_{GS, f = 1 \text{ MHz}} = 368$ pF
- **Output capacitance**: $C_{CO} = 158$ nF
- **Gate charge**: $Q_{g} = 15 \leq 400 \leq 160 \leq 25 \leq 342$ nC
- **Reverse transfer capacitance**: $C_{res} = 158$ nF

Dynamic
- **Turn-on delay time**: $t_{on} = 25 \leq 85$ ns
- **Rise time**: $t_{r} = 25 \leq 165$ ns
- **Turn-off delay time**: $t_{off} = 25 \leq 85$ ns
- **Fall time**: $t_{f} = 25 \leq 49$ ns
- **Turn-on energy (per pulse)**: $E_{on} = 25 \leq 1,293 \text{ mWs}$
- **Turn-off energy (per pulse)**: $E_{off} = 25 \leq 1,962 \text{ mWs}$
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
</table>

Out. Boost Diode

Static

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td></td>
<td>100</td>
<td>1.51</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td></td>
<td>650</td>
<td>20</td>
</tr>
</tbody>
</table>

Thermal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td>0.88</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Dynamic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak recovery current</td>
<td>I_{RPM}</td>
<td></td>
<td>25</td>
<td>171</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td></td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>Q_r</td>
<td></td>
<td>25</td>
<td>4,995</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td>25</td>
<td>1,060</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$(di/dt)_{max}$</td>
<td></td>
<td>25</td>
<td>6385</td>
</tr>
</tbody>
</table>

Out. Boost Inverse Diode

Static

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td></td>
<td>100</td>
<td>1.51</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_R</td>
<td></td>
<td>650</td>
<td>20</td>
</tr>
</tbody>
</table>

Thermal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td></td>
<td>0.88</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V_{GE} [V]</td>
<td>V_{GS} [V]</td>
<td>I_a [A]</td>
</tr>
<tr>
<td>V_{CE} [V]</td>
<td>I_d [A]</td>
<td>I_f [A]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermistor</td>
<td>R</td>
<td>R_{25}</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>ΔR_{100}</td>
<td>R_{25} = 1484 Ω</td>
<td>100</td>
<td>-5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>25</td>
<td>5</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>$P_{25/50}$</td>
<td>25</td>
<td>1,5</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{25/50}$</td>
<td>Tol. ±1 %</td>
<td>25</td>
<td>3962</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{25/100}$</td>
<td>Tol. ±1 %</td>
<td>25</td>
<td>4000</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Buck Switch Characteristics

Figure 1.
Typical output characteristics

\[I_C = f(V_{CE}) \]

- \(I_p = 250 \mu s \)
- \(V_{CES} = 15 \) V
- \(T_j: 25 \) °C
- \(V_{CES} = 150 \) °C

Figure 2.
Typical output characteristics

\[I_C = f(V_{GE}) \]

- \(I_p = 250 \mu s \)
- \(V_{GE} \) from 7 V to 17 V in steps of 1 V
- \(T_j: 150 \) °C
- \(V_{GE} = 15 \) V

Figure 3.
Typical transfer characteristics

\[I_C = f(V_{GE}) \]

- \(I_p = 100 \mu s \)
- \(V_{CES} = 10 \) V
- \(T_j: 25 \) °C
- \(V_{CES} = 150 \) °C

Figure 4.
Transient thermal impedance as function of pulse duration

\[Z_{th(j-s)} = f(t_p) \]

- \(D = \frac{I_p}{T} \)
- \(R_{th(j-s)} = 0,56 \) K/W
- \(T \) (s)
 - 6,25E-02: 4,60E+00
 - 9,27E-02: 1,18E+00
 - 1,98E-01: 1,90E-01
 - 1,40E-01: 5,31E-02
 - 4,05E-02: 8,08E-03
 - 2,15E-02: 5,71E-04

\(T_j: \)
- 0
- 50
- 100
- 150
- 200

\(V_{GE}: \)
- 7 V
- 8 V
- 9 V
- 10 V
- 11 V
- 12 V
- 13 V
- 14 V
- 15 V
- 16 V
- 17 V

\(I_C (A): \)
- 0
- 100
- 200
- 300
- 400
- 500
- 600

\(V_{CE} (V): \)
- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9

\(Z_{th (K/W)} (s): \)
- 10^{-3}
- 10^{-2}
- 10^{-1}
- 10^{0}
- 10^{1}
- 10^{2}
- 10^{3}
- 10^{4}
- 10^{5}
- 10^{6}
- 10^{7}

Copyright Vincotech

07 Jan. 2019 / Revision 1
Buck Switch Characteristics

Figure 5. IGBT Safe operating area

\(I_c = f(V_{CE}) \)

- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{GE} = 0 \) V
- \(T_j = T_{\text{max}} \)
Buck Diode Characteristics

Figure 1: Typical forward characteristics

\[I_F = f(V_F) \]

Figure 2: Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

 transient thermal impedance as a function of pulse width

\[t_p = 250 \mu s \]

\[T \]

R \(_{th(j-s)}\) = 0.77 K/W

FWD thermal model values:

<table>
<thead>
<tr>
<th>I (K/W)</th>
<th>T (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.15E-02</td>
<td>5.35E+00</td>
</tr>
<tr>
<td>1.37E-01</td>
<td>1.13E+00</td>
</tr>
<tr>
<td>1.90E-01</td>
<td>1.82E-01</td>
</tr>
<tr>
<td>2.57E-01</td>
<td>5.47E-02</td>
</tr>
<tr>
<td>8.27E-02</td>
<td>9.48E-03</td>
</tr>
<tr>
<td>2.02E-02</td>
<td>1.43E-03</td>
</tr>
<tr>
<td>2.82E-02</td>
<td>2.96E-04</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Out. Boost Switch Characteristics

Figure 1. IGBT Typical output characteristics

\[I_C = f(V_{CE}) \]

- \(t_p = 250 \, \mu s \)
- \(V_{CE} = 15 \, V \)
- \(T_j = 25 \, ^\circ C \)
- \(V_{GE} = 15 \, V \)
- \(T_j = 150 \, ^\circ C \)

Figure 2. IGBT Typical output characteristics

\[I_C = f(V_{GE}) \]

- \(t_p = 250 \, \mu s \)
- \(V_{GE} \) from 7 V to 17 V in steps of 1 V
- \(R_{th(j-s)} = 0.60 \, K/W \)

Figure 3. IGBT Typical transfer characteristics

\[Z_{th(j-s)} = f(t_p) \]

- \(t_p = 100 \, \mu s \)
- \(V_{CE} = 10 \, V \)
- \(T_j = 25 \, ^\circ C \)
- \(V_{GE} = 7 \, V \)

Figure 4. IGBT Transient thermal impedance as function of pulse duration

\[Z_{th(j-s)} = f(t_p) \]

- \(t_p = 10^{-5} \) to \(10^{-1} \) s
- \(R_{th(j-s)} = 0.60 \, K/W \)

IGBT thermal model values

- \(R_{th(j-s)}(K/W) \)
- \(\tau(s) \)

<table>
<thead>
<tr>
<th>(\tau) (s)</th>
<th>(R_{th(j-s)}) (K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.60</td>
</tr>
<tr>
<td>0.1</td>
<td>0.57</td>
</tr>
<tr>
<td>1.0</td>
<td>0.50</td>
</tr>
<tr>
<td>10</td>
<td>0.35</td>
</tr>
<tr>
<td>100</td>
<td>0.25</td>
</tr>
<tr>
<td>1000</td>
<td>0.15</td>
</tr>
<tr>
<td>10000</td>
<td>0.09</td>
</tr>
<tr>
<td>100000</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Copyright Vincotech

11

07 Jan. 2019 / Revision 1
Out. Boost Switch Characteristics

Figure 5. IGBT Gate voltage vs gate charge $V_{GE} = f(Q_G)$

$V_{CE} = 400$ V

$I_{C} = 160$ A

$D = $ single pulse

$T_s = 80^\circ C$

$V_{CE} = \pm 15$ V

$T_j = T_{j\max}$

Figure 6. IGBT Safe operating area $I_{C} = f(V_{CE})$

I_{C}

V_{CE}

1000

100

10

1

$0,01$

1000

100

10

1
Out. Boost Diode Characteristics

Figure 1. Typical forward characteristics

\[I_F = f(V_F) \]

<table>
<thead>
<tr>
<th>(V_F) (V)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_F) (A)</td>
<td>0</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
</tbody>
</table>

\(t_p = 250 \mu s \)

\(T_J \): 25 °C

\[R_{th(j-s)} = 0.88 \text{ K/W} \]

Figure 2. Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

<table>
<thead>
<tr>
<th>(t_p) (s)</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{th(j-s)}) (K/W)</td>
<td>0.88</td>
<td>2.35E-01</td>
<td>3.35E-01</td>
<td>5.35E-01</td>
<td>7.35E-01</td>
<td>9.35E-01</td>
</tr>
</tbody>
</table>

Out. Boost Inverse Diode Characteristics

Figure 1. Typical forward characteristics

\[I_F = f(V_F) \]

<table>
<thead>
<tr>
<th>(V_F) (V)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_F) (A)</td>
<td>0</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
</tbody>
</table>

\(t_p = 250 \mu s \)

\(T_J \): 25 °C

\[R_{th(j-s)} = 0.88 \text{ K/W} \]

Figure 2. Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

<table>
<thead>
<tr>
<th>(t_p) (s)</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{th(j-s)}) (K/W)</td>
<td>0.88</td>
<td>2.35E-01</td>
<td>3.35E-01</td>
<td>5.35E-01</td>
<td>7.35E-01</td>
<td>9.35E-01</td>
</tr>
</tbody>
</table>

\(D = t_p / T \)

\(T_J \): 125 °C

\[R_{th(j-s)} = 0.88 \text{ K/W} \]

FWD thermal model values

\(h \) (K/W) \(\tau \) (s)

9,17E-02 3,12E+00
2,61E-01 2,35E-01
3,62E-01 4,36E-02
1,21E-01 5,86E-03
4,11E-02 8,97E-04

Copyright Vincotech 2019 / Revision 1
Thermistor Characteristics

Figure 1. Typical NTC characteristic as a function of temperature

\[R = f(T) \]
Buck Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at 25 °C

\(V_{in} \)	350 V	\(T_J \)	125 °C
\(V_{on} \)	-5 / 15 V		
\(R_{on} \)	4 Ω		

\(V_{in} \)	350 V	\(T_J \)	150 °C
\(V_{on} \)	-5 / 15 V		
\(R_{on} \)	4 Ω		

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at 25 °C

\(V_{in} \)	350 V	\(T_J \)	125 °C
\(V_{on} \)	-5 / 15 V		
\(I_C \)	200 A		

\(V_{in} \)	350 V	\(T_J \)	150 °C
\(V_{on} \)	-5 / 15 V		
\(I_C \)	200 A		

Figure 3. FWD
Typical reverse recovered energy losses as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at 25 °C

\(V_{in} \)	350 V	\(T_J \)	125 °C
\(V_{on} \)	-5 / 15 V		
\(R_{on} \)	4 Ω		

\(V_{in} \)	350 V	\(T_J \)	150 °C
\(V_{on} \)	-5 / 15 V		
\(R_{on} \)	4 Ω		

Figure 4. FWD
Typical reverse recovered energy losses as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at 25 °C

\(V_{in} \)	350 V	\(T_J \)	125 °C
\(V_{on} \)	-5 / 15 V		
\(I_C \)	200 A		

\(V_{in} \)	350 V	\(T_J \)	150 °C
\(V_{on} \)	-5 / 15 V		
\(I_C \)	200 A		
Buck Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

$t_{\text{on}} = f(I_C)$

With an inductive load at
- $T_J = 150 \, ^\circ\text{C}$
- $V_{CE} = 350 \, \text{V}$
- $V_{GE} = -5 / 15 \, \text{V}$
- $R_{gon} = 4 \, \Omega$
- $I_C = 200 \, \text{A}$

Figure 6. IGBT
Typical switching times as a function of gate resistor

$t_{\text{on}} = f(R_g)$

With an inductive load at
- $T_J = 150 \, ^\circ\text{C}$
- $V_{CE} = 350 \, \text{V}$
- $V_{GE} = -5 / 15 \, \text{V}$
- $I_C = 200 \, \text{A}$

Figure 7. FWD
Typical reverse recovery time as a function of collector current

$t_{rr} = f(I_C)$

With an inductive load at
- $T_J = 25 \, ^\circ\text{C}$
- $V_{CE} = 350 \, \text{V}$
- $T_J = 125 \, ^\circ\text{C}$
- $V_{CE} = 350 \, \text{V}$
- $V_{GE} = -5 / 15 \, \text{V}$
- $R_{gon} = 4 \, \Omega$
- $N_C = 200 \, \text{A}$

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn-on gate resistor

$t_{rr} = f(R_{gon})$

With an inductive load at
- $T_J = 25 \, ^\circ\text{C}$
- $V_{CE} = 350 \, \text{V}$
- $T_J = 125 \, ^\circ\text{C}$
- $V_{CE} = 350 \, \text{V}$
- $V_{GE} = -5 / 15 \, \text{V}$
- $I_C = 200 \, \text{A}$
Buck Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

With an inductive load at 25 °C
- \(V_{in} = 350 \) V
- \(T_j = 125 \) °C
- \(R_{on} = 4 \) Ω

Figure 10. FWD
Typical recovered charge as a function of IGBT turn on gate resistor

\[Q_r = f(R_{on}) \]

With an inductive load at 25 °C
- \(V_{in} = 350 \) V
- \(T_j = 125 \) °C

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

With an inductive load at 25 °C
- \(V_{in} = 350 \) V
- \(T_j = 125 \) °C
- \(R_{on} = 4 \) Ω

Figure 12. FWD
Typical peak reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RM} = f(R_{on}) \]

With an inductive load at 25 °C
- \(V_{in} = 350 \) V
- \(T_j = 125 \) °C
- \(I_C = 200 \) A
Buck Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{di_F}{dt}, \frac{di_{rr}}{dt} = f(I_C) \]

With an inductive load at 25 °C
- V_{CE} = 350 V
- T_j = 125 °C
- V_{in} = -5 / 15 V
- R_{goff} = 4 Ω

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{di_F}{dt}, \frac{di_{rr}}{dt} = f(R_{gon}) \]

With an inductive load at 25 °C
- V_{CE} = 350 V
- T_j = 125 °C
- V_{in} = -5 / 15 V
- I_C = 200 A

Figure 15. IGBT
Reverse bias safe operating area
\[I_{C} = 4(V_{CE}) \]

At
- T_j = 125 °C
- R_{goff} = 4 Ω
- R_{goff} = 4 Ω

Copyright Vincotech 18 07 Jan. 2019 / Revision 1
Buck Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_j</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>4 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1. IGBT Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff} (t_{Eoff} = integrating time for E_{off})

- $V_{GE}(0\%) = -5$ V
- $V_{GE}(100\%) = 15$ V
- $I_{C}(100\%) = 200$ A
- $t_{on} = 206$ ns

Figure 2. IGBT Turn-on Switching Waveforms & definition of t_{don}, t_{Eon} (t_{Eon} = integrating time for E_{on})

- $V_{GE}(0\%) = -5$ V
- $V_{GE}(100\%) = 15$ V
- $I_{C}(100\%) = 200$ A
- $t_{on} = 80$ ns

Figure 3. IGBT Turn-off Switching Waveforms & definition of I_{C}

- $V_{CE}(10\%) = 350$ V
- $I_{C}(10\%) = 200$ A
- $t_{on} = 39$ ns

Figure 4. IGBT Turn-on Switching Waveforms & definition of I_{C}

- $V_{CE}(10\%) = 350$ V
- $I_{C}(10\%) = 200$ A
- $t_{on} = 22$ ns
Buck Switching Characteristics

Figure 5. Turn-off Switching Waveforms & definition of \(t_{tr} \)

- \(V_F(100\%) = 350 \, \text{V} \)
- \(I_F(100\%) = 200 \, \text{A} \)
- \(I_{RRM}(10\%) = 224 \, \text{A} \)
- \(t_{tr} = 104 \, \text{ns} \)

Figure 6. Turn-on Switching Waveforms & definition of \(t_{Qr} \) \((t_{Qr} = \text{integrating time for } Q_r) \)

- \(V_F(100\%) = 350 \, \text{V} \)
- \(I_F(100\%) = 200 \, \text{A} \)
- \(I_{RRM}(10\%) = 224 \, \text{A} \)
- \(Q_r(100\%) = 0 \, \mu\text{C} \)
Boost Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at 25 °C
- \(V_{in} = 350 \) V
- \(T_j = 125 \) °C
- \(R_{on} = 4 \) Ω
- \(R_{off} = 4 \) Ω

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at 25 °C
- \(V_{in} = 350 \) V
- \(T_j = 125 \) °C
- \(I_c = 160 \) A

Figure 3. FWD
Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at 25 °C
- \(V_{in} = 350 \) V
- \(T_j = 125 \) °C
- \(R_{on} = 4 \) Ω
- \(R_{off} = 4 \) Ω

Figure 4. FWD
Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at 25 °C
- \(V_{in} = 350 \) V
- \(T_j = 125 \) °C
- \(I_c = 160 \) A
Boost Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

\[t_{d(on)} = f(I_C) \]

With an inductive load at
- \(T_j = 150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(I_C = 160 \) A

Figure 6. IGBT
Typical switching times as a function of gate resistor

\[t_{d(off)} = f(R_g) \]

With an inductive load at
- \(T_j = 25 \) °C
- \(V_{CE} = 125 \) °C
- \(V_{GE} = \pm 15 \) V
- \(I_C = 160 \) A

Figure 7. FWD
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

With an inductive load at
- \(T_j = 25 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn-on gate resistor

\[t_{rr} = f(R_{gon}) \]

With an inductive load at
- \(T_j = 150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 160 \) A

Copyright Vincotech 22 07 Jan. 2019 / Revision 1
Boost Switching Characteristics

Figure 9.
Typical recovered charge as a function of collector current

$Q_r = f(I_C)$

- With an inductive load at $25^\circ C$
 - $V_{in} = 350 \, V$
 - $T_j = 125 \, ^\circ C$
 - $R_{gon} = 4 \, \Omega$

- With an inductive load at $150 \, ^\circ C$
 - $V_{in} = \pm 15 \, V$
 - $I_C = 160 \, A$

Figure 11.
Typical peak reverse recovery current as a function of collector current

$I_{RM} = f(I_C)$

- With an inductive load at $25^\circ C$
 - $V_{in} = 350 \, V$
 - $T_j = 125 \, ^\circ C$
 - $R_{gon} = 4 \, \Omega$

- With an inductive load at $150 \, ^\circ C$
 - $V_{in} = \pm 15 \, V$
 - $I_C = 160 \, A$
Boost Switching Characteristics

Figure 13. FWD

Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
\frac{di_F}{dt}, \frac{di_{rr}}{dt} = f(I_C)
\]

With an inductive load at

- \(V_C = 350 \text{ V} \)
- \(T_j = 125 ^\circ \text{C} \)
- \(R_{gon} = 4 \text{ Ω} \)
- \(V_{CE} = 350 \text{ V} \)
- \(I_C = 160 \text{ A} \)

Figure 14. FWD

Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[
\frac{di_F}{dt}, \frac{di_{rr}}{dt} = f(R_{gon})
\]

With an inductive load at

- \(V_C = 350 \text{ V} \)
- \(T_j = 125 ^\circ \text{C} \)
- \(R_{gon} = 4 \text{ Ω} \)
- \(V_{CE} = 350 \text{ V} \)
- \(I_C = 160 \text{ A} \)

Figure 15. IGBT

Reverse bias safe operating area

\(I_C = f(V_{CE}) \)

At

- \(V_{CE} = 350 \text{ V} \)
- \(T_j = 125 ^\circ \text{C} \)
- \(R_{com} = 4 \text{ Ω} \)
- \(R_{pin} = 4 \text{ Ω} \)
Boost Switching Definitions

General conditions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>$125 , ^\circ C$</td>
</tr>
<tr>
<td>$R_{DS,ON}$</td>
<td>$4 , \Omega$</td>
</tr>
<tr>
<td>$R_{DS,OFF}$</td>
<td>$4 , \Omega$</td>
</tr>
</tbody>
</table>

Figure 1. IGBT

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff} (t_{Eoff} = integrating time for E_{off})

- $V_{GE}(0\%) = -15 \, V$
- $V_{GE}(100\%) = -15 \, V$
- $V_{CE}(0\%) = 350 \, V$
- $V_{CE}(100\%) = 350 \, V$
- $I_{C}(0\%) = 93 \, A$
- $I_{C}(100\%) = 160 \, A$
- $I_{doff} = 93 \, ns$
- $I_{Eoff} = 100 \, ns$

Figure 2. IGBT

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon} (t_{Eon} = integrating time for E_{on})

- $V_{GE}(0\%) = -15 \, V$
- $V_{GE}(100\%) = -15 \, V$
- $V_{CE}(0\%) = 350 \, V$
- $V_{CE}(100\%) = 350 \, V$
- $I_{C}(0\%) = 93 \, A$
- $I_{C}(100\%) = 160 \, A$
- $I_{don} = 86 \, ns$

Figure 3. IGBT

Turn-off Switching Waveforms & definition of t_f

- $V_{CE}(0\%) = 350 \, V$
- $V_{CE}(100\%) = 350 \, V$
- $I_{C}(0\%) = 93 \, A$
- $I_{C}(100\%) = 160 \, A$
- $t_{f} = 48 \, ns$

Figure 4. IGBT

Turn-on Switching Waveforms & definition of t_r

- $V_{CE}(0\%) = 350 \, V$
- $V_{CE}(100\%) = 350 \, V$
- $I_{C}(0\%) = 93 \, A$
- $I_{C}(100\%) = 160 \, A$
- $t_{r} = 15 \, ns$
Boost Switching Characteristics

Figure 5. FWD

<table>
<thead>
<tr>
<th>%</th>
<th>t_o</th>
<th>t_{rr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>fitted</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$V_F(100\%) = 350$ V
$I_F(100\%) = 160$ A
$I_{RRM}(100\%) = 183$ A
$t_{rr}(100\%) = 108$ ns

Figure 6. FWD

<table>
<thead>
<tr>
<th>%</th>
<th>t_o</th>
<th>Q_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>fitted</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$I_{RRM}(10\%) = 160$ A
$I_{RRM}(90\%) = 160$ A
$I_{RRM}(100\%) = 0$ μC
$q_r(100\%) = 0$ μC
<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11, T12, T15, T16</td>
<td>IGBT</td>
<td>650V</td>
<td>100A</td>
<td>Buck Switch</td>
<td></td>
</tr>
<tr>
<td>D11, D12</td>
<td>FWD</td>
<td>650V</td>
<td>200A</td>
<td>Buck Diode</td>
<td></td>
</tr>
<tr>
<td>T13, T14, T17, T18</td>
<td>IGBT</td>
<td>650V</td>
<td>100A</td>
<td>Out. Boost Switch</td>
<td></td>
</tr>
<tr>
<td>D13, D14, D17, D18</td>
<td>FWD</td>
<td>650V</td>
<td>100A</td>
<td>Out. Boost Diode</td>
<td></td>
</tr>
<tr>
<td>D15, D16, D19, D20</td>
<td>FWD</td>
<td>650V</td>
<td>100A</td>
<td>Out. Boost Inverse Diode</td>
<td></td>
</tr>
<tr>
<td>Rt</td>
<td>NTC</td>
<td>-</td>
<td>-</td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
DISCLAMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.