flowMNPC 1

1200 V / 160 A

Features
- mixed voltage NPC topology
- reactive power capability
- low inductance layout
- Split output
- Common collector neutral connection

Target Applications
- solar inverter
- UPS
- Active frontendl

Types
- 10-FY12NMA160SH-M420F
- 10-PY12NMA160SH-M420FY

Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halfbridge IGBT Inverse Diode (D1, D4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>V_{RRM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_T</td>
<td>Tj=T_{max}</td>
<td>T_j=80°C</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T_j=80°C</td>
<td>19</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{fRMS}</td>
<td>tp=10ms</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>T_j=80°C</td>
<td>31</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_j=80°C</td>
<td>47</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Halfbridge IGBT (T1, T4)					
Collector-emitter break down voltage	\(V_{CE} \)		1200	V	
DC collector current	I_C	Tj=T_{max}	T_j=80°C	116	A
			T_j=80°C	156	A
Repetitive peak collector current	I_{pulser}	I_p limited by T_{jmax}	640	A	
Power dissipation per IGBT	P_{tot}	Tj=T_{max}	T_j=80°C	260	W
			T_j=80°C	394	W
Gate-emitter peak voltage	V_{GE}		±20	V	
Short circuit ratings	I_{SC}	V_{GE}=15V	T_j=150°C	10	µs
			V	600	V
Maximum Junction Temperature	T_{jmax}		175	°C	
Maximum Ratings

T_j=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP Diode (D7, D8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V<sub>RRM</sub></td>
<td>T<sub>j</sub>=25°C</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I<sub>F</sub></td>
<td>T<sub>j</sub>=T<sub>max</sub></td>
<td>66</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I<sub>PRM</sub></td>
<td>I<sub>p</sub> limited by T<sub>j</sub>=T<sub>max</sub></td>
<td>240</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P<sub>tot</sub></td>
<td>T<sub>j</sub>=T<sub>max</sub></td>
<td>67</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T<sub>j</sub>=T<sub>max</sub></td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>NP IGBT (T2, T3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V<sub>C</sub>E</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I<sub>C</sub></td>
<td>T<sub>j</sub>=T<sub>max</sub></td>
<td>63</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I<sub>PRM</sub></td>
<td>I<sub>p</sub> limited by T<sub>j</sub>=T<sub>max</sub></td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P<sub>tot</sub></td>
<td>T<sub>j</sub>=T<sub>max</sub></td>
<td>94</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V<sub>GE</sub></td>
<td></td>
<td>≤20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t<sub>SC</sub></td>
<td>T≤150°C</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>V<sub>C</sub>C</td>
<td>V<sub>C</sub>E=15V</td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>NP Inverse Diode (D2, D3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V<sub>RRM</sub></td>
<td>T<sub>j</sub>=25°C</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I<sub>F</sub></td>
<td>T<sub>j</sub>=T<sub>max</sub></td>
<td>13</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I<sub>PRM</sub></td>
<td>I<sub>p</sub> limited by T<sub>j</sub>=T<sub>max</sub></td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P<sub>tot</sub></td>
<td>T<sub>j</sub>=T<sub>max</sub></td>
<td>20</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T<sub>j</sub>=T<sub>max</sub></td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Halfbridge Diode (D5, D6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V<sub>RRM</sub></td>
<td>T<sub>j</sub>=25°C</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I<sub>F</sub></td>
<td>T<sub>j</sub>=T<sub>max</sub></td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I<sub>PRM</sub></td>
<td>I<sub>p</sub> limited by T<sub>j</sub>=T<sub>max</sub></td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P<sub>tot</sub></td>
<td>T<sub>j</sub>=T<sub>max</sub></td>
<td>61</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T<sub>j</sub>=T<sub>max</sub></td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>DC link Capacitor (C1, C2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.DC voltage</td>
<td>V<sub>MAX</sub></td>
<td>T<sub>o</sub>=25°C</td>
<td>630</td>
<td>V</td>
</tr>
</tbody>
</table>
Maximum Ratings

T_j=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T<sub>stg</sub></td>
<td></td>
<td>-40…+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T<sub>op</sub></td>
<td></td>
<td>-40…+(T<sub>jmax</sub> - 25)</td>
<td>°C</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>V<sub>is</sub></td>
<td>t=2s DC voltage</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>CTI</td>
<td></td>
<td>>200</td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halftide IGBT Inverse Diode (D1, D4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>VGE</td>
<td></td>
<td>1</td>
<td>1.97</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>RthJH</td>
<td></td>
<td>1</td>
<td>0.65</td>
</tr>
<tr>
<td>Thermal resistance chip to case per chip</td>
<td>RthJC</td>
<td></td>
<td>1</td>
<td>1.48</td>
</tr>
</tbody>
</table>

Halftide IGBT (T1, T4)									
Gate emitter threshold voltage	VGE(th)		5	5.8	6.5	V			
Collector-emitter saturation voltage	VCE(sat)		1	2.04	2.5	V			
Collector-emitter cut-off current incl. Diode	IQSS		1	1	mA				
Gate-emitter leakage current	IGE		20	30	480	nA			
Integrated Gate resistor	Rint			none					
Turn-on delay time	t(ON)			133		ns			
Rise time	tR			136		ns			
Turn-off delay time	t(OFF)			23		ns			
Fall time	tF			225		ns			
Turn-on energy loss per pulse	Eon			276		mWs			
Turn-off energy loss per pulse	Eoff			64		mWs			
Input capacitance	Ciss			60		pF			
Reverse recovery time	tdi(ON)			9030					
Output capacitance	Coss			520					
Gate charge	QG			15	960	160	Tj=25°C	740	nC
Thermal resistance chip to heatsink per chip	RthJH			0.37		K/W			
Thermal resistance chip to case per chip	RthJC			0.24					
additional value stands for built-in capacitor									

NP Diode (D7, D8)							
Diode forward voltage	VF		120	1.4	1.47	2	V
Peak reverse recovery current	Qrr			127		A	
Reverse recovery time	trr			151		ns	
Reverse recovered charge	QL			81		µC	
Peak rate of fall of recovery current	dV/dt			9.00		A/μs	
Reverse recovered energy	Erec			7.13		mWs	
Thermal resistance chip to heatsink per chip	RthJH			10388		A/μs	
Thermal resistance chip to case per chip	RthJC			137			

additional value stands for built-in capacitor
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP IGBT (T2, T3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>(V_{GE})</td>
<td>(I=25°C)</td>
<td>5000V</td>
<td>mV</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>(V_{CE})</td>
<td>(I=25°C)</td>
<td>4.5</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>(I_{off})</td>
<td>(I=25°C)</td>
<td>600</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>(I_{leak})</td>
<td>(I=25°C)</td>
<td>1200</td>
<td>nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>(R_{int})</td>
<td>none</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{on})</td>
<td>(I=25°C)</td>
<td>103</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_{r})</td>
<td>(I=25°C)</td>
<td>168</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{off})</td>
<td>(I=25°C)</td>
<td>179</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_{f})</td>
<td>(I=25°C)</td>
<td>64</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>(E_{on})</td>
<td>(I=25°C)</td>
<td>1.62</td>
<td>µWs</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>(E_{off})</td>
<td>(I=25°C)</td>
<td>2.48</td>
<td>µWs</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{in})</td>
<td>(f=1MHz)</td>
<td>6280</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{out})</td>
<td>(f=1MHz)</td>
<td>400</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{t})</td>
<td></td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>(Q_{g})</td>
<td>(I=25°C)</td>
<td>520</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{thjc})</td>
<td>Thermal grease thickness ≤ 50um (\lambda = 1 \text{ W/mK})</td>
<td>1.01</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to power source per chip</td>
<td>(R_{thjc})</td>
<td>Thermal grease thickness ≤ 50um (\lambda = 1 \text{ W/mK})</td>
<td>0.67</td>
<td>K/W</td>
</tr>
<tr>
<td>HP Inverse Diode (D2, D3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>(V_{f})</td>
<td>(I=25°C)</td>
<td>1.00</td>
<td>V</td>
</tr>
<tr>
<td>Thermal resistance chip to power source per chip</td>
<td>(R_{thjc})</td>
<td>Thermal grease thickness ≤ 50um (\lambda = 1 \text{ W/mK})</td>
<td>3.43</td>
<td>K/W</td>
</tr>
<tr>
<td>Coupled thermal resistance inverter transistor-diode</td>
<td>(R_{thjc})</td>
<td>Thermal grease thickness ≤ 50um (\lambda = 1 \text{ W/mK})</td>
<td>2.27</td>
<td>K/W</td>
</tr>
<tr>
<td>(\mathbf{D})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>(V_{f})</td>
<td>(I=25°C)</td>
<td>1.50</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(I_{rev})</td>
<td>(I=25°C)</td>
<td>200</td>
<td>µA</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>(I_{rev})</td>
<td>(I=25°C)</td>
<td>107</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{rr})</td>
<td>(I=25°C)</td>
<td>51</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>(Q_{rr})</td>
<td>(I=25°C)</td>
<td>6.24</td>
<td>µC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(i_{df})</td>
<td>(I=25°C)</td>
<td>3885</td>
<td>A/µs</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>(E_{rec})</td>
<td>(I=25°C)</td>
<td>1.71</td>
<td>mWs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{thjc})</td>
<td>Thermal grease thickness ≤ 50um (\lambda = 1 \text{ W/mK})</td>
<td>1.15</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to power source per chip</td>
<td>(R_{thjc})</td>
<td>Thermal grease thickness ≤ 50um (\lambda = 1 \text{ W/mK})</td>
<td>0.76</td>
<td>K/W</td>
</tr>
<tr>
<td>(\mathbf{D})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC link Capacitor (C1, C2)</td>
<td>C</td>
<td>(\text{DC}) to Neutral and DC- to Neutral</td>
<td>100</td>
<td>nF</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>(R)</td>
<td>(I=25°C)</td>
<td>2200</td>
<td>Ω</td>
</tr>
<tr>
<td>Deviation of R25</td>
<td>(\Delta R / R)</td>
<td>(I=25°C)</td>
<td>±5</td>
<td>%</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P)</td>
<td>(I=25°C)</td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>(P)</td>
<td>(I=25°C)</td>
<td>2</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>(B_{(25/100)})</td>
<td>Td = ±3%</td>
<td>3595</td>
<td>K</td>
</tr>
<tr>
<td>B-value</td>
<td>(B_{(25/100)})</td>
<td>Td = ±3%</td>
<td>3596</td>
<td>K</td>
</tr>
<tr>
<td>Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance, case to heatsink</td>
<td>(R_{thch})</td>
<td>per module</td>
<td>1.05</td>
<td>K/W</td>
</tr>
<tr>
<td>Module stray inductance</td>
<td>(L_{CE})</td>
<td>(I=25°C)</td>
<td>5</td>
<td>nH</td>
</tr>
<tr>
<td>Chip module lead resistance, terminals -chip</td>
<td>(R_{on})</td>
<td>(I=25°C)</td>
<td>2</td>
<td>mΩ</td>
</tr>
<tr>
<td>Mounting torque</td>
<td>M</td>
<td></td>
<td>2</td>
<td>Nm</td>
</tr>
<tr>
<td>Weight</td>
<td>G</td>
<td></td>
<td>42.28</td>
<td>g</td>
</tr>
</tbody>
</table>
Half bridge (T1, T4 / D7, D8)

half bridge IGBT and Neutral Point FWD

Figure 1
Typical output characteristics
\[I_C = f(V_{CE}) \]

Figure 2
Typical output characteristics
\[I_C = f(V_{CE}) \]

Figure 3
Typical transfer characteristics
\[I_C = f(V_{GE}) \]

Figure 4
Typical FWD forward current as a function of forward voltage
\[I_F = f(V_F) \]

At
- \[t_p = 250 \, \mu s \]
- \[T_j = 25 \, ^\circ C \]
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

At
- \[t_p = 250 \, \mu s \]
- \[T_j = 125 \, ^\circ C \]
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

At
- \[t_p = 250 \, \mu s \]
- \[V_{CE} = 10 \, V \]
- \[T_j = 25/150 \, ^\circ C \]

At
- \[t_p = 250 \, \mu s \]
- \[T_j = 25/150 \, ^\circ C \]
Half bridge (T1, T4 / D7, D8)

half bridge IGBT and Neutral Point FWD

Figure 5

Typical switching energy losses
as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(R_{goff} = 4 \) Ω

Figure 6

Typical switching energy losses
as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 100 \) A

Figure 7

Typical reverse recovery energy loss
as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 8

Typical reverse recovery energy loss
as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 100 \) A
Typical switching times as a function of collector current
\(t = f(I_C) \)

With an inductive load at:
- \(T_j = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(R_{goff} = 4 \) Ω

Typical reverse recovery time as a function of collector current
\(t_{rr} = f(I_C) \)

At:
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

![Graph showing typical reverse recovery charge](image1)

At
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 14
Typical reverse recovery charge as a function of JFET turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

![Graph showing typical reverse recovery charge](image2)

At
- \(T_J = 25/125 \) °C
- \(V_{BE} = 350 \) V
- \(I_B = 100 \) A
- \(V_{GE} = \pm 15 \) V

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

![Graph showing typical reverse recovery current](image3)

At
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 16
Typical reverse recovery current as a function of JFET turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

![Graph showing typical reverse recovery current](image4)

At
- \(T_J = 25/125 \) °C
- \(V_{BE} = 350 \) V
- \(I_B = 100 \) A
- \(V_{GE} = \pm 15 \) V
Typical rate of fall of forward and reverse recovery current as a function of collector current:

\[
d\frac{dI}{dt}, d\frac{dI}{dt} = f(I_c)
\]

\[
d\frac{dI}{dt}, d\frac{dI}{dt} = f(R_{gon})
\]

IGBT transient thermal impedance as a function of pulse width:

\[
Z_{thJH} = f(t_p)
\]

FWD transient thermal impedance as a function of pulse width:

\[
Z_{thJH} = f(t_p)
\]

IGBT thermal model values:

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>2.4E-00</td>
</tr>
<tr>
<td>0.15</td>
<td>4.0E-01</td>
</tr>
<tr>
<td>0.12</td>
<td>1.0E-01</td>
</tr>
<tr>
<td>0.03</td>
<td>1.3E-02</td>
</tr>
<tr>
<td>0.01</td>
<td>8.4E-04</td>
</tr>
</tbody>
</table>

FWD thermal model values:

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>7.4E+00</td>
</tr>
<tr>
<td>0.27</td>
<td>1.3E+00</td>
</tr>
<tr>
<td>0.55</td>
<td>2.7E-01</td>
</tr>
<tr>
<td>0.11</td>
<td>4.0E-02</td>
</tr>
<tr>
<td>0.04</td>
<td>5.1E-03</td>
</tr>
<tr>
<td>0.03</td>
<td>6.0E-04</td>
</tr>
</tbody>
</table>
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

Collector current as a function of heatsink temperature

\[I_C = f(T_h) \]

Power dissipation as a forward current as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]
Half bridge (T1, T4 / D7, D8)

Figure 25
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

Figure 26
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At
- \(D = \) single pulse
- \(T_h = 80 \, ^\circ\text{C} \)
- \(V_{GE} = 0 \, \text{V} \)
- \(T_j = T_{\text{max}} \, ^\circ\text{C} \)

Figure 27
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At
- \(T_j = T_{\text{max}} - 25 \, ^\circ\text{C} \)
- \(U_{\text{continuous}} = U_{\text{peak}} \)

Switching mode: 3 level switching
Neutral Point IGBT (T2, T3 / D5, D6)
neutral point IGBT and half bridge FWD

Figure 1 NP IGBT
Typical output characteristics
$I_C = f(V_{CE})$

Figure 2 NP IGBT
Typical output characteristics
$I_C = f(V_{CE})$

Figure 3 NP IGBT
Typical transfer characteristics
$I_C = f(V_{GE})$

Figure 4 FWD
Typical FWD forward current as a function of forward voltage
$I_F = f(V_F)$

At
$t_P = 250 \mu s
T_j = 25/150 \degree C
V_{CE} \text{ from 7 V to 17 V in steps of 1 V}$

At
$t_P = 250 \mu s
T_j = 150 \degree C
V_{CE} \text{ from 7 V to 17 V in steps of 1 V}$

At
$t_P = 250 \mu s
V_{CE} = 10 \text{ V}
T_j = 25/150 \degree C$

At
$t_P = 250 \mu s
T_j = 25/150 \degree C$
Neutral Point IGBT (T2, T3 / D5, D6)
neutral point IGBT and half bridge FWD

Figure 5
Typical switching energy losses
as a function of collector current
\[E = f(I_c) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(R_{goff} = 4 \) Ω

Figure 6
Typical switching energy losses
as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 60 \) A

Figure 7
Typical reverse recovery energy loss
as a function of collector current
\[E_{rec} = f(I_c) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 60 \) A
Neutral Point IGBT (T2, T3 / D5, D6)
neutral point IGBT and half bridge FWD

Figure 9
Typical switching times as a function of collector current

$t = f(I_C)$

With an inductive load at

$T_j = 125$ °C
$V_{CE} = 350$ V
$V_{CE} = \pm 15$ V
$R_{gon} = 4$ Ω
$R_{goff} = 4$ Ω

Figure 10
Typical switching times as a function of gate resistor

$t = f(R_g)$

With an inductive load at

$T_j = 125$ °C
$V_{CE} = 350$ V
$V_{CE} = \pm 15$ V
$I_C = 60$ A

Figure 11
Typical reverse recovery time as a function of collector current

$t_{rr} = f(I_C)$

At

$T_j = 25/125$ °C
$V_{CE} = 350$ V
$V_{CE} = \pm 15$ V
$R_{gon} = 4.0$ Ω

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor

$t_{rr} = f(R_{gon})$

At

$T_j = 25/125$ °C
$V_{CE} = 350$ V
$I_C = 60$ A
$V_{CE} = \pm 15$ V

copyright Vincotech 15 09 Okt 2014 / Revision: 4
Neutral Point IGBT (T2, T3 / D5, D6)

Neutral point IGBT and half bridge FWD

Figure 13
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

Figure 15
Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]
Neutral Point IGBT (T2, T3 / D5, D6)
neutral point IGBT and half bridge FWD

Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI}{dt}, \frac{dI_{rev}}{dt} = f(I_c) \]

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI}{dt}, \frac{dI_{rev}}{dt} = f(R_{gon}) \]

Figure 19
IGBT transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

Figure 20
FWD transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

<table>
<thead>
<tr>
<th>D</th>
<th>t_p / T</th>
<th>R_{thJH}</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05</td>
<td>6,49</td>
<td>1,01</td>
<td>1,01</td>
</tr>
<tr>
<td>0,16</td>
<td>1,27</td>
<td>1,15</td>
<td>1,15</td>
</tr>
<tr>
<td>0,52</td>
<td>0,25</td>
<td>0,005</td>
<td>0,005</td>
</tr>
<tr>
<td>0,18</td>
<td>0,07</td>
<td>0,005</td>
<td>0,005</td>
</tr>
<tr>
<td>0,07</td>
<td>0,01</td>
<td>0,005</td>
<td>0,005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05</td>
<td>4,90</td>
</tr>
<tr>
<td>0,13</td>
<td>0,82</td>
</tr>
<tr>
<td>0,59</td>
<td>0,18</td>
</tr>
<tr>
<td>0,22</td>
<td>0,05</td>
</tr>
<tr>
<td>0,10</td>
<td>0,01</td>
</tr>
</tbody>
</table>

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_F = 60 \) A
- \(R_{gon} = 4,0 \) Ω

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V

IGBT thermal model values
- \(R (C/W) \)
- \(\tau (s) \)

Copyright Vincotech 17 09 Okt 2014 / Revision: 4
Neutral Point IGBT (T2, T3 / D5, D6)
neutral point IGBT and half bridge FWD

Figure 21
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \degree C \]

Figure 22
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

At
\[T_j = 175 \degree C \]
\[V_{GE} = 15 \, \text{V} \]

Figure 23
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 150 \degree C \]

Figure 24
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 150 \degree C \]
Neutral Point IGBT (T2, T3 / D5, D6)
neutral point IGBT

Figure 25
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At
\[T_j = T_{jmax} - 25 \text{ °C} \]
\[U_{ccminus} = U_{ccplus} \]

Switching mode: 3 level switching
NP IGBT Inverse Diode (D2, D3)

Figure 25
Typical FWD forward current as a function of forward voltage
\[I_F = f(V_F) \]

Figure 26
FWD transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
\[t_p = 250 \mu s \]

Figure 27
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]

At
\[T_j = 150 ^\circ C \]

Figure 28
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 150 ^\circ C \]
Figure 1 Halfbridge IGBT Inverse Diode

Typical FWD forward current as a function of forward voltage

\[I_F = f(V_F) \]

\[Z_{thJH} = f(t_p) \]

\[t_p = 250 \mu s \]

Figure 2 Halfbridge IGBT Inverse Diode

FWD transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

\[D = 0.5 \]

\[0.1 \]

\[0.05 \]

\[0.02 \]

\[0.01 \]

\[0.005 \]

\[0.001 \]

\[0.000 \]

\[2.235 \text{ K/W} \]

Figure 3 Halfbridge IGBT Inverse Diode

Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

\[T_j = 150 ^\circ C \]

Figure 4 Halfbridge IGBT Inverse Diode

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

\[T_j = 150 ^\circ C \]
Thermistor

Figure 1

Typical NTC characteristic
as a function of temperature

\[R_T = f(T) \]
Switching Definitions half bridge (T1, T4 / D7, D8)

General conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{son}</td>
<td>4 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

- $t_{doff} = 0.28 \mu s$
- $t_{Eoff} = 0.66 \mu s$

Figure 2

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

- $t_{don} = 0.14 \mu s$
- $t_{Eon} = 0.27 \mu s$

Figure 3

Turn-off Switching Waveforms & definition of t_t

- $V_C(100\%) = 700 \text{ V}$
- $I_C(100\%) = 100 \text{ A}$
- $t_t = 0.06 \mu s$

Figure 4

Turn-on Switching Waveforms & definition of t_t

- $V_C(100\%) = 700 \text{ V}$
- $I_C(100\%) = 100 \text{ A}$
- $t_t = 0.02 \mu s$
Switching Definitions half bridge (T1, T4 / D7, D8)

Figure 5

Turn-off Switching Waveforms & definition of t_{Eoff}

![Graph showing turn-off switching waveforms with definitions of E_{off}, t_{Eoff}, V_{GEoff}, and $I_{C RRM}$.]

For 100%:
- $P_{off} = 70.22$ kW
- $E_{off} = 4.03$ mJ
- $t_{Eoff} = 0.66$ µs

Figure 6

Turn-on Switching Waveforms & definition of t_{Eon}

![Graph showing turn-on switching waveforms with definitions of E_{on}, t_{Eon}, V_{GEon}, and $I_{C RRM}$.]

For 100%:
- $P_{on} = 70.22$ kW
- $E_{on} = 3.18$ mJ
- $t_{Eon} = 0.27$ µs

Figure 7

Gate voltage vs Gate charge (measured)

![Graph showing gate voltage vs gate charge with definitions of $V_{GE90\%}$, $V_{GE10\%}$, $V_{CE3\%}$, and $V_{CE10\%}$.]

- $V_{GE90\%} = -15$ V
- $V_{GE10\%} = 15$ V
- $V_{CE3\%} = 700$ V
- $V_{CE10\%} = 100$ A
- $Q_g = 1140.19$ nC

Figure 8

Turn-off Switching Waveforms & definition of t_{rr}

![Graph showing turn-off switching waveforms with definitions of V_s, I_{RRM}, I_{fitted}, $I_{free10\%}$, and $I_{free100\%}$].

- $V_s(100\%) = 700$ V
- $I_{fitted}(100\%) = 100$ A
- $I_{free10\%}(100\%) = -151$ A
- $t_{rr} = 0.08$ µs

Copyright Vincotech 24 09 Okt 2014 / Revision: 4
Switching Definitions half bridge (T1, T4 / D7, D8)

Figure 9
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

- $I_d(100%) = 100\, A$
- $Q_{rr}(100%) = 7.13\, \mu C$
- $t_{Qrr} = 0.16\, \mu s$

Figure 10
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

- $P_{rec}(100%) = 70.22\, kW$
- $E_{rec}(100%) = 1.01\, mJ$
- $t_{Erec} = 0.16\, \mu s$

half bridge switching measurement circuit (T1, T4 / D7, D8)

Figure 11
half bridge IGBT
Switching Definitions neutral point IGBT (T2, T3 / D5, D6)

General conditions

<table>
<thead>
<tr>
<th>T_J</th>
<th>$125 , ^\circ\text{C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{on}</td>
<td>$4 , \Omega$</td>
</tr>
<tr>
<td>R_{off}</td>
<td>$4 , \Omega$</td>
</tr>
</tbody>
</table>

Figure 1

Turn-off Switching Waveforms & definition of $t_{\text{doff}}, t_{\text{Eoff}}$

($t_{\text{Eoff}} = \text{integrating time for} \, E_{\text{off}}$)

- $V_{\text{CE}}(0\%) = -15 \, \text{V}$
- $V_{\text{CE}}(100\%) = 15 \, \text{V}$
- $I_C(100\%) = 100 \, \text{A}$
- $t_{\text{doff}} = 0.18 \, \mu\text{s}$
- $t_{\text{Eoff}} = 0.44 \, \mu\text{s}$

Figure 2

Turn-on Switching Waveforms & definition of $t_{\text{don}}, t_{\text{Eon}}$

($t_{\text{Eon}} = \text{integrating time for} \, E_{\text{on}}$)

- $V_{\text{CE}}(0\%) = -15 \, \text{V}$
- $V_{\text{CE}}(100\%) = 15 \, \text{V}$
- $V_C(100\%) = 700 \, \text{V}$
- $I_C(100\%) = 100 \, \text{A}$
- $t_{\text{don}} = 0.10 \, \mu\text{s}$
- $t_{\text{Eon}} = 0.18 \, \mu\text{s}$

Figure 3

Turn-off Switching Waveforms & definition of t_f

Figure 4

Turn-on Switching Waveforms & definition of t_r
Switching Definitions neutral point IGBT (T2, T3 / D5, D6)

Figure 5 neutral point IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off}(100\%) = 69.93$ kW
- $E_{off}(100\%) = 3.32$ mJ
- $t_{Eoff} = 0.44$ μs

Figure 6 neutral point IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on}(100\%) = 69.9279$ kW
- $E_{on}(100\%) = 1.52$ mJ
- $t_{Eon} = 0.18$ μs

Figure 7 neutral point IGBT
Gate voltage vs Gate charge (measured)

- $V_{GEoff} = -15$ V
- $V_{GEon} = 15$ V
- $V_{d}(100\%) = 700$ V
- $I_{d}(100\%) = 100$ A
- $Q_g = 950.59$ nC

Figure 8 half bridge FWD
Turn-off Switching Waveforms & definition of t_{tr}

- $V_d(100\%) = 700$ V
- $I_d(100\%) = 100$ A
- $I_{RRM}(100\%) = -142$ A
- $t_{tr} = 0.07$ μs
Switching Definitions neutral point IGBT (T2, T3 / D5, D6)

Figure 9

Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} integrating time for Q_{rr})

- $I_d(100\%) = 100$ A
- $Q_{rr}(100\%) = 12.71$ µC
- $t_{Qrr} = 1.00$ µs

Figure 10

Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} integrating time for E_{rec})

- $P_{rec}(100\%) = 69.93$ kW
- $E_{rec}(100\%) = 3.61$ mJ
- $t_{Erec} = 1.00$ µs

neutral point IGBT switching measurement circuit (T2, T3 / D5, D6)

Figure 11

Diagram of the neutral point IGBT switching measurement circuit (T2, T3 / D5, D6)
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12mm housing</td>
<td>10-FY12NMA160SH-M420F</td>
<td>M420F</td>
<td>M420F</td>
</tr>
<tr>
<td>without thermal paste 12mm housing with PressFiT</td>
<td>10-PY12NMA160SH-M420FY</td>
<td>M420FY</td>
<td>M420FY</td>
</tr>
<tr>
<td>with phase change thermal paste 12mm housing</td>
<td>10-FY12NMA160SH-M420F/-3/</td>
<td>M420F</td>
<td>M420F</td>
</tr>
<tr>
<td>with phase change thermal paste 12mm housing with PressFiT</td>
<td>10-PY12NMA160SH-M420FY/-3/</td>
<td>M420FY</td>
<td>M420FY</td>
</tr>
</tbody>
</table>

Outline

![Outline Diagram]

Pinout

![Pinout Diagram]
DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.