Features
- neutral point clamped inverter
- reactive power capability
- clip-in pcb mounting
- low inductance layout

Target Applications
- solar inverter
- UPS

Types
- 10-FZ12NMA040SH-M267F
- 10-PZ12NMA040SH-M267FY
- 10-F012NMA040SH-M267F09

Maximum Ratings

Half Bridge IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>(V_{CE})</td>
<td>(T_j=T_{j,max})</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>(I_C)</td>
<td>(T_j=T_{j,\text{max}})</td>
<td>41</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{\text{pulse}})</td>
<td>(I_u) limited by (T_j=80^\circ \text{C})</td>
<td>53</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>(P_{\text{tot}})</td>
<td>(T_j=T_{j,\text{max}})</td>
<td>107</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>(V_{GE})</td>
<td>(T_j\leq 150^\circ \text{C})</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>(I_{\text{SC}})</td>
<td>(V_{DD}=15V)</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area (RBSOA)</td>
<td>(I_{\text{FWD}})</td>
<td>(V_{CE, \text{max}}=1200V) (T_{j,\text{max}}=150^\circ \text{C})</td>
<td>80</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_j=80^\circ \text{C})</td>
<td>(T_j=T_{j,\text{max}})</td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Neutral Point FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{\text{RRM}})</td>
<td>(T_j=T_{j,\text{max}})</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_F)</td>
<td>(T_j=T_{j,\text{max}})</td>
<td>21</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>(I_{\text{FMS}})</td>
<td>(T_j=80^\circ \text{C})</td>
<td>41</td>
<td>A</td>
</tr>
<tr>
<td>(I_2t)-value</td>
<td>(f_t)</td>
<td>(I_u=8.3\text{ms, sin} 180^\circ)</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{\text{FRM}})</td>
<td>(I_u) limited by (T_j=80^\circ \text{C})</td>
<td>60</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>(P_{\text{tot}})</td>
<td>(T_j=T_{j,\text{max}})</td>
<td>48</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_j=80^\circ \text{C})</td>
<td>(T_j=T_{j,\text{max}})</td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral Point IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>(V_{CE})</td>
<td>(T_j=T_{max}) (T_h=80°C)</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>(I_C)</td>
<td>(T_j=T_{max}) (T_h=80°C)</td>
<td>31</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{CP RM})</td>
<td>(I_p) limited by (T_j)</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>(P_{tot})</td>
<td>(T_j=T_{max}) (T_h=80°C)</td>
<td>57</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>(V_{GE})</td>
<td>(\pm 20) (V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>(I_{SC})</td>
<td>(V_{CC}=15V)</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td>Turn off safe operating area (RBSOA)</td>
<td>(I_{FSM})</td>
<td>(V_{CC}=600V) (T_{j}=150°C)</td>
<td>60</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{jmax})</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Half Bridge FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{RRM})</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_F)</td>
<td>(T_j=T_{max}) (T_h=80°C)</td>
<td>13</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>(I_{SOV})</td>
<td>(I_p=10ms \cdot \sin 180°)</td>
<td>65</td>
<td>A</td>
</tr>
<tr>
<td>(I_2t)-value</td>
<td>(P_t)</td>
<td></td>
<td>21</td>
<td>A²s</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{FRM})</td>
<td>(I_p) limited by (T_j)</td>
<td>45</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>(P_{tot})</td>
<td>(T_j=T_{max}) (T_h=80°C)</td>
<td>31</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{jmax})</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{stg})</td>
<td></td>
<td>-40…+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>(T_{op})</td>
<td></td>
<td>-40…+((T_{jmax}) - 25)</td>
<td>°C</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>(V_{in})</td>
<td>(t=2s) DC voltage</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$T_j=25^\circ C$</td>
<td>5.2 V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td>$T_j=150^\circ C$</td>
<td>6.4 V</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I_{CEO}</td>
<td>$T_j=150^\circ C$</td>
<td>0.02 mA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{DSS}</td>
<td>$T_j=150^\circ C$</td>
<td>120 nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{int}</td>
<td>none</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>$T_j=25^\circ C$</td>
<td>70 ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td>$T_j=150^\circ C$</td>
<td>0.52 mWs</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>$T_j=25^\circ C$</td>
<td>166 ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td>$T_j=150^\circ C$</td>
<td>1.16 mWs</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td>$T_j=25^\circ C$</td>
<td>0.67 mWs</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td>$T_j=150^\circ C$</td>
<td>1.16 mWs</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>$f=1\text{MHz}$</td>
<td>2300 pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>$f=1\text{MHz}$</td>
<td>160 pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td>$T_j=25^\circ C$</td>
<td>135 pF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{Gsat}</td>
<td>$T_j=25^\circ C$</td>
<td>203 nC</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness 50um $A = 1 \text{ W/mK}$</td>
<td>0.89 K/W</td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_D</td>
<td>30 ns</td>
<td>2.28 V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_L</td>
<td>$T_j=25^\circ C$</td>
<td>2.71 V</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{DSS}</td>
<td>$T_j=150^\circ C$</td>
<td>100 µA</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>$T_j=25^\circ C$</td>
<td>1.74 A</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rec}</td>
<td>$T_j=150^\circ C$</td>
<td>41 A/µs</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>di/dt</td>
<td>$T_j=25^\circ C$</td>
<td>0.92 µC</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>$T_j=150^\circ C$</td>
<td>0.03 mWs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Thermal grease thickness 50um $A = 1 \text{ W/mK}$</td>
<td>1.98 K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral Point IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>V</td>
<td>$0,002$</td>
<td>$T_j=25°C$</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CE(sat)}$</td>
<td>V</td>
<td>$1,1$</td>
<td>$T_j=25°C$</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>I_{GS}</td>
<td>mA</td>
<td>$0,0016$</td>
<td>$T_j=25°C$</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GEE}</td>
<td>mA</td>
<td>200</td>
<td>$T_j=150°C$</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{pp}</td>
<td>Ω</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{tr}</td>
<td>ns</td>
<td>15</td>
<td>$T_j=25°C$</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>ns</td>
<td>350</td>
<td>$T_j=150°C$</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>ns</td>
<td>28</td>
<td>$T_j=25°C$</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>ns</td>
<td>50</td>
<td>$T_j=150°C$</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td>mWs</td>
<td>$1,66$</td>
<td>$T_j=25°C$</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td>mWs</td>
<td>$0,98$</td>
<td>$T_j=150°C$</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>pF</td>
<td>1630</td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>pF</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{ge}</td>
<td>nC</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>K/W</td>
<td>$1,68$</td>
<td></td>
</tr>
<tr>
<td>Half Bridge FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_d</td>
<td>V</td>
<td>15</td>
<td>$T_j=25°C$</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_d</td>
<td>mA</td>
<td>1200</td>
<td>$T_j=125°C$</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{off}</td>
<td>mA</td>
<td>47</td>
<td>$T_j=25°C$</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>ns</td>
<td>44</td>
<td>$T_j=125°C$</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{r}</td>
<td>μC</td>
<td>$1,47$</td>
<td>$T_j=125°C$</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>di/dt_{max}</td>
<td>A/μs</td>
<td>3534</td>
<td>$T_j=125°C$</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{off}</td>
<td>mWs</td>
<td>$0,71$</td>
<td>$T_j=125°C$</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>K/W</td>
<td>$2,27$</td>
<td></td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td>Ω</td>
<td>22000</td>
<td>$T_j=25°C$</td>
</tr>
<tr>
<td>Deviation of R_{100}</td>
<td>$\Delta R/R$</td>
<td>%</td>
<td>-5</td>
<td>$T_j=100°C$</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>mW</td>
<td>200</td>
<td>$T_j=25°C$</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>$B_{(P0)}$</td>
<td>mW/K</td>
<td>2</td>
<td>$T_j=25°C$</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(IS=8)}$</td>
<td>K</td>
<td>3950</td>
<td>$T_j=25°C$</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(IS=10)}$</td>
<td>K</td>
<td>3996</td>
<td>$T_j=25°C$</td>
</tr>
</tbody>
</table>

Vincotech

copyright Vincotech
Figure 1

Typical output characteristics

\[I_C = f(V_{CE}) \]

- \(t_p = 250 \ \mu s \)
- \(T_j = 25 ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 2

Typical output characteristics

\[I_C = f(V_{CE}) \]

- \(t_p = 250 \ \mu s \)
- \(T_j = 125 ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

Figure 3

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

- \(\tau_p = 250 \ \mu s \)
- \(T_j = 25 ^\circ C \)

Figure 4

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

- \(\tau_p = 250 \ \mu s \)
- \(T_j = 25 ^\circ C \)
Figure 5 IGBT
Typical switching energy losses as a function of collector current
\[E = f(I_c) \]

With an inductive load at:
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm15 \) V
- \(R_{on} = 8 \) Ω
- \(R_{off} = 8 \) Ω

Figure 6 IGBT
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at:
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm15 \) V
- \(R_{on} = 8 \) Ω
- \(R_{off} = 8 \) Ω

Figure 7 FWD
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_c) \]

With an inductive load at:
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm15 \) V
- \(R_{on} = 8 \) Ω
- \(R_{off} = 8 \) Ω

Figure 8 FWD
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at:
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm15 \) V
- \(R_{on} = 8 \) Ω
- \(R_{off} = 8 \) Ω
Half Bridge

IGBT

Figure 9
Typical switching times as a function of collector current
\[t = f(I_C) \]

![Graph showing typical switching times as a function of collector current.]

With an inductive load at
- \(T_j = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 8 \) Ω
- \(R_{goff} = 8 \) Ω

Figure 10
Typical switching times as a function of gate resistor
\[t = f(R_G) \]

![Graph showing typical switching times as a function of gate resistor.]

With an inductive load at
- \(T_j = 125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 28 \) A

FWD

Figure 11
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

![Graph showing typical reverse recovery time as a function of collector current.]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 8 \) Ω

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_\text{gon}) \]

![Graph showing typical reverse recovery time as a function of IGBT turn on gate resistor.]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_V = 28 \) A
Half Bridge
Half Bridge IGBT and Neutral Point FWD

Figure 13 FWD
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

\[Q_{rr} \text{ (mC)} \]
\[0 \rightarrow 1.2 \]
\[0 \rightarrow 1.2 \]
\[0 \rightarrow 0.6 \]
\[0 \rightarrow 0.6 \]
\[0 \rightarrow 0.3 \]
\[0 \rightarrow 0.3 \]
\[0 \rightarrow 0 \]
\[0 \rightarrow 0 \]
\[I_C \text{ (A)} \]
\[0 \rightarrow 60 \]
\[0 \rightarrow 60 \]

At
\[T_j = 25/125 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[R_{gon} = 8 \Omega \]

Figure 14 FWD
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

\[Q_{rr} \text{ (mC)} \]
\[0 \rightarrow 1.2 \]
\[0 \rightarrow 0.9 \]
\[0 \rightarrow 0.6 \]
\[0 \rightarrow 0.3 \]
\[R_{gon} \text{ (Ω)} \]
\[0 \rightarrow 40 \]
\[0 \rightarrow 40 \]

At
\[T_j = 25/125 \degree C \]
\[V_{TH} = 350 \text{ V} \]
\[I_F = 28 \text{ A} \]
\[V_{GE} = \pm 15 \text{ V} \]

Figure 15 FWD
Typical reverse recovery current as a function of collector current
\[I_{\text{RRM}} = f(I_C) \]

\[I_{\text{RRM}} \text{ (A)} \]
\[0 \rightarrow 60 \]
\[0 \rightarrow 60 \]
\[0 \rightarrow 30 \]
\[0 \rightarrow 30 \]
\[0 \rightarrow 15 \]
\[0 \rightarrow 15 \]
\[0 \rightarrow 0 \]
\[0 \rightarrow 0 \]
\[I_C \text{ (A)} \]
\[0 \rightarrow 60 \]
\[0 \rightarrow 60 \]

At
\[T_j = 25/125 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[R_{gon} = 8 \Omega \]

Figure 16 FWD
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{\text{RRM}} = f(R_{gon}) \]

\[I_{\text{RRM}} \text{ (A)} \]
\[0 \rightarrow 60 \]
\[0 \rightarrow 45 \]
\[0 \rightarrow 30 \]
\[0 \rightarrow 15 \]
\[0 \rightarrow 0 \]
\[R_{gon} \text{ (Ω)} \]
\[0 \rightarrow 40 \]
\[0 \rightarrow 40 \]

At
\[T_j = 25/125 \degree C \]
\[V_{TH} = 350 \text{ V} \]
\[I_F = 28 \text{ A} \]
\[V_{GE} = \pm 15 \text{ V} \]
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI}{dt}, \frac{dI_{\text{rec}}}{dt} = f(I_c) \]

<table>
<thead>
<tr>
<th>(I_c) (A)</th>
<th>(\frac{dI_{\text{rec}}}{dt}) (A/ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3300</td>
<td>0</td>
</tr>
<tr>
<td>6000</td>
<td>0.1</td>
</tr>
<tr>
<td>9000</td>
<td>0.2</td>
</tr>
<tr>
<td>12000</td>
<td>0.3</td>
</tr>
<tr>
<td>15000</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(I_c) (A)</th>
<th>(\frac{dI}{dt}) (A/ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3300</td>
<td>0.5</td>
</tr>
<tr>
<td>6000</td>
<td>1.0</td>
</tr>
<tr>
<td>9000</td>
<td>1.5</td>
</tr>
<tr>
<td>12000</td>
<td>2.0</td>
</tr>
<tr>
<td>15000</td>
<td>2.5</td>
</tr>
</tbody>
</table>

At:
\[T_j = 25/125 \; ^\circ\text{C} \]
\[V_{GE} = 350 \; \text{V} \]
\[V_{CE} = \pm 15 \; \text{V} \]
\[R_{gon} = 8 \; \Omega \]

IGBT transient thermal impedance as a function of pulse width
\[Z_{\text{thJH}} = f(t_p) \]

<table>
<thead>
<tr>
<th>(D)</th>
<th>(t_p/T)</th>
<th>(Z_{\text{thJH}}) (K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>0.01</td>
<td>0.2</td>
<td>0.02</td>
</tr>
<tr>
<td>0.05</td>
<td>0.3</td>
<td>0.05</td>
</tr>
<tr>
<td>0.001</td>
<td>0.4</td>
<td>0.01</td>
</tr>
</tbody>
</table>

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R) (C/W)</th>
<th>(\text{Tau}) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>1.1E+00</td>
</tr>
<tr>
<td>0.17</td>
<td>2.9E-01</td>
</tr>
<tr>
<td>0.47</td>
<td>9.1E-02</td>
</tr>
<tr>
<td>0.12</td>
<td>1.4E-02</td>
</tr>
<tr>
<td>0.04</td>
<td>9.2E-04</td>
</tr>
</tbody>
</table>

FWD transient thermal impedance as a function of pulse width
\[Z_{\text{thJH}} = f(t_p) \]

<table>
<thead>
<tr>
<th>(D)</th>
<th>(t_p/T)</th>
<th>(Z_{\text{thJH}}) (K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>0.01</td>
<td>0.2</td>
<td>0.02</td>
</tr>
<tr>
<td>0.05</td>
<td>0.3</td>
<td>0.05</td>
</tr>
<tr>
<td>0.001</td>
<td>0.4</td>
<td>0.01</td>
</tr>
</tbody>
</table>

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (C/W)</th>
<th>(\text{Tau}) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>5.6E+00</td>
</tr>
<tr>
<td>0.17</td>
<td>1.2E+00</td>
</tr>
<tr>
<td>0.52</td>
<td>2.2E-01</td>
</tr>
<tr>
<td>0.75</td>
<td>7.6E-02</td>
</tr>
<tr>
<td>0.25</td>
<td>1.5E-02</td>
</tr>
<tr>
<td>0.13</td>
<td>2.8E-03</td>
</tr>
</tbody>
</table>
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

Collector current as a function of heatsink temperature

\[I_C = f(T_h) \]

At

\[T_j = 175 \quad ^\circ \text{C} \]

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At

\[T_j = 175 \quad ^\circ \text{C} \]

\[V_{GE} = 15 \quad \text{V} \]
Half Bridge

Half Bridge IGBT and Neutral Point FWD

Figure 25
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

Figure 26
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At
- \(D = \) single pulse
- \(T_h = \) 80 \(^\circ\)C
- \(V_{GE} = \) ±15 V
- \(T_j = T_{j\text{max}} \) \(^\circ\)C

Figure 27
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At
- \(T_j = T_{j\text{max}} - 25 \) \(^\circ\)C
- DC link_minus = DC link_plus
- Switching mode: 3 level switching

Copyright Vincotech
Neutral point
Neutral Point IGBT and Half Bridge FWD

Figure 1
Typical output characteristics
$I_C = f(V_{CE})$

![IGBT Figure 1](image1)

At
- $t_p = 250 \mu s$
- $T_j = 25^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics
$I_C = f(V_{CE})$

![IGBT Figure 2](image2)

At
- $t_p = 250 \mu s$
- $T_j = 125^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics
$I_C = f(V_{GE})$

![IGBT Figure 3](image3)

At
- $t_p = 250 \mu s$
- $V_{CE} = 10 V$
- $T_j = 25^\circ C$

Figure 4
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$

![FWD Figure 4](image4)

At
- $t_p = 250 \mu s$
- $T_j = T_{j,\text{max}}$
- $T_j = 25^\circ C$
- $T_j = T_{j,\text{max}} - 25^\circ C$
Neutral point
Neutral Point IGBT and Half Bridge FWD

Figure 5
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]
With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gON} = 16 \) Ω
- \(I_C = 28 \) A

Figure 6
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]
With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 28 \) A

Figure 7
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_C) \]
With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gON} = 16 \) Ω

Figure 8
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]
With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 28 \) A
Neutral point
Neutral Point IGBT and Half Bridge FWD

Figure 9
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
- \(T_j = 125 \, ^\circ \text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 16 \, \Omega \)
- \(R_{goff} = 16 \, \Omega \)

Figure 10
Typical switching times as a function of gate resistor
\[t = f(R_G) \]

With an inductive load at
- \(T_j = 125 \, ^\circ \text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 28 \, \text{A} \)

Figure 11
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
- \(T_j = 25/125 \, ^\circ \text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 16 \, \Omega \)

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{gon}) \]

At
- \(T_j = 25/125 \, ^\circ \text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(I_F = 28 \, \text{A} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
Neutral point

Neutral Point IGBT and Half Bridge FWD

Figure 13
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 16 \) Ω

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_F = 28 \) A

Figure 15
Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 16 \) Ω

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_F = 28 \) A
Neutral point
Neutral Point IGBT and Half Bridge FWD

Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

Figure 19
IGBT transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

Figure 20
FWD transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

IGBT thermal model values
\[
\begin{array}{c|c|c|c|c|c|c|c|c}
\text{R (C/W)} & \text{0.07} & \text{0.17} & \text{0.47} & \text{0.56} & \text{0.32} & \text{0.09} \\
\text{R (C/W)} & 4.8E+00 & 1.0E+00 & 1.9E-01 & 6.8E-02 & 1.2E-02 & 2.5E-03 \\
\text{R (C/W)} & 0.05 & 0.01 & 0.005 & 0.000 & & & \\
\end{array}
\]

FWD thermal model values
\[
\begin{array}{c|c|c|c|c|c|c|c|c}
\text{R (C/W)} & \text{0.04} & \text{0.13} & \text{0.53} & \text{0.66} & \text{0.42} & \text{0.29} & \text{0.19} \\
\text{R (C/W)} & 9.1E+00 & 9.0E-01 & 1.5E-01 & 5.1E-02 & 1.1E-02 & 2.5E-03 & 5.8E-04 \\
\text{R (C/W)} & & & & & & & \\
\end{array}
\]

Notes:
- \(T_j = 25/125 \ ^\circ\text{C} \)
- \(V_{GE} = \pm 15 \ \text{V} \)
- \(I_F = 28 \ \text{A} \)
- \(V_{GE} = \pm 15 \ \text{V} \)
- \(R_{gon} = 1.6 \ \Omega \)
- \(R_{thJH} = 1.68 \ \text{K/W} \)
- \(R_{thJH} = 2.27 \ \text{K/W} \)

Copyright Vincotech
Neutral point
Neutral Point IGBT and Half Bridge FWD

Figure 21
IGBT
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

Figure 22
IGBT
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]
\[V_{GE} = 15 \, \text{V} \]

Figure 23
FWD
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 150 \, ^\circ\text{C} \]

Figure 24
FWD
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 150 \, ^\circ\text{C} \]
Neutral point
Neutral Point IGBT and Half Bridge FWD

Figure 25
Safe operating area as a function of collector-emitter voltage
\[I_C = f(V_{CE}) \]

- **At**
 - \(D = \) single pulse
 - \(T_h = 80 \) °C
 - \(V_{GE} = 15 \) V
 - \(T_j = T_{\text{max}} \) °C

Figure 26
Gate voltage vs Gate charge
\[V_{GE} = f(Q) \]

- **At**
 - \(I_C = 30 \) A

Figure 27
Reverse bias safe operating area
\[I_C = f(V_{CE}) \]

- **At**
 - \(T_j = T_{\text{max}}-25 \) °C
 - DC link minus\(=\)DC link plus
 - Switching mode: 3 level switching
Thermistor

Figure 1

Typical NTC characteristic
as a function of temperature

\[R_T = f(T) \]
Switching Definitions Neutral point IGBT

General conditions

- $T_J = 125 \degree C$
- $R_{son} = 16 \Omega$
- $R_{popt} = 16 \Omega$

Figure 1
Turn-off Switching Waveforms & definition of t_{off}, t_{Eoff}
(t_{Eoff} = integrating time for E_{off})

- $V_{GE}(0\%) = -15$ V
- $V_{GE}(100\%) = 15$ V
- $V_C(100\%) = 350$ V
- $I_C(100\%) = 28$ A
- $t_{off} = 0.19 \mu s$
- $t_{Eoff} = 0.39 \mu s$

Figure 2
Turn-on Switching Waveforms & definition of t_{on}, t_{Eon}
(t_{Eon} = integrating time for E_{on})

- $V_{GE}(0\%) = -15$ V
- $V_{GE}(100\%) = 15$ V
- $V_C(100\%) = 350$ V
- $I_C(100\%) = 28$ A
- $t_{on} = 0.11 \mu s$
- $t_{Eon} = 0.26 \mu s$

Figure 3
Turn-off Switching Waveforms & definition of t_f

- $V_C(100\%) = 350$ V
- $I_C(100\%) = 28$ A
- $t_f = 0.09 \mu s$

Figure 4
Turn-on Switching Waveforms & definition of t_r

- $V_C(100\%) = 350$ V
- $I_C(100\%) = 28$ A
- $t_r = 0.02 \mu s$
Switching Definitions Neutral point IGBT

Figure 5 Neutral point IGBT
Turn-off Switching Waveforms & definition of $t_{E_{off}}$

![Graph showing turn-off switching waveforms with definitions of P_{off}, E_{off}, and $t_{E_{off}}$.]

- $P_{off} (100\%) = 9.70 \text{ kW}$
- $E_{off} (100\%) = 0.98 \text{ mJ}$
- $t_{E_{off}} = 0.39 \mu\text{s}$

Figure 6 Neutral point IGBT
Turn-on Switching Waveforms & definition of $t_{E_{on}}$

![Graph showing turn-on switching waveforms with definitions of P_{on}, E_{on}, and $t_{E_{on}}$.]

- $P_{on} (100\%) = 9.70 \text{ kW}$
- $E_{on} (100\%) = 0.66 \text{ mJ}$
- $t_{E_{on}} = 0.26 \mu\text{s}$

Figure 7 Neutral point IGBT
Gate voltage vs Gate charge (measured)

![Graph showing gate voltage vs gate charge with values $V_{G_{off}}$, $V_{G_{on}}$, $V_{CE_{3\%}}$, $V_{CE_{3\%}}$, $I_{C_{1\%}}$, and Q_g.]

- $V_{G_{off}} = -15 \text{ V}$
- $V_{G_{on}} = 15 \text{ V}$
- $V_{CE_{3\%}} = 350 \text{ V}$
- $I_{C_{1\%}} = 28 \text{ A}$
- $Q_g = 277 \text{ nC}$

Figure 8 Neutral point FWD
Turn-off Switching Waveforms & definition of t_{rr}

![Graph showing turn-off switching waveforms with definitions of V_d, i_d, and t_{rr}.]

- $V_d (100\%) = 350 \text{ V}$
- $i_d (100\%) = 28 \text{ A}$
- $t_{rr} (100\%) = -44 \text{ A}$
- $t_{rr} = 0.11 \mu\text{s}$
Switching Definitions Neutral point IGBT

Figure 9
Neutral point IGBT

Turn-on Switching Waveforms & definition of $t_{Q_{rr}}$

(t$_{Q_{rr}}$ = integrating time for Q$_{rr}$)

- $I_d(100%) = 28$ A
- $Q_{rr}(100%) = 2.73$ µC
- $t_{Q_{rr}} = 1.00$ µs

Figure 10
Neutral point FWD

Turn-on Switching Waveforms & definition of $t_{E_{rec}}$

($t_{E_{rec}}$ = integrating time for E$_{rec}$)

- $P_{rec}(100%) = 9.70$ kW
- $E_{rec}(100%) = 0.71$ mJ
- $t_{E_{rec}} = 1.00$ µs

Measurement circuits

Figure 11
BOOST stage switching measurement circuit
Switching Definitions Half Bridge IGBT

General conditions

- $T_J = 125^\circ C$
- $R_{on} = 8 \Omega$
- $R_{off} = 8 \Omega$

Figure 1
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t_{off}, t_{on}
(t_{off} = integrating time for E_{off})

- $V_{CE} (0\%) = -15$ V
- $V_{CE} (100\%) = 15$ V
- $I_C (100\%) = 28$ A
- $t_{off} = 0.22 \mu s$
- $t_{on} = 0.61 \mu s$

Figure 2
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t_{on}, t_{on}
(t_{on} = integrating time for E_{on})

- $V_{CE} (0\%) = -15$ V
- $V_{CE} (100\%) = 15$ V
- $V_C (100\%) = 700$ V
- $I_C (100\%) = 28$ A
- $t_{on} = 0.07 \mu s$
- $t_{on} = 0.16 \mu s$

Figure 3
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t_r

- $V_C (100\%) = 700$ V
- $I_C (100\%) = 28$ A
- $t_r = 0.08 \mu s$

Figure 4
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t_r

- $V_C (100\%) = 700$ V
- $I_C (100\%) = 28$ A
- $t_r = 0.02 \mu s$
Switching Definitions Half Bridge IGBT

Figure 5
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off} (100\%) = 19.50$ kW
- $E_{off} (100\%) = 1.16$ mJ
- $t_{Eoff} = 0.61$ µs

Figure 6
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on} (100\%) = 19.50$ kW
- $E_{on} (100\%) = 0.52$ mJ
- $t_{Eon} = 0.16$ µs

Figure 7
Half Bridge IGBT
Gate voltage vs Gate charge (measured)

- $V_{GEoff} = -15$ V
- $V_{GEon} = 15$ V
- $V_C (100\%) = 700$ V
- $I_C (100\%) = 28$ A
- $Q_g = 299.41$ nC

Figure 8
Half Bridge FWD
Turn-off Switching Waveforms & definition of t_{rr}

- $V_4 (100\%) = 700$ V
- $I_4 (100\%) = 28$ A
- $I_{RRM} (100\%) = -41$ A
- $t_{rr} = 0.04$ µs
Switching Definitions Half Bridge IGBT

Figure 9
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t_Qrr
(t_Qrr = integrating time for Qrr)

I_d (100%) = 28 A
Qrr (100%) = 0.92 µC
t_Qrr = 0.08 µs

Figure 10
Half Bridge FWD
Turn-on Switching Waveforms & definition of t_Erec
(t_Erec = integrating time for Erec)

P_rec (100%) = 19.50 kW
E_rec (100%) = 0.12 mJ
t_Erec = 0.08 µs

Measurement circuits

Figure 11
BUCK stage switching measurement circuit
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o thermal paste 12mm housing solder pin</td>
<td>10-FZ12NMA040SH-M267F</td>
<td>M267F</td>
<td>M267F</td>
</tr>
<tr>
<td>w/o thermal paste 12mm housing Press-fit pin</td>
<td>10-PZ12NMA040SH-M267FY</td>
<td>M267FY</td>
<td>M267FY</td>
</tr>
<tr>
<td>w/o thermal paste 17mm housing solder pin</td>
<td>10-F012NMA040SH-M267F09</td>
<td>M267F09</td>
<td>M267F09</td>
</tr>
</tbody>
</table>

Outline

Pinout
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.