flow 3xMNPC 1

1200 V / 25 A

datasheet

Features

- 3 phase mixed voltage component topology
- neutral point clamped inverter
- reactive power capability
- low inductance layout

Target Applications

- solar inverter
- UPS

Types

- 10-FY12M3A025SH-M746F08
- 10-P112M3A025SH-M746F08Y
- 10-F112M3A025SH-M746F09
- 10-P112M3A025SH-M746F09Y

Maximum Ratings

$T_j = 25 \degree C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CES}</td>
<td>$T_j = T_{jmax}$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_j = T_{jmax}$, $T_s = 80 \degree C$</td>
<td>23</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>I_{DSM}</td>
<td>I_s limited by T_{jmax}</td>
<td>75</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>I_{FRR}</td>
<td>$T_j \leq 150 \degree C$, $V_{CES} = V_{RRM}$</td>
<td>75</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>P_{tot}</td>
<td>$T_j = T_{jmax}$</td>
<td>58</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>I_{SC}</td>
<td>$T_j \leq 150 \degree C$, $V_{CC} = 15 , V$</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Neutral P. FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{DSM}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_D</td>
<td>$T_j = T_{jmax}$, $T_s = 80 \degree C$</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{FSM}</td>
<td>I_s limited by T_{jmax}, $T_j = 100 \degree C$</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>$T_j = T_{jmax}$, $T_s = 80 \degree C$</td>
<td>28</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>(V_{CES})</td>
<td>(T_j = 25 , ^\circ C)</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>(I_{C})</td>
<td>(T_j = T_{	ext{max}}), (T_s = 80 , ^\circ C)</td>
<td>18</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>(I_{\text{pul}})</td>
<td>(T_j \leq 150 , ^\circ C)</td>
<td>60</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>(\tau), limited by (T_{\text{max}})</td>
<td>(V_{\text{GE}} = 15 , V)</td>
<td>6</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>Power dissipation per IGBT</td>
<td>(P_{\text{tot}})</td>
<td>(T_j = T_{\text{max}}), (T_s = 80 , ^\circ C)</td>
<td>31</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>(V_{\text{GE}})</td>
<td>(T_j \leq 150 , ^\circ C)</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>(t_{\text{DC}})</td>
<td>(V_{\text{CE}} = 15 , V)</td>
<td>360</td>
<td>MS</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{\text{max}})</td>
<td>(T_j = T_{\text{max}}), (T_s = 80 , ^\circ C)</td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Half Bridge FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{\text{RSM}})</td>
<td>(T_j = T_{\text{max}}), (T_s = 80 , ^\circ C)</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_{F})</td>
<td>(T_j = T_{\text{max}}), (T_s = 80 , ^\circ C)</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>(I_{\text{FM}})</td>
<td>(T_j = T_{\text{max}}), (T_s = 80 , ^\circ C)</td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>(P_{\text{tot}})</td>
<td>(T_j = T_{\text{max}}), (T_s = 80 , ^\circ C)</td>
<td>26</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{\text{max}})</td>
<td>(T_j = T_{\text{max}}), (T_s = 80 , ^\circ C)</td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>(T_{\text{Stg}})</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>(T_{\text{op}})</td>
<td></td>
<td>-40...+((T_{\text{max}} - 25))</td>
<td>°C</td>
</tr>
</tbody>
</table>

Insulation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation voltage</td>
<td>(V_u)</td>
<td>(t = 2 , s)</td>
<td>6000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t = 1 , \text{min})</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td>12 mm Solder pin</td>
<td>8,19</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 mm Press-fit pin</td>
<td>7,89</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 mm Solder pin</td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 mm Press-fit pin</td>
<td>12,65</td>
<td>mm</td>
</tr>
</tbody>
</table>

* 100 % tested in production
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CE}</td>
<td>25</td>
<td>0,0085</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CES}</td>
<td>25</td>
<td>0,0024</td>
<td>mA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gint}</td>
<td></td>
<td>none</td>
<td>Ω</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>25</td>
<td>1,71</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>25</td>
<td>2,42</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>25</td>
<td>116</td>
<td>µs</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td>25</td>
<td>0,38</td>
<td>mWs</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>25</td>
<td>0,14</td>
<td>pF</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>25</td>
<td>116</td>
<td>µs</td>
</tr>
<tr>
<td>FALL time</td>
<td>t_{f}</td>
<td>25</td>
<td>116</td>
<td>µs</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>25</td>
<td>0,05</td>
<td>mWs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{th(j-s)}</td>
<td>Thermal grease thickness ≤ 50um λ = 3 W/mK</td>
<td>1,64</td>
<td>K/W</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{G}</td>
<td>25</td>
<td>155</td>
<td>nC</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{G}</td>
<td>25</td>
<td>155</td>
<td>nC</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{COM}</td>
<td>25</td>
<td>120</td>
<td>nA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{G}</td>
<td>25</td>
<td>120</td>
<td>nA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{G}</td>
<td>25</td>
<td>120</td>
<td>nA</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>25</td>
<td>1,71</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>25</td>
<td>2,42</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovery current</td>
<td>I_{RRM}</td>
<td>25</td>
<td>0,38</td>
<td>mWs</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>25</td>
<td>0,05</td>
<td>mWs</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{L}</td>
<td>25</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>25</td>
<td>0,05</td>
<td>mWs</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>25</td>
<td>0,05</td>
<td>mWs</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RRM}</td>
<td>25</td>
<td>0,38</td>
<td>mWs</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>25</td>
<td>0,05</td>
<td>mWs</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{G}</td>
<td>25</td>
<td>155</td>
<td>nC</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{G}</td>
<td>25</td>
<td>155</td>
<td>nC</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{COM}</td>
<td>25</td>
<td>120</td>
<td>nA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{G}</td>
<td>25</td>
<td>120</td>
<td>nA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{G}</td>
<td>25</td>
<td>120</td>
<td>nA</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>25</td>
<td>1,71</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>25</td>
<td>2,42</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>25</td>
<td>0,05</td>
<td>mWs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{th(j-s)}</td>
<td>Thermal grease thickness ≤ 50um λ = 3 W/mK</td>
<td>1,64</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Neutral P. FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse leakage current</td>
<td>I_{L}</td>
<td>25</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RRM}</td>
<td>25</td>
<td>0,38</td>
<td>mWs</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>25</td>
<td>0,05</td>
<td>mWs</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>25</td>
<td>0,05</td>
<td>mWs</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(di/dt)_{max}</td>
<td>25</td>
<td>0,44</td>
<td>µC</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>25</td>
<td>0,05</td>
<td>mWs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{th(j-s)}</td>
<td>Thermal grease thickness ≤ 50um λ = 3 W/mK</td>
<td>1,64</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral P. IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{EE} = V_{CE}$</td>
<td>0,0012</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td></td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off</td>
<td>I_{CEC}</td>
<td></td>
<td>0, 600</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{leg}</td>
<td></td>
<td>20</td>
<td>nA</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gint}</td>
<td></td>
<td>none</td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>$R_{pm} = 16 , \Omega$</td>
<td>±15</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>$R_{pm} = 16 , \Omega$</td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td>72</td>
<td>mW</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td>14</td>
<td>mW</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>$f = 1 , MHz$</td>
<td>71</td>
<td>pF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{gs}</td>
<td></td>
<td>15</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease thickness ≤ 50um $\lambda = 1 , W/mK$</td>
<td>3,09</td>
<td>K/W</td>
</tr>
<tr>
<td>Half Bridge FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td></td>
<td>8</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{R}</td>
<td></td>
<td>1,2</td>
<td>µA</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{rrm}</td>
<td>$R_{pm} = 16 , \Omega$</td>
<td>±15</td>
<td>µA</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>$R_{pm} = 16 , \Omega$</td>
<td>150</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{e}</td>
<td></td>
<td>24</td>
<td>µC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$\left</td>
<td>(d I/d t)_{max}\right</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rr}</td>
<td></td>
<td>0,14</td>
<td>mJ</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease thickness ≤ 50um $\lambda = 1 , W/mK$</td>
<td>3,65</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>25</td>
<td>Ω</td>
</tr>
<tr>
<td>Deviation of R_{on}</td>
<td>ΔR_{on}</td>
<td>$R_{on} = 1486 , \Omega$</td>
<td>100</td>
<td>%</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>25</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td>3,5</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>$B(25/55)$</td>
<td></td>
<td>25</td>
<td>K</td>
</tr>
<tr>
<td>B-value</td>
<td>$B(25/100)$</td>
<td></td>
<td>25</td>
<td>K</td>
</tr>
</tbody>
</table>

copyright Vincotech 4 12 Jul. 2017 / Revision 5
Half Bridge

Half Bridge IGBT & Neutral Point FWD

figure 1. IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 250 \ \mu s \)
- \(T_j = 25 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

figure 2. IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 250 \ \mu s \)
- \(T_j = 125 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

figure 3. IGBT

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

\[I_F = f(V_F) \]

At

- \(t_p = 250 \ \mu s \)
- \(T_j = 25 \ ^\circ C \)
- \(T_j = T_j\text{max} - 25 \ ^\circ C \)
- \(V_{CE} = 10 \ V \)
- \(V_{GE} \) from 7 V to 17 V in steps of 1 V

figure 4. FWD

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

\[I_F = f(V_F) \]

At

- \(t_p = 250 \ \mu s \)
Half Bridge

IGBT

Typical switching energy losses as a function of collector current

$$E = f(I_C)$$

![Graph showing typical switching energy losses as a function of collector current](image)

With an inductive load at:

- $$T_J = 25/125 \, ^\circ C$$
- $$V_{CE} = 350 \, V$$
- $$V_{GE} = \pm 15 \, V$$
- $$R_{gon} = 16 \, \Omega$$
- $$R_{goff} = 16 \, \Omega$$

IGBT

Typical switching energy losses as a function of gate resistor

$$E = f(R_G)$$

![Graph showing typical switching energy losses as a function of gate resistor](image)

With an inductive load at:

- $$T_J = 25/125 \, ^\circ C$$
- $$V_{CE} = 350 \, V$$
- $$V_{GE} = \pm 15 \, V$$
- $$I_C = 15 \, A$$

FWD

Typical reverse recovery energy loss as a function of collector current

$$E_{rec} = f(I_C)$$

![Graph showing typical reverse recovery energy loss as a function of collector current](image)

With an inductive load at:

- $$T_J = 25/125 \, ^\circ C$$
- $$V_{CE} = 350 \, V$$
- $$V_{GE} = \pm 15 \, V$$
- $$R_{gon} = 16 \, \Omega$$

FWD

Typical reverse recovery energy loss as a function of gate resistor

$$E_{rec} = f(R_G)$$

![Graph showing typical reverse recovery energy loss as a function of gate resistor](image)

With an inductive load at:

- $$T_J = 25/125 \, ^\circ C$$
- $$V_{CE} = 350 \, V$$
- $$V_{GE} = \pm 15 \, V$$
- $$I_C = 15 \, A$$
Half Bridge

IGBT

Typical switching times as a function of collector current

$t = f(I_C)$

![Graph showing typical switching times as a function of collector current.](image)

With an inductive load at

$T_J = 125 \, ^{\circ}\text{C}$

$V_{CE} = 350 \, \text{V}$

$V_{GE} = \pm 15 \, \text{V}$

$R_{gon} = 16 \, \Omega$

$R_{goff} = 16 \, \Omega$

IGBT

Typical switching times as a function of gate resistor

$t = f(R_G)$

![Graph showing typical switching times as a function of gate resistor.](image)

With an inductive load at

$T_J = 125 \, ^{\circ}\text{C}$

$V_{CE} = 350 \, \text{V}$

$V_{GE} = \pm 15 \, \text{V}$

$I_C = 15 \, \text{A}$

FWD

Typical reverse recovery time as a function of collector current

$t_{rr} = f(I_C)$

![Graph showing typical reverse recovery time as a function of collector current.](image)

At

$T_J = 25/125 \, ^{\circ}\text{C}$

$V_{CE} = 350 \, \text{V}$

$V_{GE} = \pm 15 \, \text{V}$

$R_{gon} = 16 \, \Omega$

FWD

Typical reverse recovery time as a function of IGBT turn on gate resistor

$t_{rr} = f(R_{gon})$

![Graph showing typical reverse recovery time as a function of IGBT turn on gate resistor.](image)

At

$T_J = 25/125 \, ^{\circ}\text{C}$

$V_B = 350 \, \text{V}$

$I_F = 15 \, \text{A}$

$V_{GE} = \pm 15 \, \text{V}$

copyright Vincotech
Half Bridge

Half Bridge IGBT & Neutral Point FWD

figure 13. FWD

Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

\[Q_{rr \text{ High T}} \]

\[Q_{rr \text{ Low T}} \]

At

- \(T_J = 25/125 \ ^\circ C \)
- \(V_{CE} = 350 \ V \)
- \(V_{GE} = \pm 15 \ V \)
- \(R_{gon} = 16 \ \Omega \)

figure 14. FWD

Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

\[Q_{rr \text{ High T}} \]

\[Q_{rr \text{ Low T}} \]

At

- \(T_J = 25/125 \ ^\circ C \)
- \(V_R = 350 \ V \)
- \(I_F = 15 \ A \)
- \(V_{GE} = \pm 15 \ V \)

figure 15. FWD

Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

\[I_{RRM \text{ High T}} \]

\[I_{RRM \text{ Low T}} \]

At

- \(T_J = 25/125 \ ^\circ C \)
- \(V_{CE} = 350 \ V \)
- \(V_{GE} = \pm 15 \ V \)
- \(I_F = 15 \ A \)
- \(R_{gon} = 16 \ \Omega \)

figure 16. FWD

Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

\[I_{RRM \text{ High T}} \]

\[I_{RRM \text{ Low T}} \]

At

- \(T_J = 25/125 \ ^\circ C \)
- \(V_R = 350 \ V \)
- \(I_F = 15 \ A \)
- \(V_{GE} = \pm 15 \ V \)

Copyright Vincotech
Half Bridge

Half Bridge IGBT & Neutral Point FWD

figure 17. FWD

Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
\frac{dI_{0}}{dt}, \frac{dI_{\text{rec}}}{dt} = f(I_{c})
\]

- \(I_{c} \) (A)
- \(\frac{dI_{0}}{dt} \) (A/ms)
- \(\frac{dI_{\text{rec}}}{dt} \) (A/ms)

At

- \(T_{j} = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{\text{gon}} = 16 \) Ω

figure 18. FWD

Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

\[
\frac{dI_{0}}{dt}, \frac{dI_{\text{rec}}}{dt} = f(R_{\text{gon}})
\]

- \(R_{\text{gon}} \) (Ω)
- \(\frac{dI_{0}}{dt} \) (A/ms)
- \(\frac{dI_{\text{rec}}}{dt} \) (A/ms)

At

- \(T_{j} = 25/125 \) °C
- \(V_{R} = 350 \) V
- \(I_{F} = 15 \) A
- \(V_{GE} = \pm 15 \) V

figure 19. IGBT

IGBT transient thermal impedance as a function of pulse width

\[
Z_{\text{th}(j-s)} = f(t_{p})
\]

- \(t_{p} \) (s)
- \(Z_{\text{th}(j-s)} \) (K/W)

At

- \(D = \frac{t_{p}}{T} \)
- \(R_{\text{th}(j-s)} = 1.64 \) K/W

IGBT thermal model values

- \(R \) (K/W)
 - 2.04E-01 7.24E-01
 - 6.14E-01 1.26E-01
 - 5.32E-01 4.64E-02
 - 2.06E-01 9.84E-03
 - 8.53E-02 1.28E-03

figure 20. FWD

FWD transient thermal impedance as a function of pulse width

\[
Z_{\text{th}(j-s)} = f(t_{p})
\]

- \(t_{p} \) (s)
- \(Z_{\text{th}(j-s)} \) (K/W)

At

- \(D = \frac{t_{p}}{T} \)
- \(R_{\text{th}(j-s)} = 2.48 \) K/W

FWD thermal model values

- \(R \) (K/W)
 - 7.74E-02 4.05E+00
 - 1.56E-01 5.69E-01
 - 1.07E+00 7.94E-02
 - 6.06E-01 1.99E-02
 - 3.14E-01 4.66E-03
 - 2.53E-01 9.24E-04
Half Bridge
Half Bridge IGBT & Neutral Point FWD

Figure 21.
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_s) \]

At

\[T_j = 175 \degree C \]

Figure 22.
Collector current as a function of heatsink temperature

\[I_C = f(T_s) \]

At

\[T_j = 175 \degree C \]

\[V_{GE} = 15 \text{ V} \]

Figure 23.
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_s) \]

At

\[T_j = 150 \degree C \]

Figure 24.
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At

\[T_j = 150 \degree C \]
Figure 25. IGBT
Safe operating area as a function of collector-emitter voltage
\(I_C = f(V_{CE}) \)

Figure 26. IGBT
Gate voltage vs Gate charge
\(V_{GE} = f(Q_g) \)

At
\(D = \) single pulse
\(T_s = 80 \degree C \)
\(V_{GE} = \pm 15 \) V
\(T_j = T_{j\text{max}} \) °C

At
\(I_C = 0 \) A
Neutral Point
Neutral Point IGBT & Half Bridge FWD

figure 1. IGBT
Typical output characteristics
$I_C = f(V_{CE})$

![Graph 1](image1.png)

At
$t_p = 250 \ \mu s$
$T_J = 25 \ ^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

figure 2. IGBT
Typical output characteristics
$I_C = f(V_{CE})$

![Graph 2](image2.png)

At
$t_p = 250 \ \mu s$
$T_J = 126 \ ^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

figure 3. IGBT
Typical transfer characteristics
$I_C = f(V_{GE})$

![Graph 3](image3.png)

At
$t_p = 250 \ \mu s$
$V_{CE} = 10 \ \text{V}$
$T_J = T_{Jmax} - 25 \ ^\circ C$

figure 4. FWD
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$

![Graph 4](image4.png)

At
$t_p = 250 \ \mu s$
Neutral Point
Neutral Point IGBT & Half Bridge FWD

figure 5.
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_J = 25/126 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 16 \, \Omega \)
- \(I_C = 15 \, A \)

figure 6.
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_J = 25/126 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_C = 15 \, A \)

figure 7.
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_J = 25/126 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 16 \, \Omega \)

figure 8.
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

- \(T_J = 25/126 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_C = 15 \, A \)
Neutral Point
Neutral Point IGBT & Half Bridge FWD

figure 9.
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at:
- \(T_j = 126 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 16 \) Ω
- \(R_{goff} = 16 \) Ω

figure 10.
Typical switching times as a function of gate resistor
\[t = f(R_G) \]

With an inductive load at:
- \(T_j = 126 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 15 \) A

figure 11.
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
- \(T_j = 25/126 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 16 \) Ω

figure 12.
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_{rr} = f(R_{gon}) \]

At
- \(T_j = 25/126 \) °C
- \(V_R = 350 \) V
- \(I_F = 15 \) A
- \(V_{GE} = \pm 15 \) V
Neural Point
Neutral Point IGBT & Half Bridge FWD

Figure 13.
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

Figure 14.
Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

- **At**
 - \(T_j = 25/126 \) °C
 - \(V_{CE} = 350 \) V
 - \(V_{GE} = \pm 15 \) V
 - \(R_{gon} = 16 \) Ω

Figure 15.
Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

Figure 16.
Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

- **At**
 - \(T_j = 25/126 \) °C
 - \(V_R = 350 \) V
 - \(I_F = 15 \) A
 - \(V_{GE} = \pm 15 \) V

Neutral Point

Neutral Point IGBT & Half Bridge FWD

figure 17.
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c)
\]

At
- \(T_j = 25/126 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 16 \) Ω

figure 18.
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[
\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon})
\]

At
- \(T_j = 25/126 \) °C
- \(V_R = 350 \) V
- \(I_F = 15 \) A
- \(V_{GE} = \pm 15 \) V

figure 19.
IGBT transient thermal impedance as a function of pulse width
\[
Z_{th(jCs)} = f(t_p)
\]

At
- \(D = \frac{t_p}{T} \)
- \(R_{th(jCs)} = 3,09 \) K/W

IGBT thermal model values
- \(R \) (K/W) \(Tau \) (s)
 - 9,31E-02 1,78E+00
 - 3,67E-01 2,71E-01
 - 1,74E+00 6,94E-02
 - 3,64E-01 1,36E-02
 - 2,46E-01 3,45E-03
 - 2,37E-01 4,12E-04

figure 20.
FWD transient thermal impedance as a function of pulse width
\[
Z_{th(jCs)} = f(t_p)
\]

At
- \(D = \frac{t_p}{T} \)
- \(R_{th(jCs)} = 3,65 \) K/W

FWD thermal model values
- \(R \) (K/W) \(Tau \) (s)
 - 1,54E-01 1,23E+00
 - 5,83E-01 1,75E-01
 - 1,42E+00 4,78E-02
 - 7,75E-01 8,99E-03
 - 7,22E-01 1,81E-03

Copyright Vincotech
Neutral Point
Neutral Point IGBT & Half Bridge FWD

figure 21.
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_s) \]

figure 22.
Collector current as a function of heatsink temperature
\[I_C = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]

figure 23.
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_s) \]

figure 24.
Forward current as a function of heatsink temperature
\[I_F = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]

\[V_{\text{gel}} = 15 \, V \]
figure 1. Thermistor
Typical NTC characteristic as a function of temperature
\[R_T = f(T) \]
Switching Definitions Half Bridge

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{gon}</td>
<td>16 Ω</td>
</tr>
<tr>
<td>R_{goff}</td>
<td>16 Ω</td>
</tr>
</tbody>
</table>

figure 1. IGBT
Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}
(t_{Eoff} = integrating time for E_{off})

- V_{CE} (0%) = -15 V
- V_{CE} (100%) = 15 V
- V_C (100%) = 350 V
- I_C (100%) = 15 A
- t_{doff} = 0.22 µs
- t_{Eoff} = 0.69 µs

figure 2. IGBT
Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}
(t_{Eon} = integrating time for E_{on})

- V_{CE} (0%) = -15 V
- V_{CE} (100%) = 15 V
- V_C (100%) = 350 V
- I_C (100%) = 15 A
- t_{don} = 0.07 µs
- t_{Eon} = 0.20 µs

figure 3. IGBT
Turn-off Switching Waveforms & definition of t_f

- V_C (100%) = 350 V
- I_C (100%) = 15 A
- t_f = 0.12 µs

figure 4. IGBT
Turn-on Switching Waveforms & definition of t_r

- V_C (100%) = 350 V
- I_C (100%) = 15 A
- t_r = 0.02 µs
Switching Definitions Half Bridge

figure 5. IGBT
Turn-off Switching Waveforms & definition of \(t_{\text{off}} \)

- \(P_{\text{off}} \) (100%) = 5,28 kW
- \(E_{\text{off}} \) (100%) = 0,63 mJ
- \(t_{\text{Eoff}} \) = 0,69 µs

figure 6. IGBT
Turn-on Switching Waveforms & definition of \(t_{\text{on}} \)

- \(P_{\text{on}} \) (100%) = 5,28 kW
- \(E_{\text{on}} \) (100%) = 0,30 mJ
- \(t_{\text{Eon}} \) = 0,20 µs

figure 7. IGBT
Gate voltage vs Gate charge (measured)

- \(V_{\text{G(off)}} \) = -15 V
- \(V_{\text{G(on)}} \) = 15 V
- \(V_{\text{C}} \) (100%) = 350 V
- \(I_{\text{C}} \) (100%) = 15 A
- \(Q_{g} \) = 180,95 nC

figure 8. FWD
Turn-off Switching Waveforms & definition of \(t_{\tau} \)

- \(V_{\text{d}} \) (100%) = 350 V
- \(I_{\text{d}} \) (100%) = 15 A
- \(I_{\text{RRM}} \) (100%) = -22 A
- \(t_{\tau} \) = 0,03 µs
Switching Definitions Half Bridge

Figure 9. IGBT Turn-on Switching Waveforms & definition of t_{Qrr} ($t_{Qrr} =$ integrating time for Q_{rr})

$I_d (100\%) = 15$ A
$Q_{rr} (100\%) = 0.44$ µC
$t_{Qrr} = 0.07$ µs

Figure 10. IGBT Turn-on Switching Waveforms & definition of t_{Erec} ($t_{Erec} =$ integrating time for E_{rec})

$P_{rec} (100\%) = 5.28$ kW
$E_{rec} (100\%) = 0.05$ mJ
$t_{Erec} = 0.07$ µs

Half Bridge switching measurement circuit

Figure 11. Half Bridge stage switching measurement circuit
Switching Definitions Neutral Point

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_j)</td>
<td>125 °C</td>
</tr>
<tr>
<td>(R_{\text{son}})</td>
<td>16 Ω</td>
</tr>
<tr>
<td>(R_{\text{goff}})</td>
<td>16 Ω</td>
</tr>
</tbody>
</table>

figure 1. Neutral Point IGBT

Turn-off Switching Waveforms & definition of \(t_{\text{doff}} \) \(t_{\text{Eoff}} \)

\(t_{\text{Eoff}} = \text{integrating time for } E_{\text{off}} \)

- \(V_C(0\%) = -15 \) V
- \(V_C(100\%) = 15 \) V
- \(I_C(100\%) = 15 \) A
- \(t_{\text{doff}} = 0.16 \) µs
- \(t_{\text{Eoff}} = 0.53 \) µs

figure 2. Neutral Point IGBT

Turn-on Switching Waveforms & definition of \(t_{\text{don}} \) \(t_{\text{Eon}} \)

\(t_{\text{Eon}} = \text{integrating time for } E_{\text{on}} \)

- \(V_C(0\%) = -15 \) V
- \(V_C(100\%) = 15 \) V
- \(I_C(100\%) = 15 \) A
- \(t_{\text{don}} = 0.07 \) µs
- \(t_{\text{Eon}} = 0.18 \) µs

figure 3. Neutral Point IGBT

Turn-off Switching Waveforms & definition of \(t_f \)

- \(V_C(100\%) = 350 \) V
- \(I_C(100\%) = 15 \) A
- \(t_f = 0.069 \) µs

figure 4. Neutral Point IGBT

Turn-on Switching Waveforms & definition of \(t_r \)

- \(V_C(100\%) = 350 \) V
- \(I_C(100\%) = 15 \) A
- \(t_r = 0.016 \) µs
Switching Definitions Neutral Point

figure 5. Neutral Point IGBT
Turn-off Switching Waveforms & definition of t_{off}

- P_{off} (100%) = 5.26 kW
- E_{off} (100%) = 0.53 mJ
- $t_{E_{\text{off}}} = 0.53$ µs

figure 6. Neutral Point IGBT
Turn-on Switching Waveforms & definition of t_{on}

- P_{on} (100%) = 5.26 kW
- E_{on} (100%) = 0.30 mJ
- $t_{E_{\text{on}}} = 0.18$ µs

figure 8. Half Bridge FWD
Turn-off Switching Waveforms & definition of t_{rr}

- V_d (100%) = 350 V
- I_d (100%) = 15 A
- I_{diss} (100%) = -24 A
- $t_{\text{rr}} = 0.04$ µs
Switching Definitions Neutral Point

Figure 9. Half Bridge FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr}= integrating time for Q_{rr})

- $I_q (100\%) = 15 \text{ A}$
- $Q_{rr} (100\%) = 1.51 \mu\text{C}$
- $t_{Qint} = 1.00 \mu\text{s}$

Figure 10. Half Bridge FWD
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec}= integrating time for E_{rec})

- $P_{rec} (100\%) = 5.26 \text{ kW}$
- $E_{rec} (100\%) = 0.38 \text{ mJ}$
- $t_{Erec} = 1.00 \mu\text{s}$

Neutral Point switching measurement circuit

Figure 11.
Neutral Point stage switching measurement circuit
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12 mm housing with solder pins</td>
<td>10-FY12M3A025SH-M746F08Y/3/</td>
</tr>
<tr>
<td>without thermal paste 12 mm housing with press-fit pins</td>
<td>10-FY12M3A025SH-M746F08Y/3/</td>
</tr>
<tr>
<td>with thermal paste 12 mm housing with solder pins</td>
<td>10-FY12M3A025SH-M746F08Y/3/</td>
</tr>
<tr>
<td>without thermal paste 17 mm housing with solder pins</td>
<td>10-FY12M3A025SH-M746F08Y/3/</td>
</tr>
<tr>
<td>without thermal paste 17 mm housing with press-fit pins</td>
<td>10-FY12M3A025SH-M746F08Y/3/</td>
</tr>
<tr>
<td>with thermal paste 17 mm housing with solder pins</td>
<td>10-FY12M3A025SH-M746F08Y/3/</td>
</tr>
<tr>
<td>with thermal paste 17 mm housing with press-fit pins</td>
<td>10-FY12M3A025SH-M746F08Y/3/</td>
</tr>
</tbody>
</table>

Pin table [mm]

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
<td>2</td>
<td>+DC</td>
<td>23</td>
<td>21</td>
<td>10,7</td>
</tr>
<tr>
<td>2</td>
<td>46</td>
<td>2</td>
<td>GND</td>
<td>24</td>
<td>21</td>
<td>13,7</td>
</tr>
<tr>
<td>3</td>
<td>47</td>
<td>3</td>
<td>G3</td>
<td>25</td>
<td>30</td>
<td>9,7</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>9</td>
<td>GND</td>
<td>26</td>
<td>33</td>
<td>9,7</td>
</tr>
<tr>
<td>5</td>
<td>44</td>
<td>3</td>
<td>S3</td>
<td>27</td>
<td>40,15</td>
<td>11,2</td>
</tr>
<tr>
<td>6</td>
<td>34</td>
<td>9</td>
<td>-DC</td>
<td>28</td>
<td>40,15</td>
<td>8,2</td>
</tr>
<tr>
<td>7</td>
<td>34</td>
<td>3</td>
<td>-DC</td>
<td>29</td>
<td>50</td>
<td>10,7</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>9</td>
<td>GND</td>
<td>30</td>
<td>50,45</td>
<td>13,7</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>9</td>
<td>S7</td>
<td>31</td>
<td>0</td>
<td>16,35</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>9</td>
<td>GND</td>
<td>32</td>
<td>0</td>
<td>19,35</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>9</td>
<td>G7</td>
<td>33</td>
<td>5,45</td>
<td>28,2</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>9</td>
<td>+DC</td>
<td>34</td>
<td>8,25</td>
<td>28,2</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
<td>9</td>
<td>+DC</td>
<td>35</td>
<td>11,25</td>
<td>28,2</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>9</td>
<td>GND</td>
<td>36</td>
<td>14,25</td>
<td>28,2</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>9</td>
<td>G11</td>
<td>37</td>
<td>23</td>
<td>28,2</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>0</td>
<td>GND</td>
<td>38</td>
<td>26</td>
<td>28,2</td>
</tr>
<tr>
<td>17</td>
<td>7,9</td>
<td>3</td>
<td>S11</td>
<td>39</td>
<td>29</td>
<td>28,2</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
<td>-DC</td>
<td>40</td>
<td>31,8</td>
<td>28,2</td>
</tr>
<tr>
<td>19</td>
<td>4,75</td>
<td>8,9</td>
<td>S12</td>
<td>41</td>
<td>40,4</td>
<td>28,2</td>
</tr>
<tr>
<td>20</td>
<td>1,75</td>
<td>7,9</td>
<td>G12</td>
<td>42</td>
<td>43,2</td>
<td>28,2</td>
</tr>
<tr>
<td>21</td>
<td>13,25</td>
<td>13,7</td>
<td>S10</td>
<td>43</td>
<td>46,2</td>
<td>28,2</td>
</tr>
<tr>
<td>22</td>
<td>13,25</td>
<td>10,7</td>
<td>G10</td>
<td>44</td>
<td>49,2</td>
<td>28,2</td>
</tr>
</tbody>
</table>

Datasheet for 10-x112M3A025SH-M746F09x

<table>
<thead>
<tr>
<th>Text</th>
<th>Name</th>
<th>Date code</th>
<th>UL & VIN</th>
<th>Lot</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datasheet</td>
<td>Vincotech</td>
<td>12 Jul. 2017 / Revision 5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1,T4,T5,T8,T9,T12</td>
<td>IGBT</td>
<td>1200 V</td>
<td>25 A</td>
<td>Half Bridge IGBT</td>
<td></td>
</tr>
<tr>
<td>D1,D4,D5,D8,D9,D12</td>
<td>FWD</td>
<td>1200 V</td>
<td>8 A</td>
<td>Half Bridge FWD</td>
<td></td>
</tr>
<tr>
<td>T2,T3,T6,T7,T10,T11</td>
<td>IGBT</td>
<td>600 V</td>
<td>20 A</td>
<td>Neutral P. IGBT</td>
<td></td>
</tr>
<tr>
<td>D2,D3,D6,D7,D10,D11</td>
<td>FWD</td>
<td>600 V</td>
<td>15 A</td>
<td>Neutral P. FWD</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>NTC</td>
<td></td>
<td></td>
<td></td>
<td>Thermistor</td>
</tr>
</tbody>
</table>

Pinout

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1,T4,T5,T8,T9,T12</td>
<td>IGBT</td>
<td>1200 V</td>
<td>25 A</td>
<td>Half Bridge IGBT</td>
<td></td>
</tr>
<tr>
<td>D1,D4,D5,D8,D9,D12</td>
<td>FWD</td>
<td>1200 V</td>
<td>8 A</td>
<td>Half Bridge FWD</td>
<td></td>
</tr>
<tr>
<td>T2,T3,T6,T7,T10,T11</td>
<td>IGBT</td>
<td>600 V</td>
<td>20 A</td>
<td>Neutral P. IGBT</td>
<td></td>
</tr>
<tr>
<td>D2,D3,D6,D7,D10,D11</td>
<td>FWD</td>
<td>600 V</td>
<td>15 A</td>
<td>Neutral P. FWD</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>NTC</td>
<td></td>
<td></td>
<td></td>
<td>Thermistor</td>
</tr>
</tbody>
</table>
Packaging instruction

<table>
<thead>
<tr>
<th>Standard packaging quantity (SPQ)</th>
<th>>SPQ</th>
<th><SPQ</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Handling instruction

Handling instructions for flow 1 packages see vincotech.com website.

Package data

Package data for flow 1 packages see vincotech.com website.

UL recognition and file number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

Document No.: 10-xY12M3A025SH-M746F0xx-D5-14
Date: 12 Jul. 2017
Modification: Added press-fit version
Pages All

DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.