

flow90PACK 0

Output Inverter Application

1200V/25A

Iout (A)

3phase SPWM $V_{GEon} = 15 V$ $V_{GEoff} = -15 V$

 $R_{gon} = 16 \Omega$ $R_{goff} = 16 \Omega$

Figure 1

Typical average static loss as a function of output current

 $T_j = 150$ °C

Mi*cosφ from -1 to 1 in steps of 0,2

Figure 3 IGBT

 $\begin{tabular}{llll} \bf At & & & & & \\ T_j = & & 150 & & & \\ DC \ link = & 600 & V & \\ f_{sw} \ from & 2 \ kHz \ to \ 16 \ kHz \ in \ steps \ of \ factor \ 2 \ \end{tabular}$

gure 2

Typical average static loss as a function of output current $P_{ij} = f(I_{ij})$

 $\begin{array}{ll} \textbf{At} \\ \textbf{T}_j = & 150 & \text{°C} \end{array}$

 $Mi^*cos\phi$ from -1 to 1 in steps of 0,2

Figure 4
Typical average switching loss

At $T_j = 150$ °C DC link = 600 V

f_{sw} from 2 kHz to 16 kHz in steps of factor 2

flow90PACK 0

Output Inverter Application

1200V/25A

 $\begin{tabular}{lll} \textbf{At} & & & & & \\ T_j = & 150 & & & \\ \textbf{DC link} = & 600 & & V \\ f_{sw} = & 4 & & kHz \\ \end{tabular}$

T_h from 60 ℃ to 100 ℃ in steps of 5 ℃

Figure 7 Phase Typical available 50Hz output current as a function of Mi*cos ϕ and switching frequency $I_{out} = f(f_{sw}, Mi*cos \phi)$

 $\begin{tabular}{llll} \bf At & & & & & \\ T_j = & 150 & & & & \\ DC \ link = & 600 & & V \\ T_h = & 80 & & & \\ \hline \end{tabular}$

 $\begin{array}{lll} \textbf{At} & & & \\ \textbf{T}_{j} = & & 150 & \mathbb{C} \\ \textbf{DC link} = & 600 & \text{V} \\ \textbf{T}_{h} \text{ from} & 60 \ \mathbb{C} \text{ to } 100 \ \mathbb{C} \text{ in steps of } 5 \ \mathbb{C} \end{array}$

0

Mi =

flow90PACK 0

Output Inverter Application

1200V/25A

 $\begin{array}{lll} \textbf{At} & & & \\ T_j = & 150 & & \mathfrak{C} \\ \textbf{DC link} = & 600 & & V \\ \textbf{Mi} = & 1 & & \end{array}$

 $\cos \phi = 0.80$

f_{sw} from 2 kHz to 16 kHz in steps of factor 2

gure 11 Inverte

 f_{sw} from 1 kHz to 16kHz in steps of factor 2

Γ_h = 80 ℃

Motor eff = 0.85

Typical efficiency as a function of output power efficiency= $f(P_{\text{out}})$

