

flow90PACK 0

Output Inverter Application

1200V/8A

3phase SPWM V_{GEon} = V_{GEoff} -15 V $\mathbf{R}_{\mathsf{gon}}$ 32 Ω

 R_{goff}

Figure 1

Typical average static loss as a function of output current

 $P_{loss} = f(I_{out})$ Mi*cosfi = 1 Ploss 20 15 10 Mi*cosfi = -1 12 Iout (A)

 $T_j =$ 150 \mathcal{C}

Mi*cosφ from -1 to 1 in steps of 0,2

32 Ω

Typical average static loss as a function of output current

 $P_{loss} = f(I_{out})$

 \mathbf{At} $T_j =$ 150 ${\mathfrak C}$

 $\mbox{Mi*}\mbox{cos}\phi$ from -1 to 1 in steps of 0,2

IGBT Figure 3

Typical average switching loss as a function of output current $P_{loss} = f(I_{out})$

Αt $T_j =$ 150 \mathcal{C} DC link = 600 f_{sw} from 2 kHz to 16 kHz in steps of factor 2 Figure 4 Typical average switching loss

as a function of output current $P_{loss} = f(I_{out})$

 $\begin{array}{l} \textbf{At} \\ \textbf{T}_{j} = \end{array}$ 150 \mathcal{C} DC link = 600 ٧

 $f_{\rm sw}$ from 2 kHz to 16 kHz in steps of factor 2

flow90PACK 0

Output Inverter Application

1200V/8A

Αt

 ${\mathfrak C}$ $T_j =$ 150 DC link = V 600 kHz $f_{sw} =$

 T_h from 60 $^{\circ}$ to 100 $^{\circ}$ in steps of 5 $^{\circ}$

Αt

 $T_j =$ 150 C DC link = 600 ٧ 80

 \mathcal{C}

At

 $T_j =$ $^{\circ}$ 150 DC link = 600 ٧

 $Mi^*\cos \varphi = 0.8$

 T_h from 60 ℃ to 100 ℂ in steps of 5 ℂ

Αt

 $T_j =$ 150 \mathcal{C} DC link = 600

 T_h from 60 ${\mathbb C}$ to 100 ${\mathbb C}$ in steps of 5 ${\mathbb C}$

Mi = 0

2kHz

flow90PACK 0

Output Inverter Application

Figure 10

efficiency=f(P_{out})

1200V/8A

Αt $T_j =$ 150 \mathcal{C} DC link = 600 ٧ Mi = 0,80 cos φ=

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

16kHz

Typical efficiency as a function of output power

95 2 4 Pout (kW) Αt $T_j =$ 150 ${\mathfrak C}$ DC link = 600 ٧ Mi =

cos φ= 0.80 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

 $T_j =$ 150 \mathcal{C} DC link = 600 Mi = cos φ= f_{sw} from 1 kHz to 16kHz in steps of factor 2 $T_h =$ 80 Motor eff = 0.85