Features
- **Cree™** Silicon Carbide Power MOSFET
- **Cree™** Silicon Carbide Power Schottky Diode
- Dual Boost Topology
- Ultra Low Inductance with Integrated DC-capacitors
- Extremely Fast Switching with No "Tail" Current
- Solderless Press-fit Mounting Technology
- Temperature sensor

Target Applications
- High efficient solar inverters
- UPS

Types
- 10-PZ12B2A040ME01-M330L63Y

Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost - Silicon Carbide Power MOSFET (T1, T3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain to source breakdown voltage</td>
<td>V_{DS}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC drain current</td>
<td>I_D</td>
<td>$T_J=T_{max}$, $T_H=80°C$</td>
<td>33</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed drain current</td>
<td>$I_{D\text{puls}}$</td>
<td>limited by T_{max}</td>
<td>190</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_J=T_{max}$, $T_H=80°C$</td>
<td>81</td>
<td>W</td>
</tr>
<tr>
<td>Gate-source peak voltage</td>
<td>V_{GS}</td>
<td></td>
<td>-5/25</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{J\text{max}}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Protection Diode (D1, D3)				
Peak Repetitive Reverse Voltage	V_{RMS}		1600	V
DC forward current	I_F	$T_J=T_{max}$, $T_H=80°C$	47	A
Surge forward current	I_{FSM}	10ms sin 180°, $T_J=25°C$	370	A
Power dissipation per Diode	P_{tot}	$T_J=T_{max}$, $T_H=80°C$	65	W
Maximum Junction Temperature	$T_{J\text{max}}$		150	°C
Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost - Silicon Carbide Power Schottky Diode (D2, D4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RMM}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_f</td>
<td>T_j=T_{max}</td>
<td>35</td>
<td>A</td>
</tr>
<tr>
<td>Surge repetitive forward current</td>
<td>I_{FSM}</td>
<td>t_s limited by T_{j,max}</td>
<td>104</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>T_j=T_{max}</td>
<td>94</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{j,max}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

DC link Capacitor (C1, C2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max.DC voltage</td>
<td>V_{MAX}</td>
<td></td>
<td>1000</td>
<td>V</td>
</tr>
</tbody>
</table>

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40…+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40…+(T_{jmax} - 25)</td>
<td>°C</td>
</tr>
</tbody>
</table>

Insulation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation voltage</td>
<td>V_{is}</td>
<td>I=2s DC voltage</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12.7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 9.16</td>
<td>mm</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static drain to source ON resistance</td>
<td>$R_{DS(on)}$</td>
<td>$T_{j}=25^\circ C$</td>
<td>72</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=125^\circ C$</td>
<td>32</td>
<td>mΩ</td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>V_{GE}</td>
<td>$T_{j}=25^\circ C$</td>
<td>52</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=125^\circ C$</td>
<td>78</td>
<td>V</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>I_{GS}</td>
<td>$T_{j}=25^\circ C$</td>
<td>2.25</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=125^\circ C$</td>
<td>500</td>
<td>nA</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_{GS}</td>
<td>$T_{j}=25^\circ C$</td>
<td>2</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=125^\circ C$</td>
<td>200</td>
<td>nA</td>
</tr>
<tr>
<td>Turn On Delay Time</td>
<td>t_{on}</td>
<td>$T_{j}=25^\circ C$</td>
<td>13</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=125^\circ C$</td>
<td>12</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_{r}</td>
<td>$T_{j}=25^\circ C$</td>
<td>5</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=125^\circ C$</td>
<td>5</td>
<td>ns</td>
</tr>
<tr>
<td>Turn off delay time</td>
<td>t_{off}</td>
<td>$T_{j}=25^\circ C$</td>
<td>53</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=125^\circ C$</td>
<td>32</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>$T_{j}=25^\circ C$</td>
<td>12</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=125^\circ C$</td>
<td>12</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td>$T_{j}=25^\circ C$</td>
<td>0.25</td>
<td>mWs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=125^\circ C$</td>
<td>0.24</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td>$T_{j}=25^\circ C$</td>
<td>0.10</td>
<td>mWs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=125^\circ C$</td>
<td>0.09</td>
<td>mWs</td>
</tr>
<tr>
<td>Total gate charge</td>
<td>Q_{g}</td>
<td>$T_{j}=25^\circ C$</td>
<td>98.4</td>
<td>nC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=125^\circ C$</td>
<td>98</td>
<td>nC</td>
</tr>
<tr>
<td>Gate to source charge</td>
<td>Q_{gs}</td>
<td>$T_{j}=25^\circ C$</td>
<td>21.6</td>
<td>nC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=125^\circ C$</td>
<td>36</td>
<td>nC</td>
</tr>
<tr>
<td>Gate to drain charge</td>
<td>Q_{gd}</td>
<td>$T_{j}=25^\circ C$</td>
<td>1900</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=125^\circ C$</td>
<td>13</td>
<td>pF</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>$f=1MHz$</td>
<td>160</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=25^\circ C$</td>
<td>1900</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>$f=1MHz$</td>
<td>13</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=25^\circ C$</td>
<td>13</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=25^\circ C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Phase-Change Material</td>
<td>0.86</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Protection Diode (D1, D3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td>$T_{j}=25^\circ C$</td>
<td>1.24</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=125^\circ C$</td>
<td>1.23</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{RM}</td>
<td>$T_{j}=25^\circ C$</td>
<td>0.05</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=125^\circ C$</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Phase-Change Material</td>
<td>1.07</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Boost - Silicon Carbide Power Schottky Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_{F}</td>
<td>$T_{j}=25^\circ C$</td>
<td>1.43</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=150^\circ C$</td>
<td>1.72</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{RM}</td>
<td>$T_{j}=25^\circ C$</td>
<td>30</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=175^\circ C$</td>
<td>160</td>
<td>µA</td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{RMS}</td>
<td>$T_{j}=25^\circ C$</td>
<td>0.5</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=150^\circ C$</td>
<td>38</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>$T_{j}=25^\circ C$</td>
<td>9</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=150^\circ C$</td>
<td>9</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>Q_{R}</td>
<td>$T_{j}=25^\circ C$</td>
<td>0.15</td>
<td>µC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=150^\circ C$</td>
<td>0.14</td>
<td>µC</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>$T_{j}=25^\circ C$</td>
<td>0.01</td>
<td>mWs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=150^\circ C$</td>
<td>0.03</td>
<td>mWs</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$d(di/rect)_{max}$/µs</td>
<td>$T_{j}=25^\circ C$</td>
<td>13071</td>
<td>A/µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_{j}=150^\circ C$</td>
<td>14558</td>
<td>A/µs</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td>Phase-Change Material</td>
<td>1.01</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC link Capacitor (C1, C2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C value</td>
<td>C</td>
<td></td>
<td>100</td>
<td>nF</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td>TJ=25°C</td>
<td>22000</td>
<td>Ω</td>
</tr>
<tr>
<td>Deviation of R25</td>
<td>ΔR/R</td>
<td>To=100°C</td>
<td>5</td>
<td>+5 %</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td>TJ=25°C</td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>B</td>
<td>TJ=25°C</td>
<td>2</td>
<td>mW/K</td>
</tr>
</tbody>
</table>

Vincotech NTC Reference

- K3996
- 2
- 3950
- 3996
- B
INPUT BOOST

Figure 1
Typical output characteristics

\[I_D = f(V_{DS}) \]

At
\[t_p = 250 \mu s \]
\[T_j = 25 \, ^\circ C \]
\[V_{GS} \text{ from } 0 \text{ V to } 20 \text{ V in steps of } 2 \text{ V} \]

Figure 2
Typical output characteristics

\[I_D = f(V_{DS}) \]

At
\[t_p = 250 \mu s \]
\[T_j = 125 \, ^\circ C \]
\[V_{GS} \text{ from } 0 \text{ V to } 20 \text{ V in steps of } 2 \text{ V} \]

Figure 3
Typical transfer characteristics

\[I_D = f(V_{GS}) \]

At
\[t_p = 250 \mu s \]
\[V_{CS} = 10 \text{ V} \]

Figure 4
Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At
\[t_p = 250 \mu s \]
Figure 5 BOOST MOSFET
Typical switching energy losses as a function of drain current
\[E = f(I_D) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{DS} = 700 \) V
- \(V_{GS} = 0/16 \) V
- \(R_{gon} = 2 \) Ω
- \(R_{goff} = 2 \) Ω

Figure 6 BOOST MOSFET
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{DS} = 700 \) V
- \(V_{GS} = 0/16 \) V
- \(I_D = 32 \) A

Figure 7 BOOST FWD
Typical reverse recovery energy loss as a function of drain current
\[E_{rec} = f(I_D) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{DS} = 700 \) V
- \(V_{GS} = 0/16 \) V
- \(R_{gon} = 2 \) Ω
- \(R_{goff} = 2 \) Ω

Figure 8 BOOST FWD
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{DS} = 700 \) V
- \(V_{GS} = 0/16 \) V
- \(I_D = 32 \) A
INPUT BOOST

Figure 9
BOOST MOSFET
Typical switching times as a function of drain current

\[t = f(I_D) \]

With an inductive load at

- \(T_J = 125 \, ^\circ\text{C} \)
- \(V_{DS} = 700 \, \text{V} \)
- \(V_{GS} = 0/16 \, \text{V} \)
- \(R_{gon} = 2 \, \Omega \)
- \(R_{goff} = 2 \, \Omega \)

Figure 10
BOOST MOSFET
Typical switching times as a function of gate resistor

\[t = f(R_G) \]

With an inductive load at

- \(T_J = 125 \, ^\circ\text{C} \)
- \(V_{DS} = 700 \, \text{V} \)
- \(V_{GS} = 0/16 \, \text{V} \)
- \(I_F = 32 \, \text{A} \)

Figure 11
BOOST FWD
Typical reverse recovery time as a function of drain current

\[t_{rr} = f(I_D) \]

At

- \(T_J = 25/125 \, ^\circ\text{C} \)
- \(V_{DS} = 700 \, \text{V} \)
- \(V_{GS} = 0/16 \, \text{V} \)
- \(R_{gon} = 2 \, \Omega \)

Figure 12
BOOST FWD
Typical reverse recovery time as a function of MOSFET turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At

- \(T_J = 25/125 \, ^\circ\text{C} \)
- \(V_{DS} = 700 \, \text{V} \)
- \(I_F = 32 \, \text{A} \)
- \(V_{GS} = 0/16 \, \text{V} \)
Figure 13: Typical reverse recovery charge as a function of drain current

\[Q_{rr} = f(I_D) \]

At
- \(T_J = 25/125 \ \degree C \)
- \(V_{DS} = 700 \ \text{V} \)
- \(V_{GS} = 0/16 \ \text{V} \)
- \(R_{gon} = 2 \ \Omega \)

Figure 14: Typical reverse recovery charge as a function of MOSFET turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

At
- \(T_J = 25/125 \ \degree C \)
- \(V_{DS} = 700 \ \text{V} \)
- \(I_F = 32 \ \text{A} \)
- \(V_{GS} = 0/16 \ \text{V} \)

Figure 15: Typical reverse recovery current as a function of drain current

\[I_{RRM} = f(I_D) \]

At
- \(T_J = 25/125 \ \degree C \)
- \(V_{DS} = 700 \ \text{V} \)
- \(V_{GS} = 0/16 \ \text{V} \)
- \(R_{gon} = 2 \ \Omega \)

Figure 16: Typical reverse recovery current as a function of MOSFET turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

At
- \(T_J = 25/125 \ \degree C \)
- \(V_{DS} = 700 \ \text{V} \)
- \(I_F = 32 \ \text{A} \)
- \(V_{GS} = 0/16 \ \text{V} \)
Typical rate of fall of forward and reverse recovery current as a function of drain current:
\[\frac{dl_0}{dt}, \frac{dl_{rec}}{dt} = f(I_D) \]

MOSFET transient thermal impedance as a function of pulse width:
\[Z_{thJH} = f(t_p) \]

IGBT thermal model values:
\[
\begin{array}{ll}
R (K/W) & \text{Tau (s)} \\
1.34E-01 & 8.84E-01 \\
3.81E-01 & 1.39E-01 \\
2.07E-01 & 5.28E-02 \\
7.72E-02 & 5.60E-03 \\
6.49E-02 & 8.44E-04 \\
\end{array}
\]

FWD thermal model values:
\[
\begin{array}{ll}
R (K/W) & \text{Tau (s)} \\
5.83E-02 & 3.01E+00 \\
1.31E-01 & 4.50E-01 \\
4.46E-01 & 8.80E-02 \\
1.27E-01 & 2.30E-02 \\
1.77E-01 & 5.54E-03 \\
\end{array}
\]
Figure 21

BOOST MOSFET

Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

\[I_D = f(T_h) \]

At

\[T_j = 150 \, ^\circ C \]

Figure 22

BOOST MOSFET

Drain current as a function of heatsink temperature

\[I_D = f(T_h) \]

At

\[T_j = 150 \, ^\circ C \]

\[V_{GS} = 18 \, V \]

Figure 23

BOOST FWD

Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

At

\[T_j = 175 \, ^\circ C \]

Figure 24

BOOST FWD

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At

\[T_j = 175 \, ^\circ C \]
Figure 25

BOOST MOSFET Safe operating area as a function of drain-source voltage

\[I_D = f(V_{DS}) \]

At

- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{GS} = 0/16 \) V
- \(T_j = T_{J\max} \) °C

INPUT BOOST

Vincotech
INP.BOOST INVERSE DIODE

Figure 1 Bost inv. diode
Typical diode forward current as a function of forward voltage
\[I_F = f(V_F) \]
At
\[t_p = 250 \mu s \]

Figure 2 Boost inv. diode
Diode transient thermal impedance as a function of pulse width
\[Z_{th,JH} = f(t_p) \]
At
\[D = 0.5 \\
0.2 \\
0.1 \\
0.05 \\
0.02 \\
0.01 \\
0.005 \\
0.000 \]
\[R_{th,JH} = 1.07 K/W \]

Figure 3 Boost inv. diode
Power dissipation as a function of heatsink temperature
\[P_{tot} = f(T_h) \]
At
\[T_j = 25^\circ C \]

Figure 4 Boost inv. diode
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]
At
\[T_j = 150^\circ C \]
Thermistor

Figure 1

Typical NTC characteristic as a function of temperature

$R_T = f(T)$
Switching Definition BOOST MOSFET

General conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>150 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>4 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1

Boost MOSFET

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

(t_{Eoff} = integrating time for E_{off})

- $V_{GS}(0\%) = -15$ V
- $V_{GS}(100\%) = 16$ V
- $I_D(100\%) = 32$ A
- $I_{doff} = 0.06$ μs
- $t_{Eoff} = 0.07$ μs

Figure 2

Boost MOSFET

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

(t_{Eon} = integrating time for E_{on})

- $V_{GS}(0\%) = -15$ V
- $V_{GS}(100\%) = 16$ V
- $V_{D}(100\%) = 350$ V
- $I_D(100\%) = 32$ A
- $I_{don} = 0.01$ μs
- $t_{Eon} = 0.03$ μs

Figure 3

Boost MOSFET

Turn-off Switching Waveforms & definition of t_f

- $V_{D}(100\%) = 350$ V
- $I_D(100\%) = 32$ A
- $t_f = 0.01$ μs

Figure 4

Boost MOSFET

Turn-on Switching Waveforms & definition of t_r

- $V_{D}(100\%) = 350$ V
- $I_D(100\%) = 32$ A
- $t_r = 0.005$ μs
Switching Definition BOOST MOSFET

Figure 5
BOOST MOSFET
Turn-off Switching Waveforms & definition of \(t_{\text{Eoff}} \)

- \(P_{\text{off}} (100\%) = 11.26 \) kW
- \(E_{\text{off}} (100\%) = 0.14 \) mJ
- \(t_{\text{Eoff}} = 0.067 \) µs

Figure 6
BOOST MOSFET
Turn-on Switching Waveforms & definition of \(t_{\text{Eon}} \)

- \(P_{\text{on}} (100\%) = 11.26 \) kW
- \(E_{\text{on}} (100\%) = 0.24 \) mJ
- \(t_{\text{Eon}} = 0.03 \) µs

Figure 7
BOOST FWD
Turn-off Switching Waveforms & definition of \(t \)

- \(V_{d} (100\%) = 350 \) V
- \(I_{d} (100\%) = 32 \) A
- \(I_{d\text{off}} (100\%) = 10 \) A
- \(t_{d} = 0.009 \) µs
Switching Definition BOOST MOSFET

Figure 6
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

t_{Qrr} (100%) = 0.02 μs
Q_{rr} (100%) = 0.15 μC

Figure 9
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

P_{rec} (100%) = 11.26 kW
E_{rec} (100%) = 0.02 mJ
t_{Erec} = 0.02 μs

Copyright Vincotech 16 Revision: 1
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12mm housing</td>
<td>10-PZ12B2A040ME01-M330L63Y</td>
<td>M330L63Y</td>
<td>M330L63Y</td>
</tr>
</tbody>
</table>

Outline

<table>
<thead>
<tr>
<th>Pin number</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>22.2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>22.2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>22.2</td>
</tr>
<tr>
<td>4</td>
<td>8.5</td>
<td>22.2</td>
</tr>
<tr>
<td>5</td>
<td>11.5</td>
<td>22.2</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>22.2</td>
</tr>
<tr>
<td>7</td>
<td>20.5</td>
<td>22.2</td>
</tr>
<tr>
<td>8</td>
<td>18.5</td>
<td>22.2</td>
</tr>
<tr>
<td>9</td>
<td>19.5</td>
<td>19.2</td>
</tr>
<tr>
<td>10</td>
<td>21.5</td>
<td>19.7</td>
</tr>
<tr>
<td>11</td>
<td>22.5</td>
<td>21.2</td>
</tr>
<tr>
<td>12</td>
<td>23.5</td>
<td>5.2</td>
</tr>
<tr>
<td>13</td>
<td>24.5</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>25.5</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>26.5</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>27.5</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>28.5</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>29.5</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>30.5</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>31.5</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>32.5</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>33.5</td>
<td>0</td>
</tr>
</tbody>
</table>

Pinout

```
DC+  5 6
IN1  9 10
DC-  3 4

IN2  1 11
G1   1
G3   13
S1   1
S3   12

NT   17
Th1  21
Th2  22
```

copyright Vincotech
DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.