Maximum Ratings

$T_J = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-Bridge Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain-source voltage</td>
<td>V_{GS}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Drain current</td>
<td>I_D</td>
<td>$T_J = T_{J\text{max}}$</td>
<td>57</td>
<td>A</td>
</tr>
<tr>
<td>Peak drain current</td>
<td>I_{DM}</td>
<td>I_J limited by $T_{J\text{max}}$</td>
<td>274</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_J = T_{J\text{max}}$</td>
<td>122</td>
<td>W</td>
</tr>
<tr>
<td>Gate-source voltage</td>
<td>V_{GS}</td>
<td></td>
<td>-4/+22</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{J\text{max}}$</td>
<td></td>
<td>175</td>
<td>$^\circ C$</td>
</tr>
<tr>
<td>Capacitor (GS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum DC voltage</td>
<td>V_{MAX}</td>
<td></td>
<td>25</td>
<td>V</td>
</tr>
<tr>
<td>Operation Temperature</td>
<td>T_{op}</td>
<td></td>
<td>-55...+125</td>
<td>$^\circ C$</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_i = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40 ... +125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{jop}</td>
<td></td>
<td>-40 ... ($T_{jmax} - 25$)</td>
<td>°C</td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>V_{isol}</td>
<td>DC Test Voltage* $\tau_s = 2 , s$</td>
<td>6000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC Voltage $\tau_o = 1 , min$</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td>min. 12,7</td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td>11,83</td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td></td>
<td>> 200</td>
<td></td>
</tr>
</tbody>
</table>

*100 % tested in production
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-Bridge Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain-source on-state resistance</td>
<td>(r_{DS(on)})</td>
<td>10</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>Gate-source threshold voltage</td>
<td>(V_{GS(th)})</td>
<td>(V_{GS} = V_{DS})</td>
<td>0,02</td>
<td>25</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>(I_{GS})</td>
<td>(-4/+22)</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>(I_{DS})</td>
<td>0</td>
<td>1200</td>
<td>25</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>(r_{g})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>(Q_{g})</td>
<td>18</td>
<td>600</td>
<td>40</td>
</tr>
<tr>
<td>Gate to source charge</td>
<td>(Q_{GS})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate to drain charge</td>
<td>(Q_{GD})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-circuit input capacitance</td>
<td>(C_{iss})</td>
<td>(f = 1,\text{MHz})</td>
<td>0</td>
<td>800</td>
</tr>
<tr>
<td>Short-circuit output capacitance</td>
<td>(C_{oss})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{rss})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse Diode Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>(V_{SD})</td>
<td>0</td>
<td>40</td>
<td>25</td>
</tr>
</tbody>
</table>

Thermal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{th(j-s)})</td>
<td>(\lambda_{paste} = 3,4 ,\text{W/mK}) (PSX)</td>
<td></td>
<td>0,78</td>
</tr>
</tbody>
</table>

Dynamic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on delay time</td>
<td>(t_{d(on)})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_{r})</td>
<td>(R_{off} = 2 ,\Omega) (R_{on} = 2 ,\Omega)</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{d(off)})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_{f})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>(E_{on})</td>
<td>(Q_{on} = 0,8 ,\mu\text{C}) (Q_{off} = 1,1 ,\mu\text{C}) (Q_{on} = 1,6 ,\mu\text{C})</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>(E_{off})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright Vincotech
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitor (GS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>C</td>
<td></td>
<td>4,7</td>
<td>nF</td>
</tr>
<tr>
<td>Tolerance</td>
<td></td>
<td></td>
<td>-10</td>
<td>+10%</td>
</tr>
<tr>
<td>Dissipation factor</td>
<td></td>
<td></td>
<td>25</td>
<td>2,5%</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Deviation of R(25)</td>
<td>ΔR/R</td>
<td>R(25) = 1484 Ω</td>
<td>100</td>
<td>-5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td>25</td>
<td>1,5</td>
</tr>
<tr>
<td>B-value</td>
<td>R(25/10)</td>
<td>Tol. ±1 %</td>
<td>25</td>
<td>3962</td>
</tr>
<tr>
<td>B-value</td>
<td>R(25/100)</td>
<td>Tol. ±1 %</td>
<td>25</td>
<td>4000</td>
</tr>
</tbody>
</table>

Vincotech NTC Reference | 1

Copyright Vincotech

4

10 Aug. 2018 / Revision 1
Half-Bridge Switch Characteristics

Figure 1. MOSFET

Typical output characteristics

\[I_D = f(V_{DS}) \]

- \(I_D \) vs. \(V_{DS} \)
- Parameters: \(t_p = 250 \mu s \), \(V_{GS} = 18 \) V, \(T_j: 25 \) °C, \(125 \) °C, \(150 \) °C

Figure 2. MOSFET

Typical output characteristics

\[I_D = f(V_{DS}) \]

- \(I_D \) vs. \(V_{DS} \)
- Parameters: \(t_p = 250 \mu s \), \(V_{GS} \) from -4 V to 20 V in steps of 2 V

Figure 3. MOSFET

Typical transfer characteristics

\[I_D = f(V_{GS}) \]

- \(I_D \) vs. \(V_{GS} \)
- Parameters: \(t_p = 100 \mu s \), \(V_{DS} = 10 \) V, \(T_j: 25 \) °C, \(125 \) °C, \(150 \) °C

Figure 4. MOSFET

Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

- Graph showing \(Z_{th(j-s)} \) vs. \(t_p \)

Table:

- MOSFET thermal model values

<table>
<thead>
<tr>
<th>(D)</th>
<th>(t_p / T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{th(j-s)})</td>
<td>0.78 K/W</td>
</tr>
</tbody>
</table>

- Parameters:
 - \(R \) (K/W)
 - \(t \) (s)
 - \(T \) (°C)
 - Values:
 - 8.97E-02
 - 5.23E-01
 - 2.29E-01
 - 7.26E-02
 - 2.67E-01
 - 2.18E-02
 - 1.19E-01
 - 4.48E-03
 - 7.47E-02
 - 8.89E-04

Copyright Vincotech
Half-Bridge Switch Characteristics

Figure 5. MOSFET

Gate voltage vs Gate charge

\[V_{GS} = f(Q_g) \]

At

\[I_C = 40 \text{ A} \]

600 V
NTC Characteristics

Figure 1. Typical NTC characteristic as a function of temperature

\[R = f(T) \]
Half-Bridge Switching Characteristics

Figure 1. MOSFET
Typical switching energy losses as a function of drain current

\[E = f(I_D) \]

With an inductive load at 25 °C
- \(V_{DS} = 700 \) V
- \(T_J = 125 \) °C

- \(V_{DS} = 16/-4 \) V
- \(T_J = 150 \) °C

- \(R_{gon} = 2 \) Ω
- \(I_D = 60 \) A

Figure 2. MOSFET
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at 25 °C
- \(V_{DS} = 700 \) V
- \(T_J = 125 \) °C

- \(V_{DS} = 16/-4 \) V
- \(T_J = 150 \) °C

- \(V_{GS} = 16/-4 \) V
- \(T_J = 150 \) °C

- \(R_{goff} = 2 \) Ω
- \(I_D = 60 \) A

Figure 3. FWD
Typical reverse recovered energy loss as a function of drain current

\[E_{rec} = f(I_D) \]

With an inductive load at 25 °C
- \(V_{DS} = 700 \) V
- \(T_J = 125 \) °C

- \(V_{DS} = 16/-4 \) V
- \(T_J = 150 \) °C

- \(R_{gon} = 2 \) Ω
- \(I_D = 60 \) A

Figure 4. FWD
Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at 25 °C
- \(V_{DS} = 700 \) V
- \(T_J = 125 \) °C

- \(V_{DS} = 16/-4 \) V
- \(T_J = 150 \) °C

- \(V_{GS} = 16/-4 \) V
- \(T_J = 150 \) °C

- \(R_{goff} = 2 \) Ω
- \(I_D = 60 \) A
Half-Bridge Switching Characteristics

Figure 5. MOSFET
Typical switching times as a function of drain current

With an inductive load at
- $T_j = 150 \, ^\circ\text{C}$
- $V_{DS} = 700 \, \text{V}$
- $V_{GS} = 16/-4 \, \text{V}$
- $R_{gon} = 2 \, \Omega$
- $R_{goff} = 2 \, \Omega$

Figure 6. MOSFET
Typical switching times as a function of gate resistor

With an inductive load at
- $T_j = 150 \, ^\circ\text{C}$
- $V_{DS} = 700 \, \text{V}$
- $V_{GS} = 16/-4 \, \text{V}$
- $R_{g} = 60 \, \Omega$

Figure 7. FWD
Typical reverse recovery time as a function of drain current

At
- $V_{DS} = 700 \, \text{V}$
- $V_{GS} = 16/-4 \, \text{V}$
- $T_j = 25 \, ^\circ\text{C}$
- $R_{gon} = 2 \, \Omega$
- $I_D = 60 \, \text{A}$

Figure 8. FWD
Typical reverse recovery time as a function of MOSFET turn-on gate resistor

At
- $V_{DS} = 700 \, \text{V}$
- $V_{GS} = 16/-4 \, \text{V}$
- $T_j = 25 \, ^\circ\text{C}$
- $R_{g} = 60 \, \Omega$
- $I_D = 150 \, \text{A}$
Half-Bridge Switching Characteristics

Figure 9. Typical recovered charge as a function of drain current

\[Q_r = f(I_D) \]

At
- \(V_{DS} = 700 \) V
- \(V_{GS} = 16/-4 \) V
- \(R_{gon} = 2 \) Ω

25 °C

Figure 10. Typical recovered charge as a function of MOSFET turn on gate resistor

\[Q_r = f(R_{gon}) \]

At
- \(V_{DS} = 700 \) V
- \(V_{GS} = 16/-4 \) V
- \(T_J = 125 \) °C

150 °C

Figure 11. Typical peak reverse recovery current as a function of drain current

\[I_{RRM} = f(I_D) \]

At
- \(V_{DS} = 700 \) V
- \(V_{GS} = 16/-4 \) V
- \(R_{gon} = 2 \) Ω

25 °C

Figure 12. Typical peak reverse recovery current as a function of MOSFET turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

At
- \(V_{DS} = 700 \) V
- \(V_{GS} = 16/-4 \) V
- \(I_D = 60 \) A

150 °C

Copyright Vincotech
Half-Bridge Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of drain current

\[
\frac{dI_F}{dt}, \frac{dI_{rr}}{dt} = f(I_D)
\]

At
\[V_{DS} = 700 \text{ V}, \quad 25 \, ^\circ\text{C}\]
\[V_{GS} = 16/-4 \text{ V}\]
\[T_j = 125 \, ^\circ\text{C}\]
\[R_{gon} = 2 \, \Omega\]

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn-on gate resistor

\[
\frac{dI_F}{dt}, \frac{dI_{rr}}{dt} = f(R_{gon})
\]

At
\[V_{DS} = 700 \text{ V}, \quad 25 \, ^\circ\text{C}\]
\[V_{GS} = 16/-4 \text{ V}\]
\[T_j = 125 \, ^\circ\text{C}\]
\[I_D = 60 \, \text{A}\]
\[T_j = 150 \, ^\circ\text{C}\]

Figure 15. MOSFET
Reverse bias safe operating area

\[I_D = f(V_{DS})\]

At
\[I_D = 125 \, ^\circ\text{C}\]
\[R_{gas} = 2 \, \Omega\]
\[R_{gas} = 2 \, \Omega\]
Half-Bridge Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_j</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{GS}</td>
<td>2 Ω</td>
</tr>
<tr>
<td>R_{GSS}</td>
<td>2 Ω</td>
</tr>
</tbody>
</table>

Figure 1. MOSFET
Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff} (t_{Eoff} = integrating time for E_{off})

- $V_{GS}(0%) = -4$ V
- $V_{GS}(100%) = 16$ V
- $V_{DS}(100%) = 700$ V
- $I_D(100%) = 60$ A
- $t_{doff} = 0.073$ μs
- $t_{Eoff} = 0.033$ μs

Figure 2. MOSFET
Turn-on Switching Waveforms & definition of t_{don}, t_{Eon} (t_{Eon} = integrating time for E_{on})

- $V_{GS}(0%) = -4$ V
- $V_{GS}(100%) = 16$ V
- $V_{DS}(100%) = 700$ V
- $I_D(100%) = 60$ A
- $t_{don} = 0.033$ μs
- $t_{Eon} = 0.011$ μs

Figure 3. MOSFET
Turn-off Switching Waveforms & definition of t_f

- $V_{GS}(90%) = 700$ V
- $I_D(90%) = 60$ A
- $t_f = 0.011$ μs

Figure 4. MOSFET
Turn-on Switching Waveforms & definition of t_r

- $V_{GS}(90%) = 700$ V
- $I_D(90%) = 60$ A
- $t_r = 0.011$ μs
Half-Bridge Switching Characteristics

Figure 7: FWD
Turn-off Switching Waveforms & definition of t_{Qrr}

- $V_F(100\%) = 700$ V
- $I_F(100\%) = 60$ A
- $I_{RRM}(10\%) = 71$ A
- $I_{RRM}(90\%) = 71$ A
- $I_{RRM}(100\%) = 60$ A
- $Q_{rr}(100\%) = 1.10 \mu$C
- $t_{Qrr} = 0.025 \mu$s

Figure 8: FWD
Turn-on Switching Waveforms & definition of t_{Qrr} ($t_{Qrr} = \text{integrating time for } Q_{rr}$)

- $V_F(100\%) = 700$ V
- $I_F(100\%) = 60$ A
- $I_{RRM}(10\%) = 71$ A
- $I_{RRM}(90\%) = 71$ A
- $I_{RRM}(100\%) = 60$ A
- $Q_{rr}(100\%) = 1.10 \mu$C
- $t_{Qrr} = 0.025 \mu$s
Pinout

Component
- Capacitor (GS)

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11, T12, T21, T22</td>
<td>MOSFET</td>
<td>1200 V</td>
<td>20 mΩ</td>
<td>Half-Bridge Switch</td>
<td></td>
</tr>
<tr>
<td>C11, C12, C21, C22</td>
<td>Capacitor</td>
<td>25 V</td>
<td></td>
<td>Capacitor (GS)</td>
<td></td>
</tr>
<tr>
<td>Rt</td>
<td>NTC</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
Packaging instruction

<table>
<thead>
<tr>
<th>Standard packaging quantity (SPQ)</th>
<th>>SPQ</th>
<th>Standard</th>
<th><SPQ</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Handling instruction

Handling instructions for flow 1 packages see vincotech.com website.

Package data

Package data for flow 1 packages see vincotech.com website.

UL recognition and file number

This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.

DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.