Features

- Neutral-point-Clamped inverter
- Compact 12mm housing
- Low Inductance Layout

Target Applications

- UPS
- Motor Drive
- Solar inverters

Types

- 10-PY07NIB150SG-M136F38Y

Maximum Ratings

$T_j = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>V_{CE}</td>
<td>$T_j = T_{jmax}$, $T_a = 80 , ^\circ C$</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_j = T_{jmax}$, $T_a = 80 , ^\circ C$</td>
<td>128</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CRM}</td>
<td>T_j limited by T_{jmax}</td>
<td>450</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j = T_{jmax}$, $T_a = 80 , ^\circ C$</td>
<td>279</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>$T_j = T_{jmax}$, $T_a = 80 , ^\circ C$</td>
<td>420</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{p}</td>
<td>$T_j \leq 150 , ^\circ C$</td>
<td>5</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>V_{RRM}</td>
<td>$V_{GS} = 15 , V$</td>
<td>400</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td>T_j limited by T_{jmax}</td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Buck Diode				
Peak Repetitive Reverse Voltage	V_{ASM}	$T_j = T_{jmax}$, $T_a = 80 \, ^\circ C$	650	V
DC forward current	I_F	$T_j = T_{jmax}$, $T_a = 80 \, ^\circ C$	125	A
Diode surge non repetitive forward current	I_{FSM}	$t_{p} = 10 \, ms$, sine half wave, $T_j = 100 \, ^\circ C$	1280	A
Power dissipation	P_{tot}	$T_j = T_{jmax}$, $T_a = 80 \, ^\circ C$	241	W
Maximum Junction Temperature	T_{jmax}	T_j limited by T_{jmax}	175	°C
Maximum Ratings

Boost IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter breakdown voltage</td>
<td>V_{CE}</td>
<td>$T_i = T_{jmax}$, $T_s = 25 , ^\circ C$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_{DC}</td>
<td>$T_i = T_{jmax}$, $T_s = 80 , ^\circ C$</td>
<td>173</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{PCM}</td>
<td>T_s limited by T_{jmax}</td>
<td>450</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{jmax}$, $T_s = 80 , ^\circ C$</td>
<td>324</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>420</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{PC}</td>
<td>$T_s \leq 150 , ^\circ C$</td>
<td>8</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>V_{DC}</td>
<td>$V_{DC} = 15 , V$</td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost Inverse Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RSM}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{F}</td>
<td>$T_i = T_{jmax}$, $T_s = 80 , ^\circ C$</td>
<td>124</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FPM}</td>
<td>T_s limited by T_{jmax}</td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{jmax}$, $T_s = 80 , ^\circ C$</td>
<td>204</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RSM}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_{F}</td>
<td>$T_i = T_{jmax}$, $T_s = 80 , ^\circ C$</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FPM}</td>
<td>T_s limited by T_{jmax}</td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{jmax}$, $T_s = 80 , ^\circ C$</td>
<td>203</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40...+(T_{jmax} - 25)</td>
<td>°C</td>
</tr>
</tbody>
</table>

Isolation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation voltage</td>
<td>V_i</td>
<td>$t = 2 , s$</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td></td>
<td>> 200</td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

Buck IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>V_{CE} V_{GS}</td>
<td>25</td>
<td>0.0024</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CE}</td>
<td>V_{GS}</td>
<td>15</td>
<td>1.38</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl. Diode</td>
<td>I_{DS}</td>
<td>V_{CE}</td>
<td>150</td>
<td>1.94</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GS}</td>
<td>V_{GS}</td>
<td>25</td>
<td>2.23</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gint}</td>
<td>V_{GS}</td>
<td>25</td>
<td>0.39</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>V_{GS}</td>
<td>25</td>
<td>149</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>V_{GS}</td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td>V_{GS}</td>
<td>25</td>
<td>219</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>V_{GS}</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td>V_{GS}</td>
<td>25</td>
<td>1.53</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td>V_{GS}</td>
<td>25</td>
<td>1.99</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>V_{GS}</td>
<td>25</td>
<td>9240</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>V_{GS}</td>
<td>25</td>
<td>480</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{G}</td>
<td>V_{GS}</td>
<td>25</td>
<td>274</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{R}</td>
<td>V_{GS}</td>
<td>25</td>
<td>940</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>phase-change material</td>
<td>0.34</td>
<td>K/W</td>
</tr>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td>V_{GS}</td>
<td>25</td>
<td>1.07</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{L}</td>
<td>V_{GS}</td>
<td>25</td>
<td>160</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RMS}</td>
<td>V_{GS}</td>
<td>25</td>
<td>160</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{R}</td>
<td>V_{GS}</td>
<td>25</td>
<td>1.57</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{R}</td>
<td>V_{GS}</td>
<td>25</td>
<td>97</td>
</tr>
<tr>
<td>Peak rate of fall of recovery</td>
<td>$(dI_{LRMS}/dt)_{max}$</td>
<td>V_{GS}</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{R}</td>
<td>V_{GS}</td>
<td>25</td>
<td>3093</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>phase-change material</td>
<td>0.39</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Gate Driver

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GS}</td>
<td>V_{GS}</td>
<td>25</td>
<td>274</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{L}</td>
<td>V_{GS}</td>
<td>25</td>
<td>160</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RMS}</td>
<td>V_{GS}</td>
<td>25</td>
<td>160</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{R}</td>
<td>V_{GS}</td>
<td>25</td>
<td>1.57</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{R}</td>
<td>V_{GS}</td>
<td>25</td>
<td>97</td>
</tr>
<tr>
<td>Peak rate of fall of recovery</td>
<td>$(dI_{LRMS}/dt)_{max}$</td>
<td>V_{GS}</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{R}</td>
<td>V_{GS}</td>
<td>25</td>
<td>3093</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>$R_{th(j-s)}$</td>
<td>phase-change material</td>
<td>0.39</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>(V_{\text{th}})</td>
<td></td>
<td>0,0024</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>(V_{\text{CEsat}})</td>
<td></td>
<td>25</td>
<td>5, 6, 5</td>
</tr>
<tr>
<td>Collector-emitter cut-off voltage</td>
<td>(V_{\text{CE}})</td>
<td></td>
<td>150</td>
<td>1,05, 1,15, 1,85</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>(V_{\text{CEO}})</td>
<td></td>
<td>150</td>
<td>0, 0076</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>(I_{\text{GO}})</td>
<td></td>
<td>25</td>
<td>1200</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>(R_{\text{gint}})</td>
<td></td>
<td>25</td>
<td>none</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{\text{f(on)}})</td>
<td></td>
<td>25</td>
<td>149</td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_{\text{r}})</td>
<td></td>
<td>25</td>
<td>31, 36</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{\text{f(off)}})</td>
<td></td>
<td>25</td>
<td>220, 245</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_{\text{f}})</td>
<td></td>
<td>25</td>
<td>78</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>(E_{\text{on}})</td>
<td></td>
<td>25</td>
<td>1,77, 2,38</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>(E_{\text{off}})</td>
<td></td>
<td>25</td>
<td>4,26, 5,95</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{\text{in}})</td>
<td></td>
<td>25</td>
<td>9, 240</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{\text{out}})</td>
<td></td>
<td>25</td>
<td>576</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{\text{rs}})</td>
<td></td>
<td>25</td>
<td>274</td>
</tr>
<tr>
<td>Gate charge</td>
<td>(Q_{\text{g}})</td>
<td></td>
<td>25</td>
<td>940</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{\theta(j-s)})</td>
<td></td>
<td>25</td>
<td>phase-change material (\Delta T = 3,4) W/mK</td>
</tr>
<tr>
<td>Boost Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>(V_{\text{F}})</td>
<td></td>
<td>25, 150</td>
<td>1,20, 1,77, 1,54, 1,90</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{\theta(j-s)})</td>
<td></td>
<td>25</td>
<td>phase-change material (\Delta T = 3,4) W/mK</td>
</tr>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>(V_{\text{F}})</td>
<td></td>
<td>25, 150</td>
<td>1,2, 1,77, 1,57, 1,9</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(I_{\text{Rm}})</td>
<td></td>
<td>25, 150</td>
<td>48, 48</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>(I_{\text{MRR}})</td>
<td></td>
<td>25, 150</td>
<td>82, 114</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{\text{r}})</td>
<td></td>
<td>25, 150</td>
<td>233, 290</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>(Q_{\text{m}})</td>
<td></td>
<td>25, 150</td>
<td>6, 13</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>(\left</td>
<td>\frac{di_{\text{f}}}{dt} \right</td>
<td>_{\text{max}})</td>
<td></td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>(E_{\text{m}})</td>
<td></td>
<td>25, 150</td>
<td>1,65, 3,68</td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>(R_{\theta(j-s)})</td>
<td></td>
<td>25</td>
<td>phase-change material (\Delta T = 3,4) W/mK</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>(R)</td>
<td></td>
<td>25</td>
<td>21511</td>
</tr>
<tr>
<td>Deviation of (R_{\text{min}})</td>
<td>(\Delta R_{\text{min}})</td>
<td></td>
<td>100</td>
<td>-4,5, 4,5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P)</td>
<td></td>
<td>25</td>
<td>210</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td>25</td>
<td>3,5</td>
</tr>
<tr>
<td>B-value</td>
<td>(B_{\text{Bmin}})</td>
<td></td>
<td>25</td>
<td>3884</td>
</tr>
<tr>
<td>B-value</td>
<td>(B_{\text{Bmax}})</td>
<td></td>
<td>25</td>
<td>3964</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vincotech NTC Reference

Datasheet

21 Jul. 2016 / Revision 2

copyright Vincotech
Buck

figure 1. IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 350 \ \mu s \)
- \(T_j = 25 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

figure 2. IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

At

- \(t_p = 350 \ \mu s \)
- \(T_j = 150 \ ^\circ C \)
- \(V_{CE} \) from 7 V to 17 V in steps of 1 V

figure 3. IGBT

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

At

- \(t_p = 350 \ \mu s \)
- \(V_{GE} \) from 7 V to 17 V in steps of 1 V

figure 4. FWD

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

- \(t_p = 350 \ \mu s \)
- \(T_j = 25\ ^\circ C \)
- \(T_j = T_{jmax} - 25\ ^\circ C \)
Buck

Figure 5.
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

\[T_J = 25/150 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 4 \, \Omega \]
\[I_C = 150 \, \text{A} \]

Figure 6.
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

\[T_J = 25/150 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[I_C = 150 \, \text{A} \]

Figure 7.
Typical reverse recovery energy loss as a function of collector current

\[E_{\text{REC}} = f(I_C) \]

With an inductive load at

\[T_J = 25/150 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 4 \, \Omega \]

Figure 8.
Typical reverse recovery energy loss as a function of gate resistor

\[E_{\text{REC}} = f(R_G) \]

With an inductive load at

\[T_J = 25/150 \, ^\circ \text{C} \]
\[V_{CE} = 350 \, \text{V} \]
\[V_{GE} = \pm 15 \, \text{V} \]
\[R_{gon} = 4 \, \Omega \]
\[I_C = 150 \, \text{A} \]
Buck

figure 9. IGBT

Typical switching times as a function of collector current

\[t = f(I_C) \]

- With an inductive load at
 - \(T_J = 150 \) °C
 - \(V_{CE} = 350 \) V
 - \(V_{GE} = \pm 15 \) V
 - \(R_{gon} = 4 \) Ω
 - \(R_{goff} = 4 \) Ω

figure 10. IGBT

Typical switching times as a function of gate resistor

\[t = f(R_G) \]

- With an inductive load at
 - \(T_J = 150 \) °C
 - \(V_{CE} = 350 \) V
 - \(V_{GE} = \pm 15 \) V
 - \(I_C = 150 \) A

figure 11. FWD

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

figure 12. FWD

Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At

- \(T_J = 25/150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

copyright Vincotech

21 Jul. 2016 / Revision 2
Buck

Figure 13. Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

- At
 - \(T_J = 25/150 \, ^\circ C \)
 - \(V_{CE} = 350 \, V \)
 - \(V_{GE} = \pm 15 \, V \)
 - \(R_{gon} = 4 \, \Omega \)

Figure 14. Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

- At
 - \(T_J = 25/150 \, ^\circ C \)
 - \(V_R = 350 \, V \)
 - \(I_F = 150 \, A \)
 - \(V_{GE} = \pm 15 \, V \)

Figure 15. Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

Figure 16. Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

- At
 - \(T_J = 25/150 \, ^\circ C \)
 - \(V_{CE} = 350 \, V \)
 - \(V_{GE} = \pm 15 \, V \)
 - \(I_F = 150 \, A \)
 - \(V_{GE} = \pm 15 \, V \)
figure 17. Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At
- \(T_j = 25/150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

figure 18. Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

At
- \(T_j = 25/150 \) °C
- \(V_s = 350 \) V
- \(I_f = 150 \) A
- \(V_{GE} = \pm 15 \) V

figure 19. IGBT transient thermal impedance as a function of pulse width
\[Z_{th(j-s)}(K/W) = f(t_p) \]

At
- \(D = t_p / T \)
- \(R_{th(j-s)} = 0.34 \) K/W

IGBT thermal model values
- \(R \) (K/W) \(\tau \) (s)
 - 4,43E-02 3,55E+00
 - 6,46E-02 8,58E-01
 - 1,01E-01 1,36E-01
 - 9,03E-02 4,30E-02
 - 2,31E-02 4,39E-03
 - 1,76E-02 6,24E-04

figure 20. FWD transient thermal impedance as a function of pulse width
\[Z_{th(j-s)}(K/W) = f(t_p) \]

At
- \(D = t_p / T \)
- \(R_{th(j-s)} = 0.39 \) K/W

FWD thermal model values
- \(R \) (K/W) \(\tau \) (s)
 - 4,62E-02 3,80E+00
 - 6,71E-02 9,22E-01
 - 5,38E-02 2,23E-01
 - 1,26E-01 5,05E-02
 - 3,49E-02 1,17E-02
 - 3,03E-02 2,42E-03

copyright Vincotech
Buck

Figure 21. IGBT
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At

\[T_j = 175 \degree C \]

Figure 22. IGBT
Collector current as a function of heatsink temperature

\[I_C = f(T_s) \]

At

\[T_j = 175 \degree C \]

Figure 23. FWD
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_s) \]

At

\[T_j = 175 \degree C \]

Figure 24. FWD
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At

\[T_j = 175 \degree C \]

\[V_{\text{ge}} = 15 \text{ V} \]
Buck

figure 25. IGBT
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

\[V_{GE} = f(Q_g) \]

At
- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{GE} = \pm 15 \) V
- \(T_j = T_{j\text{max}} \) °C

figure 26. IGBT
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At
- \(I_C = 150 \) A
figure 1. IGBT
Typical output characteristics
$I_C = f(V_{CE})$

At $t_p = 350 \mu s$
$T_J = 25 ^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

figure 2. IGBT
Typical output characteristics
$I_C = f(V_{CE})$

At $t_p = 350 \mu s$
$T_J = 150 ^\circ C$
V_{CE} from 7 V to 17 V in steps of 1 V

figure 3. IGBT
Typical transfer characteristics
$I_C = f(V_{GE})$

At $t_p = 350 \mu s$
$V_{CE} = 10 V$

figure 4. FWD
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$

At $t_p = 350 \mu s$
Boost

Figure 5. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

\[T_J = 25/150 \, ^\circ C \]

\[V_{CE} = 350 \, V \]

\[V_{GE} = \pm 15 \, V \]

\[R_{gon} = 4 \, \Omega \]

\[I_C = 150 \, A \]

Figure 6. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

\[T_J = 25/150 \, ^\circ C \]

\[V_{CE} = 350 \, V \]

\[V_{GE} = \pm 15 \, V \]

\[I_C = 150 \, A \]

Figure 7. FWD
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

\[T_J = 25/150 \, ^\circ C \]

\[V_{CE} = 350 \, V \]

\[V_{GE} = \pm 15 \, V \]

\[R_{gon} = 4 \, \Omega \]

Figure 8. FWD
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

\[T_J = 25/150 \, ^\circ C \]

\[V_{CE} = 350 \, V \]

\[V_{GE} = \pm 15 \, V \]

\[I_C = 150 \, A \]
Boost

Figure 9. IGBT

Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at
- \(T_j = 150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(R_{goff} = 4 \) Ω

Figure 10. IGBT

Typical switching times as a function of gate resistor

\[t = f(R_g) \]

With an inductive load at
- \(T_j = 150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_c = 150 \) A

Figure 11. FWD

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_c) \]

At
- \(T_j = 25/150 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 12. FWD

Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At
- \(T_j = 25/150 \) °C
- \(V_{BE} = 350 \) V
- \(I_f = 150 \) A
- \(V_{CE} = \pm 15 \) V
Boost

figure 13.
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

figure 14.
Typical reverse recovery charge as a function of IGBT turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

At

\[T_j = 25/150 \ ^\circ C \]

\[V_{CE} = 350 \ V \]

\[V_{GE} = \pm 15 \ V \]

\[R_{gon} = 4 \ \Omega \]

figure 15.
Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

figure 16.
Typical reverse recovery current as a function of IGBT turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

At

\[T_j = 25/150 \ ^\circ C \]

\[V_{CE} = 350 \ V \]

\[V_{GE} = \pm 15 \ V \]

\[R_{gon} = 4 \ \Omega \]
Typical rate of fall of forward and reverse recovery current as a function of collector current

$$\frac{dI_f}{dt}, \frac{dI_{rec}}{dt} = f(I_C)$$

At $T_j = 25/150 \, ^\circ C$

- $V_{CE} = 350 \, V$
- $V_{GE} = \pm 15 \, V$
- $R_{gon} = 4 \, \Omega$

IGBT transient thermal impedance as a function of pulse width

$$Z_{th(j-s)} = f(t_p)$$

At $D = 0.5$

- $R_{th(j-s)} = 0.29 \, K/W$
- $R_{th(j-s)} = 0.47 \, K/W$

IGBT thermal model values

- K (K/W) - Tau (s)
 - $4.40E-02$ - $2.95E+00$
 - $5.08E-02$ - $7.93E-01$
 - $7.83E-02$ - $1.41E-01$
 - $8.59E-02$ - $4.33E-02$
 - $2.00E-02$ - $3.83E-03$
 - $1.46E-02$ - $5.99E-04$

FWD transient thermal impedance as a function of pulse width

$Z_{th(j-s)} = f(t_p)$

At $D = 0.5$

- $R_{th(j-s)} = 0.29 \, K/W$
- $R_{th(j-s)} = 0.47 \, K/W$

FWD thermal model values

- K (K/W) - Tau (s)
 - $4.73E-02$ - $4.12E+00$
 - $6.76E-02$ - $9.18E-01$
 - $1.01E-01$ - $1.37E-01$
 - $1.41E-01$ - $3.83E-02$
 - $6.28E-02$ - $8.98E-03$
 - $4.92E-02$ - $1.99E-03$
Boost

figure 21. IGBT
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]

figure 22. IGBT
Collector current as a function of heatsink temperature

\[I_C = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]
\[V_{GE} = 15 \, V \]

figure 23. FWD
Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]

figure 24. FWD
Forward current as a function of heatsink temperature

\[I_F = f(T_s) \]

At
\[T_j = 175 \, ^\circ C \]
Boost Inv. Diode

figure 25. Boost Inverse Diode

Typical diode forward current as a function of forward voltage

$I_F = f(V_F)$

![Graph showing typical diode forward current](image1)

At

$t_p = 250 \mu s$

figure 26. Boost Inverse Diode

Diode transient thermal impedance as a function of pulse width

$Z_{th(j-s)} = f(t_p)$

![Graph showing diode transient thermal impedance](image2)

At

$D = t_p / T$

$R_{th(j-s)} = 0.46 \ K/W$

figure 27. Boost Inverse Diode

Power dissipation as a function of heatsink temperature

$P_{tot} = f(T_s)$

![Graph showing power dissipation](image3)

At

$T_j = 175 ^\circ C$

figure 28. Boost Inverse Diode

Forward current as a function of heatsink temperature

$I_F = f(T_s)$

![Graph showing forward current](image4)

At

$T_j = 175 ^\circ C$
Figure 1. Thermistor

Typical NTC characteristic as a function of temperature

\[R = f(T) \]
Switching Definitions BUCK

General conditions

\[T_J = 150 \, ^\circ \text{C} \]
\[R_{\text{on}} = 4 \, \Omega \]
\[R_{\text{off}} = 4 \, \Omega \]

figure 1. IGBT
Turn-off Switching Waveforms & definition of \(t_{\text{doff}} \) \(t_{\text{Eoff}} \)
\[
(t_{\text{Eoff}} = \text{integrating time for } E_{\text{off}})

\[
V_{\text{CE}} (0\%) = -15 \, \text{V}
\]
\[
V_{\text{CE}} (100\%) = 15 \, \text{V}
\]
\[
V_C (100\%) = 700 \, \text{V}
\]
\[
I_C (100\%) = 150 \, \text{A}
\]
\[
t_{\text{doff}} = 0,22 \, \mu\text{s}
\]
\[
t_{\text{Eoff}} = 0,31 \, \mu\text{s}
\]

figure 2. IGBT
Turn-on Switching Waveforms & definition of \(t_{\text{don}} \) \(t_{\text{Eon}} \)
\[
(t_{\text{Eon}} = \text{integrating time for } E_{\text{on}})

\[
V_{\text{CE}} (0\%) = -15 \, \text{V}
\]
\[
V_{\text{CE}} (100\%) = 15 \, \text{V}
\]
\[
V_C (100\%) = 700 \, \text{V}
\]
\[
I_C (100\%) = 150 \, \text{A}
\]
\[
t_{\text{don}} = 0,15 \, \mu\text{s}
\]
\[
t_{\text{Eon}} = 0,25 \, \mu\text{s}
\]

figure 3. IGBT
Turn-off Switching Waveforms & definition of \(t_i \)

\[
V_C (100\%) = 700 \, \text{V}
\]
\[
I_C (100\%) = 150 \, \text{A}
\]
\[
t_i = 0,03 \, \mu\text{s}
\]

figure 4. IGBT
Turn-on Switching Waveforms & definition of \(t_f \)

\[
V_C (100\%) = 700 \, \text{V}
\]
\[
I_C (100\%) = 150 \, \text{A}
\]
\[
t_f = 0,03 \, \mu\text{s}
\]
Switching Definitions BUCK

figure 5. IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{\text{off}} (100\%) = 105 \text{ kW}$
- $E_{\text{off}} (100\%) = 2.68 \text{ mJ}$
- $t_{\text{Eoff}} = 0.31 \text{ µs}$

figure 6. IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{\text{on}} (100\%) = 105 \text{ kW}$
- $E_{\text{on}} (100\%) = 2.45 \text{ mJ}$
- $t_{\text{Eon}} = 0.25 \text{ µs}$

figure 8. FWD
Turn-off Switching Waveforms & definition of t_{rr}

- $V_d (100\%) = 700 \text{ V}$
- $I_d (100\%) = 150 \text{ A}$
- $I_{\text{SRM}} (100\%) = -157 \text{ A}$
- $t_{\text{rr}} = 0.10 \text{ µs}$
Switching Definitions BUCK

Figure 9. Turn-on Switching Waveforms & definition of t_{Qrr}

$\tau_{Qrr} = \text{integrating time for } Q_{rr}$

$I_{d} (100\%) = 150 \text{ A}

Q_{rr} (100\%) = 9.91 \mu\text{C}

$t_{Qrr} = 0.19 \mu\text{s}$

Figure 10. Turn-on Switching Waveforms & definition of t_{Erec}

$\tau_{Erec} = \text{integrating time for } E_{rec}$

$P_{rec} (100\%) = 105.00 \text{ kW}

E_{rec} (100\%) = 2.07 \text{ mJ}

$t_{Erec} = 0.19 \mu\text{s}$
Ordering Code and Marking - Outline - Pinout

Pin table

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52,2</td>
<td>2,7</td>
<td>DC°</td>
</tr>
<tr>
<td>2</td>
<td>52,2</td>
<td>0</td>
<td>DC°</td>
</tr>
<tr>
<td>3</td>
<td>36,2</td>
<td>6,75</td>
<td>E37</td>
</tr>
<tr>
<td>4</td>
<td>33,2</td>
<td>7,9</td>
<td>G3</td>
</tr>
<tr>
<td>5</td>
<td>33,2</td>
<td>4,9</td>
<td>G7</td>
</tr>
<tr>
<td>6</td>
<td>9,2</td>
<td>6,75</td>
<td>E48</td>
</tr>
<tr>
<td>7</td>
<td>6,2</td>
<td>6,9</td>
<td>G4</td>
</tr>
<tr>
<td>8</td>
<td>6,2</td>
<td>3,9</td>
<td>G8</td>
</tr>
<tr>
<td>9</td>
<td>2,7</td>
<td>0</td>
<td>DC-</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>DC-</td>
</tr>
<tr>
<td>11</td>
<td>2,7</td>
<td>2,7</td>
<td>DC-</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>2,7</td>
<td>DC-</td>
</tr>
<tr>
<td>13</td>
<td>2,7</td>
<td>5,4</td>
<td>DC-</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>5,4</td>
<td>DC-</td>
</tr>
<tr>
<td>15</td>
<td>2,7</td>
<td>12,75</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>12,75</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>2,7</td>
<td>15,45</td>
<td>GND</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>15,45</td>
<td>GND</td>
</tr>
<tr>
<td>19</td>
<td>2,7</td>
<td>22,8</td>
<td>DC+</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>22,8</td>
<td>DC+</td>
</tr>
<tr>
<td>21</td>
<td>2,7</td>
<td>25,5</td>
<td>DC+</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>25,5</td>
<td>DC+</td>
</tr>
<tr>
<td>23</td>
<td>2,7</td>
<td>28,2</td>
<td>DC+</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>28,2</td>
<td>DC+</td>
</tr>
<tr>
<td>25</td>
<td>18,3</td>
<td>22,45</td>
<td>E15</td>
</tr>
<tr>
<td>26</td>
<td>21,3</td>
<td>21,3</td>
<td>G6</td>
</tr>
<tr>
<td>27</td>
<td>21,3</td>
<td>24,3</td>
<td>G1</td>
</tr>
<tr>
<td>28</td>
<td>43</td>
<td>22,15</td>
<td>E26</td>
</tr>
<tr>
<td>29</td>
<td>46</td>
<td>21</td>
<td>G6</td>
</tr>
<tr>
<td>30</td>
<td>46</td>
<td>24</td>
<td>G2</td>
</tr>
<tr>
<td>31</td>
<td>52,2</td>
<td>20,1</td>
<td>OUT</td>
</tr>
<tr>
<td>32</td>
<td>49,5</td>
<td>22,8</td>
<td>OUT</td>
</tr>
<tr>
<td>33</td>
<td>52,2</td>
<td>22,8</td>
<td>OUT</td>
</tr>
<tr>
<td>34</td>
<td>49,5</td>
<td>25,5</td>
<td>OUT</td>
</tr>
<tr>
<td>35</td>
<td>52,2</td>
<td>25,5</td>
<td>OUT</td>
</tr>
<tr>
<td>36</td>
<td>49,5</td>
<td>28,2</td>
<td>OUT</td>
</tr>
<tr>
<td>37</td>
<td>52,2</td>
<td>28,2</td>
<td>OUT</td>
</tr>
</tbody>
</table>

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>with thermal paste 12mm housing with Press-fit pins</td>
<td>10-PY07NIB150SG-M136F38Y/-3/</td>
</tr>
</tbody>
</table>

Outline

![Outline Diagram](image-url)
Ordering Code and Marking - Outline - Pinout

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1,T4,T5,T8</td>
<td>IGBT</td>
<td>650 V</td>
<td>75 A</td>
<td>Buck IGBT</td>
<td></td>
</tr>
<tr>
<td>D9,D10,D11,D12, D13,D14,D15,D16</td>
<td>PWD</td>
<td>650 V</td>
<td>40 A</td>
<td>Buck Diode</td>
<td></td>
</tr>
<tr>
<td>T2,T3,T6,T7</td>
<td>IGBT</td>
<td>600 V</td>
<td>75 A</td>
<td>Boost IGBT</td>
<td></td>
</tr>
<tr>
<td>D1,D4,D5,D8</td>
<td>PWD</td>
<td>650 V</td>
<td>50 A</td>
<td>Boost Diode</td>
<td></td>
</tr>
<tr>
<td>D2,D3,D6,D7</td>
<td>PWD</td>
<td>600 V</td>
<td>50 A</td>
<td>Boost Inverse Diode</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>Thermistor</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.