Vincotech

flow 3xNPC 1

Features
- Neutral-point-Clamped inverter
- Ultra fast switching
- Low Inductance layout
- Very compact design
- Press-fit pins

Target Applications
- Solar inverters
- UPS
- SMPS

Types
- 10-PY07N3A030SM-M894F08Y

Maximum Ratings

$T_j=25^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CES}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>32</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>I_{CRM}</td>
<td>t_p limited by $T_{j\text{max}}$</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td></td>
<td>$T_j\leq175^\circ C$</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>67</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Buck FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RSM}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Forward average current</td>
<td>$I_{F\text{avg}}$</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>23</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>$I_{F\text{SM}}$</td>
<td>$t_p=10\text{ms}$</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>40</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

copyright Vincotech

09 Oct. 2014 / Revision 2
Boost IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CES}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_c</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed collector current</td>
<td>I_{CEM}</td>
<td>t_p limited by $T_{j\text{max}}$</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Turn off safe operating area</td>
<td>P_{tot}</td>
<td>$V_{CE}<V_{CES}$ $T_j=150°C$</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>57</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>$T_j=150°C$</td>
<td>5 μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{GE}</td>
<td>$V_{CE}=15V$</td>
<td>400</td>
<td>μs</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>175°C</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost Inverse Diode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RED}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Forward average current</td>
<td>I_{FAV}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>24</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{RSM}</td>
<td>t_p limited by $T_{j\text{max}}$</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>40</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>175°C</td>
<td>°C</td>
</tr>
</tbody>
</table>

Boost FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RED}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Forward average current</td>
<td>I_{FAV}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>24</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{RSM}</td>
<td>t_p limited by $T_{j\text{max}}$</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>40</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td>$T_j=T_{j\text{max}}$</td>
<td>175°C</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

\(T_j = 25^\circ C \), unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{stg})</td>
<td></td>
<td>-40...+125</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>(T_{op})</td>
<td></td>
<td>-40...+((T_{j\text{max}}) - 25)</td>
<td>(^\circ C)</td>
</tr>
<tr>
<td>Insulation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation voltage</td>
<td>(t=2s)</td>
<td>DC voltage</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Conditions</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{ces}</td>
<td>$V_{ces}=V_{ge}$</td>
<td>0,0003</td>
<td>$T_j=25^°C$</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I_{ces}</td>
<td>8</td>
<td>650</td>
<td>$T_j=25^°C$</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{gse}</td>
<td>20</td>
<td>0</td>
<td>$T_j=125^°C$</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gme}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td>±15</td>
<td>350</td>
<td>30</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td>$R_{goff}=16\ \Omega$</td>
<td>$R_{gon}=16\ \Omega$</td>
<td>200</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td>1,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td>3,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>2100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rs}</td>
<td>7,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_g</td>
<td>±15</td>
<td>520</td>
<td>30</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td>Phase-Change Material</td>
<td>$k=3,4\text{W/mK}$</td>
<td></td>
</tr>
</tbody>
</table>

Buck FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{ces}</td>
<td>$V_{ces}=V_{ge}$</td>
<td>0,0003</td>
<td>$T_j=25^°C$</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I_{ces}</td>
<td>8</td>
<td>650</td>
<td>$T_j=25^°C$</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{gse}</td>
<td>20</td>
<td>0</td>
<td>$T_j=125^°C$</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gme}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td>±15</td>
<td>350</td>
<td>30</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td>$R_{goff}=16\ \Omega$</td>
<td>$R_{gon}=16\ \Omega$</td>
<td>200</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td>1,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td>3,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>2100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rs}</td>
<td>7,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_g</td>
<td>±15</td>
<td>520</td>
<td>30</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td>Phase-Change Material</td>
<td>$k=3,4\text{W/mK}$</td>
<td></td>
</tr>
</tbody>
</table>

Buck IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate emitter threshold voltage</td>
<td>V_{ge}</td>
<td>$V_{ce}=V_{ge}$</td>
<td>0,0003</td>
<td>$T_j=25^°C$</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{ces}</td>
<td>15</td>
<td>10</td>
<td>$T_j=25^°C$</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I_{ces}</td>
<td>8</td>
<td>650</td>
<td>$T_j=25^°C$</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{gse}</td>
<td>20</td>
<td>0</td>
<td>$T_j=125^°C$</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gme}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td>±15</td>
<td>350</td>
<td>30</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td>$R_{goff}=16\ \Omega$</td>
<td>$R_{gon}=16\ \Omega$</td>
<td>200</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td>1,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td>3,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>2100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rs}</td>
<td>7,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_g</td>
<td>±15</td>
<td>520</td>
<td>30</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td>Phase-Change Material</td>
<td>$k=3,4\text{W/mK}$</td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>(V_{GE})</td>
<td>(V_{CE} = V_{GE})</td>
<td>0,00043</td>
<td></td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>(V_{ces})</td>
<td>15</td>
<td>30</td>
<td>(T_j = 25°C)</td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>(t_{oss})</td>
<td>0</td>
<td>650</td>
<td>(T_j = 125°C)</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>(I_{oss})</td>
<td>20</td>
<td>0</td>
<td>(T_j = 25°C)</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>(R_{gss})</td>
<td>none</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{on})</td>
<td>(R_{gss} = 16 , \Omega)</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_{r})</td>
<td>(R_{gss} = 16 , \Omega)</td>
<td>(T_j = 25°C)</td>
<td>23</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{off})</td>
<td>(R_{goff} = 16 , \Omega)</td>
<td>(T_j = 25°C)</td>
<td>143</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_{f})</td>
<td>(R_{goff} = 16 , \Omega)</td>
<td>(T_j = 25°C)</td>
<td>57</td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>(E_{on})</td>
<td>(T_j = 25°C)</td>
<td>0.329</td>
<td>0.665</td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>(E_{off})</td>
<td>(T_j = 25°C)</td>
<td>0.729</td>
<td>0.079</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{sc})</td>
<td>(f = 1 , MHz)</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{sc})</td>
<td>f=1MHz</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{rs})</td>
<td>15</td>
<td>480</td>
<td>30</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>(R_{th(j-s)})</td>
<td>Phase-Change Material (k = 3.4 , \text{W/mK})</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>Boost Inverse Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>(V_F)</td>
<td>20</td>
<td>(T_j = 25°C)</td>
<td>1.23</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>(R_{th(j-s)})</td>
<td>Phase-Change Material (k = 3.4 , \text{W/mK})</td>
<td>2.37</td>
<td></td>
</tr>
<tr>
<td>Boost FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>(V_F)</td>
<td>30</td>
<td>(T_j = 25°C)</td>
<td>1.23</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>(I_r)</td>
<td>650</td>
<td>(T_j = 25°C)</td>
<td>0.24</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>(I_{rrm})</td>
<td>(R_{goff} = 16 , \Omega)</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>(t_{rr})</td>
<td>(R_{goff} = 16 , \Omega)</td>
<td>(T_j = 25°C)</td>
<td>231</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>(Q_{rr})</td>
<td>(R_{goff} = 16 , \Omega)</td>
<td>(T_j = 25°C)</td>
<td>1.20</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>((\frac{di}{dt})_{max})</td>
<td>(R_{goff} = 16 , \Omega)</td>
<td>(T_j = 25°C)</td>
<td>2062</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>(E_{rr})</td>
<td>(R_{goff} = 16 , \Omega)</td>
<td>(T_j = 25°C)</td>
<td>0.319</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>(R_{th(j-s)})</td>
<td>Phase-Change Material (k = 3.4 , \text{W/mK})</td>
<td>2.37</td>
<td></td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>(R)</td>
<td>(T_j = 25°C)</td>
<td>21511</td>
<td></td>
</tr>
<tr>
<td>Deviation of (R_{100})</td>
<td>(\Delta R)</td>
<td>(R_{100} = 1486 , \Omega)</td>
<td>(T_j = 100°C)</td>
<td>±4.5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P)</td>
<td>(T_j = 25°C)</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>(P)</td>
<td>(T_j = 25°C)</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>B-value</td>
<td>(B(25/50))</td>
<td>(T_j = 25°C)</td>
<td>3884</td>
<td></td>
</tr>
<tr>
<td>B-value</td>
<td>(B(25/100))</td>
<td>(T_j = 25°C)</td>
<td>3964</td>
<td></td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Buck

Figure 1: IGBT
Typical output characteristics
\[I_c = f(V_{ce}) \]

- At
 - \(t_p = 250 \, \mu s \)
 - \(T_j = 25 \, ^\circ C \)
 - \(V_{ce} \) from 7 V to 17 V in steps of 1 V

Figure 2: IGBT
Typical output characteristics
\[I_c = f(V_{ce}) \]

- At
 - \(t_p = 250 \, \mu s \)
 - \(T_j = 125 \, ^\circ C \)
 - \(V_{ce} \) from 7 V to 17 V in steps of 1 V

Figure 3: IGBT
Typical transfer characteristics
\[I_c = f(V_{ge}) \]

- At
 - \(t_p = 250 \, \mu s \)
 - \(T_j = 25\, ^\circ C \)

Figure 4: FWD
Typical diode forward current as a function of forward voltage
\[I_f = f(V_f) \]

- At
 - \(t_p = 250 \, \mu s \)

copyright Vincotech
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \, ^{\circ}\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 16 \, \Omega \)
- \(I_C = 30 \, \text{A} \)

Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \, ^{\circ}\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 16 \, \Omega \)

Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_J = 25/125 \, ^{\circ}\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 30 \, \text{A} \)

Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

- \(T_J = 25/125 \, ^{\circ}\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 30 \, \text{A} \)
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
\[T_j = 125 \, ^\circ\text{C}, \quad V_{CE} = 350 \, \text{V}, \quad V_{GE} = \pm 15 \, \text{V}, \quad I_C = 30 \, \text{A}, \quad R_{gon} = 16 \, \Omega, \quad R_{goff} = 16 \, \Omega. \]

Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
\[T_j = 25/125 \, ^\circ\text{C}, \quad V_{CE} = 350 \, \text{V}, \quad V_{GE} = \pm 15 \, \text{V}, \quad R_{gon} = 16 \, \Omega. \]
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At

\[T_j = 25/125 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[R_{gon} = 16 \text{ } \Omega \]

Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

At

\[T_j = 25/125 \degree C \]
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[I_F = 30 \text{ A} \]
\[V_{GE} = \pm 15 \text{ V} \]
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(I_F = 30 \) A
- \(R_{gon} = 16 \) Ω

IGBT transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
- \(D = t_p / T \)
- \(R_{thJH} = 1,42 \) K/W

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\text{Tau (s)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05</td>
<td>4,0E+00</td>
</tr>
<tr>
<td>0,18</td>
<td>5,0E-01</td>
</tr>
<tr>
<td>0,59</td>
<td>8,7E-02</td>
</tr>
<tr>
<td>0,36</td>
<td>1,8E-02</td>
</tr>
<tr>
<td>0,13</td>
<td>3,3E-03</td>
</tr>
<tr>
<td>0,12</td>
<td>3,2E-04</td>
</tr>
</tbody>
</table>

FWD transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
- \(D = t_p / T \)
- \(R_{thJH} = 1,76 \) K/W

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\text{Tau (s)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,06</td>
<td>4,8E+00</td>
</tr>
<tr>
<td>0,17</td>
<td>7,6E-01</td>
</tr>
<tr>
<td>0,70</td>
<td>1,6E-01</td>
</tr>
<tr>
<td>0,53</td>
<td>5,1E-02</td>
</tr>
<tr>
<td>0,19</td>
<td>1,1E-02</td>
</tr>
<tr>
<td>0,12</td>
<td>1,6E-03</td>
</tr>
</tbody>
</table>
Buck

Figure 21
Power dissipation as a function of heatsink temperature
$P_{\text{tot}} = f(T_h)$

At
$T_j = 175 \ \degree C$

Figure 22
Collector current as a function of heatsink temperature
$I_C = f(T_h)$

At
$T_j = 175 \ \degree C$
$V_{\text{GE}} = 15 \ \text{V}$

Figure 23
Power dissipation as a function of heatsink temperature
$P_{\text{tot}} = f(T_h)$

At
$T_j = 150 \ \degree C$

Figure 24
Forward current as a function of heatsink temperature
$I_F = f(T_h)$

At
$T_j = 150 \ \degree C$
Figure 25
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

- \(D = \) single pulse
- \(T_j = 80 \) °C
- \(V_{Ge} = \pm 15 \) V
- \(T_j = T_{Jmax} \) °C

Figure 26
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At
\[I_C = 30 \] A

Figure 27
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At
- \(T_j = 125 \) °C
- \(R_{GSS} = 16 \) Ω
- \(R_{GTT} = 16 \) Ω
Figure 1
Typical output characteristics
$I_C = f(V_{CE})$

At $t_p = 250$ µs
$T_J = 25$ °C
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2
Typical output characteristics
$I_C = f(V_{CE})$

At $t_p = 250$ µs
$T_J = 125$ °C
V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3
Typical transfer characteristics
$I_C = f(V_{GE})$

At $t_p = 250$ µs
$T_J = 25$ °C
$V_{CE} = 10$ V

Figure 4
Typical diode forward current as a function of forward voltage
$I_F = f(V_F)$

At $t_p = 250$ µs
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \text{ °C} \)
- \(V_{CE} = 350 \text{ V} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(R_{gon} = 16 \Omega \)
- \(I_C = 30 \text{ A} \)

Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \text{ °C} \)
- \(V_{CE} = 350 \text{ V} \)
- \(V_{GE} = \pm 15 \text{ V} \)
- \(R_{gon} = 16 \Omega \)
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at:
- \(T_j = 125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GS} = \pm 15 \, \text{V} \)
- \(R_{gon} = 16 \, \Omega \)
- \(I_C = 30 \, \text{A} \)

Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At:
- \(T_j = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GS} = \pm 15 \, \text{V} \)
- \(R_{gon} = 16 \, \Omega \)
Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[R_{gon} = 16 \, \Omega \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_R = 350 \, V \]
\[I_T = 30 \, A \]
\[V_{GE} = \pm 15 \, V \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 350 \, V \]
\[V_{GE} = \pm 15 \, V \]
\[I_F = 30 \, A \]
\[R_{gon} = 16 \, \Omega \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_R = 350 \, V \]
\[I_T = 30 \, A \]
\[V_{GE} = \pm 15 \, V \]
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{d}{dt} I_0 \, dt / \frac{d}{dt} I_{rec} \, dt = f(I_{cc}) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_F = 30 \) A
- \(R_{gon} = 16 \) Ω

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{d}{dt} I_0 \, dt / \frac{d}{dt} I_{rec} \, dt = f(R_{gon}) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(I_F = 30 \) A
- \(V_{GE} = \pm 15 \) V

Figure 19
IGBT transient thermal impedance as a function of pulse width
\(Z_{thJH} = f(t_p) \)

At
- \(D = \frac{t_n}{T} \)
- \(R_{shj} = 1,67 \) K/W

IGBT thermal model values

\[R \ (K/W) \quad \text{Tau (s)} \]
\[0,18 \quad 1,056 \]
\[0,37 \quad 0,172 \]
\[0,64 \quad 0,055 \]
\[0,32 \quad 0,013 \]
\[0,15 \quad 0,0030 \]

Figure 20
FWD transient thermal impedance as a function of pulse width
\(Z_{thJH} = f(t_p) \)

At
- \(D = \frac{t_n}{T} \)
- \(R_{shj} = 2,37 \) K/W

FWD thermal model values

\[R \ (K/W) \quad \text{Tau (s)} \]
\[0,05 \quad 8,9E+00 \]
\[0,14 \quad 1,1E+00 \]
\[0,69 \quad 2,0E-01 \]
\[0,57 \quad 6,4E-02 \]
\[0,62 \quad 9,9E-03 \]
\[0,30 \quad 1,0E-03 \]
Boost

Figure 21
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

Figure 22
Collector current as a function of heatsink temperature

\[I_C = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

Figure 23
Power dissipation as a function of heatsink temperature

\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

Figure 24
Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

Vincotech datasheet

copyright Vincotech

09 Oct. 2014 / Revision 2
Boost Inverse Diode

Figure 25

Typical diode forward current as a function of forward voltage

\[I_F = f(V_F) \]

At

\[t_p = 250 \, \mu s \]

Figure 26

Diode transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

At

\[D = \frac{t_p}{T} \]

\[R_{thJH} = 2.37 \, K/W \]

Figure 27

Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

At

\[T_j = 175 \, ^\circ C \]

Figure 28

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At

\[T_j = 175 \, ^\circ C \]
Thermistor

Figure 1

Typical NTC characteristic as a function of temperature

$R(T) = f(T)$
Switching Definitions BOOST

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_i</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>16 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>16 Ω</td>
</tr>
</tbody>
</table>

Figure 1
Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

- V_{CE} (0%) = -15 V
- V_{CE} (100%) = 15 V
- I_C (100%) = 30 A
- t_{doff} = 0.16 µs
- t_{Eoff} = 0.37 µs

Figure 2
Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

- V_{CE} (0%) = -15 V
- V_{CE} (100%) = 15 V
- I_C (100%) = 30 A
- t_{don} = 0.100 µs
- t_{Eon} = 0.24 µs

Figure 3
Turn-off Switching Waveforms & definition of t_f

- V_C (100%) = 350 V
- I_C (100%) = 30 A
- t_f = 0.09 µs

Figure 4
Turn-on Switching Waveforms & definition of t_r

- V_C (100%) = 350 V
- I_C (100%) = 30 A
- t_r = 0.026 µs
Switching Definitions BOOST

Figure 5
Boost IGBT
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off} (100\%) = 10,54 \text{ kW}$
- $E_{off} (100\%) = 0,98 \text{ mJ}$
- $t_{Eoff} = 0,37 \mu\text{s}$

Figure 6
Boost IGBT
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on} (100\%) = 10,54 \text{ kW}$
- $E_{on} (100\%) = 0,67 \text{ mJ}$
- $t_{Eon} = 0,24 \mu\text{s}$

Figure 7
Boost IGBT
Turn-off Switching Waveforms & definition of t_{rr}

- $V_{d} (100\%) = 350 \text{ V}$
- $I_{d} (100\%) = 30 \text{ A}$
- $I_{DSS} (100\%) = -21 \text{ A}$
- $t_{rr} = 0,30 \mu\text{s}$
Switching Definitions BOOST

Figure 8
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

I_d (100%)	30 A
Q_{rr} (100%)	2.22 μC
t_{Qrr}	0.59 μs

Figure 9
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

P_{rec} (100%)	10.54 kW
E_{rec} (100%)	0.61 mJ
t_{Erec}	0.59 μs

Measurement circuit

Figure 10
BOOST stage switching measurement circuit
Switching Definitions BUCK

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_j</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{on}</td>
<td>16 Ω</td>
</tr>
<tr>
<td>R_{off}</td>
<td>16 Ω</td>
</tr>
</tbody>
</table>

Figure 1

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

(t_{Eoff} = integrating time for E_{off})

- $V_{CE} (0\%) = -15$ V
- $V_{CE} (100\%) = 15$ V
- $I_C (100\%) = 30$ A
- $t_{doff} = 0.08$ µs
- $t_{Eoff} = 0.10$ µs

Figure 2

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

(t_{Eon} = integrating time for E_{on})

- $V_{CE} (0\%) = -15$ V
- $V_{CE} (100\%) = 15$ V
- $I_C (100\%) = 30$ A
- $t_{don} = 0.07$ µs
- $t_{Eon} = 0.18$ µs

Figure 3

Turn-off Switching Waveforms & definition of t_f

- $V_C (100\%) = 350$ V
- $I_C (100\%) = 30$ A
- $t_f = 0.01$ µs

Figure 4

Turn-on Switching Waveforms & definition of t_r

- $V_C (100\%) = 350$ V
- $I_C (100\%) = 30$ A
- $t_r = 0.01$ µs
Switching Definitions BUCK

Figure 5
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off} (100\%) = 10.53$ kW
- $E_{off} (100\%) = 0.22$ mJ
- $t_{Eoff} = 0.10$ µs

Figure 6
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on} (100\%) = 10.53$ kW
- $E_{on} (100\%) = 0.49$ mJ
- $t_{Eon} = 0.18$ µs

Figure 7
Turn-off Switching Waveforms & definition of t_{rr}

- $V_d (100\%) = 350$ V
- $I_d (100\%) = 30$ A
- $I_{RRM} (100\%) = -45$ A
- $t_{rr} = 0.03$ µs
Switching Definitions BUCK

Figure 8
BUCK FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
($t_{Qrr} = \text{integrating time for } Q_{rr}$)

![Waveforms Graph](image)

$I_d (100\%) = 30 \text{ A}$
$Q_{rr} (100\%) = 0,93 \text{ µC}$
$t_{Qrr} = 0,07 \text{ µs}$

Figure 9
BUCK FWD
Turn-on Switching Waveforms & definition of t_{Erec}
($t_{Erec} = \text{integrating time for } E_{rec}$)

![Waveforms Graph](image)

$P_{rec} (100\%) = 10,53 \text{ kW}$
$E_{rec} (100\%) = 0,11 \text{ mJ}$
$t_{Erec} = 0,07 \text{ µs}$

Measurement circuit

Figure 10
BUCK stage switching measurement circuit

![Circuit Diagram](image)
Ordering Code and Marking - Outline - Pinout

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>28.2</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>28.2</td>
</tr>
<tr>
<td>3</td>
<td>9.7</td>
<td>28.2</td>
</tr>
<tr>
<td>4</td>
<td>15.7</td>
<td>28.2</td>
</tr>
<tr>
<td>5</td>
<td>18.7</td>
<td>28.2</td>
</tr>
<tr>
<td>6</td>
<td>24.7</td>
<td>28.2</td>
</tr>
<tr>
<td>7</td>
<td>27.7</td>
<td>28.2</td>
</tr>
<tr>
<td>8</td>
<td>33.8</td>
<td>28.2</td>
</tr>
<tr>
<td>9</td>
<td>36.8</td>
<td>28.2</td>
</tr>
<tr>
<td>10</td>
<td>42.8</td>
<td>28.2</td>
</tr>
<tr>
<td>11</td>
<td>46.2</td>
<td>28.2</td>
</tr>
<tr>
<td>12</td>
<td>52.2</td>
<td>28.2</td>
</tr>
<tr>
<td>13</td>
<td>52.2</td>
<td>23.7</td>
</tr>
<tr>
<td>14</td>
<td>52.2</td>
<td>20.7</td>
</tr>
<tr>
<td>15</td>
<td>41.25</td>
<td>20.6</td>
</tr>
<tr>
<td>16</td>
<td>38.25</td>
<td>20.6</td>
</tr>
<tr>
<td>17</td>
<td>32.55</td>
<td>20.6</td>
</tr>
<tr>
<td>18</td>
<td>29.35</td>
<td>20.6</td>
</tr>
<tr>
<td>19</td>
<td>18.7</td>
<td>20.7</td>
</tr>
<tr>
<td>20</td>
<td>18.7</td>
<td>23.7</td>
</tr>
<tr>
<td>21</td>
<td>15.7</td>
<td>23.7</td>
</tr>
<tr>
<td>22</td>
<td>15.7</td>
<td>20.7</td>
</tr>
<tr>
<td>23</td>
<td>4.75</td>
<td>20.6</td>
</tr>
<tr>
<td>24</td>
<td>1.75</td>
<td>20.6</td>
</tr>
<tr>
<td>25</td>
<td>8.35</td>
<td>12.2</td>
</tr>
<tr>
<td>26</td>
<td>11.35</td>
<td>12.2</td>
</tr>
<tr>
<td>27</td>
<td>19.95</td>
<td>12.2</td>
</tr>
<tr>
<td>28</td>
<td>22.95</td>
<td>12.2</td>
</tr>
<tr>
<td>29</td>
<td>44.35</td>
<td>12.2</td>
</tr>
<tr>
<td>30</td>
<td>47.35</td>
<td>12.2</td>
</tr>
<tr>
<td>31</td>
<td>52.2</td>
<td>8.9</td>
</tr>
<tr>
<td>32</td>
<td>52.2</td>
<td>5.9</td>
</tr>
<tr>
<td>33</td>
<td>46.75</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>43.95</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>40.95</td>
<td>0</td>
</tr>
</tbody>
</table>

Pinout

![Pinout Diagram](image_url)
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.

LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.