Features
- Neutral point clamped inverter (NPC)
- Split output eliminates cross conduction
- Ultra fast switching with MOSFET and SiC diodes
- Reactive power capability
- Low inductance layout

Target Applications
- Solar inverter
- UPS

Types
- 10-PY06NRA041FS-M413FY

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost MOSFET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain to source breakdown voltage</td>
<td>V_{DS}</td>
<td>$T_{j}=25^\circ C$, $T_{j}=T_{\text{max}}$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC drain current</td>
<td>I_D</td>
<td>$T_{j}=80^\circ C$, $T_{j}=T_{\text{max}}$</td>
<td>37</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed drain current</td>
<td>I_{pul}</td>
<td>I_{p} limited by $T_{j}=T_{\text{max}}$</td>
<td>272</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{D}</td>
<td>$T_{j}=T_{\text{max}}$</td>
<td>89</td>
<td>W</td>
</tr>
<tr>
<td>Gate-source peak voltage</td>
<td>V_{GS}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j}=T_{\text{max}}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{RRM}</td>
<td>$T_{j}=25^\circ C$</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_F</td>
<td>$T_{j}=80^\circ C$, $T_{j}=T_{\text{max}}$</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{p}</td>
<td>I_{p} limited by $T_{j}=T_{\text{max}}$</td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{D}</td>
<td>$T_{j}=T_{\text{max}}$</td>
<td>32</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j}=T_{\text{max}}$</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

Parameter	**Symbol**	**Condition**	**Value**	**Unit**
BUCK FWD

Peak Repetitive Reverse Voltage
- \(V_{\text{oss}} \)
 - \(T_j=25^\circ C \)
 - Value: 600
 - Unit: V

DC forward current
- \(I_F \)
 - \(T_j=T_{\text{max}} \)
 - \(T_i=80^\circ C \)
 - \(T_c=80^\circ C \)
 - Value: 26
 - Unit: A

Repetitive peak forward current
- \(I_{\text{fmm}} \)
 - \(I_i \) limited by \(T_{\text{max}} \)
 - Value: 114
 - Unit: A

Power dissipation per Diode
- \(P_{\text{tot}} \)
 - \(T_j=T_{\text{max}} \)
 - \(T_i=80^\circ C \)
 - \(T_c=80^\circ C \)
 - Value: 70
 - Unit: W

Maximum Junction Temperature
- \(T_{j,max} \)
 - Value: 175
 - Unit: \(^\circ C\)

BUCK MOSFET

Drain to source breakdown voltage
- \(V_{\text{DS}} \)
 - Value: 600
 - Unit: V

DC drain current
- \(I_D \)
 - \(T_j=T_{\text{max}} \)
 - \(T_i=80^\circ C \)
 - \(T_c=80^\circ C \)
 - Value: 29
 - Unit: A

Pulsed drain current
- \(I_{\text{pulse}} \)
 - \(I_i \) limited by \(T_{\text{max}} \)
 - Value: 272
 - Unit: A

Power dissipation
- \(P_{\text{tot}} \)
 - \(T_j=T_{\text{max}} \)
 - \(T_i=80^\circ C \)
 - \(T_c=80^\circ C \)
 - Value: 89
 - Unit: W

Gate-source peak voltage
- \(V_{\text{gs}} \)
 - Value: ±20
 - Unit: V

Maximum Junction Temperature
- \(T_{j,max} \)
 - Value: 150
 - Unit: \(^\circ C\)

Thermal Properties

Storage temperature
- \(T_{\text{stg}} \)
 - Value: -40...+125
 - Unit: \(^\circ C\)

Operation temperature under switching condition
- \(T_{\text{op}} \)
 - Value: -40...+(\(T_{j,max} - 25 \))
 - Unit: \(^\circ C\)

Insulation Properties

Insulation voltage
- \(V_{\text{m}} \)
 - \(t=2s \)
 - DC voltage
 - Value: 4000
 - Unit: V

Creepage distance
- Value: min 12.7
 - Unit: mm

Clearance
- Value: min 12.7
 - Unit: mm
Characteristic Values

BOOST MOSFET

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static drain to source ON resistance</td>
<td>R_{DS(on)}</td>
<td>V_{GS}=V_{DS}</td>
<td>44</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>V_{GS(th)}</td>
<td>V_{DS}=V_{GS}</td>
<td>2.4</td>
<td>T<sub>j</sub>=25°C, T<sub>j</sub>=125°C</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>I_{gs}</td>
<td></td>
<td>20</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_{gs}</td>
<td></td>
<td>0</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Turn On Delay Time</td>
<td>t_{ON}</td>
<td></td>
<td>10</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_{r}</td>
<td></td>
<td>400</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Turn off delay time</td>
<td>t_{r(on)}</td>
<td>R_{goff}=4 Ω</td>
<td>15</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td></td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td></td>
<td></td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Total gate charge</td>
<td>Q_{g}</td>
<td>R_{gon}=4 Ω</td>
<td>10</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Gate to source charge</td>
<td>Q_{gs}</td>
<td>R_{gon}=4 Ω</td>
<td>400</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td></td>
<td>0</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td>100</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BOOST FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_{F}</td>
<td></td>
<td>18</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{f}</td>
<td></td>
<td>10</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{F}</td>
<td></td>
<td></td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{r}</td>
<td></td>
<td></td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>Q_{f}</td>
<td>R_{gon}=4 Ω</td>
<td>10</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td></td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>E_{peak}</td>
<td>Reversal</td>
<td></td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUCK FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td></td>
<td>16</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{F}</td>
<td></td>
<td>10</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{r}</td>
<td></td>
<td></td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{f}</td>
<td>R_{gon}=4 Ω</td>
<td>10</td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>E_{peak}</td>
<td></td>
<td></td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td></td>
<td>T<sub>j</sub>=25°C</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{thJH}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUCK MOSFET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static drain to source ON resistance</td>
<td>$R_{\text{on,sc}}$</td>
<td>$V_{GS}=V_{GS}$</td>
<td>44</td>
<td>$T=25^\circ\text{C}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T=125^\circ\text{C}$</td>
<td>0.09</td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>$V_{\text{GS(th)}}$</td>
<td>$V_{GS}=V_{DS}$</td>
<td>0,00296</td>
<td>$T=25^\circ\text{C}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T=125^\circ\text{C}$</td>
<td>3</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>I_{gs}</td>
<td></td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_{ds}</td>
<td>$V_{DS}=V_{GS}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Turn On Delay Time</td>
<td>t_{on}</td>
<td></td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_{r}</td>
<td>$R_{\text{goff}}=4\ \Omega$</td>
<td>9</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn off delay time</td>
<td>t_{off}</td>
<td>$R_{\text{gon}}=4\ \Omega$</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{in}</td>
<td>$T=25^\circ\text{C}$</td>
<td>0.03</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td>$T=25^\circ\text{C}$</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Total gate charge</td>
<td>Q_{g}</td>
<td>10</td>
<td>36</td>
<td>nC</td>
</tr>
<tr>
<td>Gate to source charge</td>
<td>Q_{gs}</td>
<td>10</td>
<td>480</td>
<td>44</td>
</tr>
<tr>
<td>Gate to drain charge</td>
<td>Q_{gd}</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{gs}</td>
<td></td>
<td>6530</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{os}</td>
<td>$f=1\text{MHz}$</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{r}</td>
<td></td>
<td>tbd.</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>$R_{\text{th,JH}}$</td>
<td></td>
<td>0.79</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>22000</td>
<td>Ω</td>
</tr>
<tr>
<td>Deviation of R_{100}</td>
<td>$\Delta R/R$</td>
<td>$R_{100}=1486\ \Omega$</td>
<td>$T=100^\circ\text{C}$</td>
<td>-5</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td>200</td>
<td>mW</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td>2</td>
<td>mW/K</td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25\text{K})}$</td>
<td>Tol.+3%</td>
<td>3950</td>
<td>1K</td>
</tr>
<tr>
<td></td>
<td>$B_{(35\text{K})}$</td>
<td>Tol.+3%</td>
<td>3996</td>
<td>1K</td>
</tr>
</tbody>
</table>

Copyright by Vincotech
Figure 1

MOSFET

Typical output characteristics

\[I_c = f(V_{CE}) \]

At

\[t_p = 250 \, \mu s \]

\[T_j = 25\, ^\circ C \]

\[V_{GE} \text{ from } 4 \, \text{V to } 14 \, \text{V in steps of } 1 \, \text{V} \]

Figure 2

MOSFET

Typical output characteristics

\[I_c = f(V_{CE}) \]

At

\[t_p = 250 \, \mu s \]

\[T_j = 125\, ^\circ C \]

\[V_{CE} \text{ from } 4 \, \text{V to } 14 \, \text{V in steps of } 1 \, \text{V} \]

Figure 3

MOSFET

Typical transfer characteristics

\[I_c = f(V_{GE}) \]

At

\[t_b = 250 \, \mu s \]

\[T_j = 25\, ^\circ C \]

\[V_{CE} = 10 \, \text{V} \]

Figure 4

FWD

Typical diode forward current as a function of forward voltage

\[I_f = f(V_f) \]

At

\[t_b = 250 \, \mu s \]
Figure 5 MOSFET
Typical switching energy losses as a function of collector current
\[E = f(I_C) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(V_{GE} = 10 \) V
- \(R_{gon} = 4 \) Ω
- \(R_{goff} = 4 \) Ω

Figure 6 MOSFET
Typical switching energy losses as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(V_{GE} = 10 \) V
- \(I_C = 15 \) A

Figure 7 FWD
Typical reverse recovery energy loss as a function of collector current
\[E_{rec} = f(I_C) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(V_{GE} = 10 \) V
- \(R_{gon} = 4 \) Ω

Figure 8 FWD
Typical reverse recovery energy loss as a function of gate resistor
\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(V_{GE} = 10 \) V
- \(I_C = 15 \) A
Figure 9: MOSFET
Typical switching times as a function of collector current
\(t = f(I_C) \)

With an inductive load at
\[T_j = 125 °C \]
\[V_{CE} = 400 \text{ V} \]
\[V_{GE} = 10 \text{ V} \]
\[R_{gon} = 4 \text{ Ω} \]
\[R_{goff} = 4 \text{ Ω} \]

Figure 10: MOSFET
Typical switching times as a function of gate resistor
\(t = f(R_g) \)

With an inductive load at
\[T_j = 125 °C \]
\[V_{CE} = 400 \text{ V} \]
\[V_{GE} = 10 \text{ V} \]
\[I_c = 15 \text{ A} \]

Figure 11: FWD
Typical reverse recovery time as a function of collector current
\(t_{rr} = f(I_C) \)

At
\[T_j = 25/125 °C \]
\[V_{CE} = 400 \text{ V} \]
\[V_{GE} = 10 \text{ V} \]
\[R_{gon} = 4 \text{ Ω} \]

Figure 12: FWD
Typical reverse recovery time as a function of MOSFET turn on gate resistor
\(t_{rr} = f(R_{gon}) \)

At
\[T_j = 25/125 °C \]
\[V_{CE} = 400 \text{ V} \]
\[I_c = 15 \text{ A} \]
\[V_{GE} = 10 \text{ V} \]
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

At
\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 400 \, V \]
\[V_{GE} = 10 \, V \]
\[R_{gon} = 4 \, \Omega \]

Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

At
\[T_J = 25/125 \, ^\circ C \]
\[V_{CE} = 400 \, V \]
\[V_{GE} = 10 \, V \]

Copyright by Vincotech
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At
\[T_j = 25/125 \degree C \]
\[V_{CE} = 400 \text{ V} \]
\[V_{GE} = 10 \text{ V} \]
\[R_{gon} = 4 \text{ } \Omega \]

MOSFET transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
\[D = \frac{t_p}{T} \]
\[R_{thJH} = 0.79 \text{ KW} \]

MOSFET thermal model values

\[\begin{array}{c|c}
R (C/W) & \tau (s) \\
0.02 & 9.8E+00 \\
0.11 & 1.9E+00 \\
0.24 & 3.6E-01 \\
0.29 & 1.3E-01 \\
0.09 & 2.1E-02 \\
0.03 & 2.1E-03 \\
\end{array} \]

FWD transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
\[D = \frac{t_p}{T} \]
\[R_{thJH} = 1.35 \text{ KW} \]

FWD thermal model values

\[\begin{array}{c|c}
R (C/W) & \tau (s) \\
0.03 & 6.3E+00 \\
0.08 & 1.2E+00 \\
0.35 & 2.4E-01 \\
0.36 & 7.7E-02 \\
0.28 & 1.4E-02 \\
0.21 & 3.2E-03 \\
\end{array} \]
BUCK

Figure 21

Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

At

\[T_j = 150 \degree C \]

Figure 22

Collector current as a function of heatsink temperature

\[I_C = f(T_h) \]

At

\[T_j = 150 \degree C \]

Figure 23

Power dissipation as a function of heatsink temperature

\[P_{tot} = f(T_h) \]

At

\[T_j = 175 \degree C \]

Figure 24

Forward current as a function of heatsink temperature

\[I_F = f(T_h) \]

At

\[T_j = 175 \degree C \]
Figure 25

Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

Figure 26

Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At

- \(D = \) single pulse
- \(T_{Th} = 80 \) °C
- \(V_{GE} = 15 \) V
- \(T_j = T_{j\text{max}} \) °C

BUCK
Figure 1
Typical output characteristics
\(I_D = f(V_{DS}) \)

At
\(t_p = 250 \mu s \)
\(T_j = 25 \degree C \)
\(V_{GS} \) from 4 V to 14 V in steps of 1 V

Figure 2
Typical output characteristics
\(I_D = f(V_{DS}) \)

At
\(t_p = 250 \mu s \)
\(T_j = 125 \degree C \)
\(V_{GS} \) from 4 V to 14 V in steps of 1 V

Figure 3
Typical transfer characteristics
\(I_D = f(V_{GS}) \)

At
\(t_p = 250 \mu s \)
\(T_j = 25 \degree C \)
\(V_{DS} = 10 \) V

Figure 4
Typical diode forward current as a function of forward voltage
\(I_F = f(V_F) \)

At
\(t_p = 250 \mu s \)
Figure 5
BOOST MOSFET
Typical switching energy losses as a function of collector current
$E = f(I_D)$

With an inductive load at
$T_J = 25/125 \, ^\circ C$
$V_{DS} = 400 \, V$
$V_{GS} = 10 \, V$
$R_{gon} = 4 \, \Omega$
$R_{goff} = 4 \, \Omega$

![Graph showing typical switching energy losses as a function of collector current.](image)

Figure 6
BOOST MOSFET
Typical switching energy losses as a function of gate resistor
$E = f(R_g)$

With an inductive load at
$T_J = 25/125 \, ^\circ C$
$V_{DS} = 400 \, V$
$V_{GS} = 10 \, V$
$I_D = 15 \, A$

![Graph showing typical switching energy losses as a function of gate resistor.](image)

Figure 7
BOOST FWD
Typical reverse recovery energy loss as a function of collector (drain) current
$E_{rec} = f(I_C)$

With an inductive load at
$T_J = 25/125 \, ^\circ C$
$V_{DS} = 400 \, V$
$V_{GS} = 10 \, V$
$R_{gon} = 4 \, \Omega$
$R_{goff} = 4 \, \Omega$

![Graph showing typical reverse recovery energy loss as a function of collector (drain) current.](image)

Figure 8
BOOST FWD
Typical reverse recovery energy loss as a function of gate resistor
$E_{rec} = f(R_g)$

With an inductive load at
$T_J = 25/125 \, ^\circ C$
$V_{DS} = 400 \, V$
$V_{GS} = 10 \, V$
$I_D = 15 \, A$

![Graph showing typical reverse recovery energy loss as a function of gate resistor.](image)
Figure 9
Typical switching times as a function of collector current
$t = f(I_C)$

With an inductive load at
$T_j = 25/125 \, ^\circ\text{C}$
$V_{DS} = 400 \, \text{V}$
$V_{GS} = 10 \, \text{V}$
$R_{gon} = 4 \, \Omega$
$R_{goff} = 4 \, \Omega$

Figure 10
Typical switching times as a function of gate resistor
$t = f(R_g)$

With an inductive load at
$T_j = 25/125 \, ^\circ\text{C}$
$V_{DS} = 400 \, \text{V}$
$V_{GS} = 10 \, \text{V}$
$I_C = 15 \, \text{A}$

Figure 11
Typical reverse recovery time as a function of collector current
$trr = f(I_C)$

At
$T_j = 25/125 \, ^\circ\text{C}$
$V_{DS} = 400 \, \text{V}$
$V_{GS} = 10 \, \text{V}$
$R_{gon} = 4 \, \Omega$

Figure 12
Typical reverse recovery time as a function of MOSFET turn-on gate resistor
$trr = f(R_{gon})$

At
$T_j = 25/125 \, ^\circ\text{C}$
$V_{DS} = 400 \, \text{V}$
$I_C = 15 \, \text{A}$
$V_{GS} = 10 \, \text{V}$
Figure 13 | BOOST FWD
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

At
- \(T_J = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(V_{GS} = 10 \) V
- \(R_{\text{gon}} = 4 \) Ω

Figure 14 | BOOST FWD
Typical reverse recovery charge as a function of MOSFET turn on gate resistor
\[Q_{rr} = f(R_{\text{gon}}) \]

At
- \(T_J = 25/125 \) °C
- \(V_{BE} = 400 \) V
- \(I_F = 15 \) A
- \(V_{GS} = 10 \) V

Figure 15 | BOOST FWD
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

At
- \(T_J = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(V_{GS} = 10 \) V
- \(R_{\text{gon}} = 4 \) Ω

Figure 16 | BOOST FWD
Typical reverse recovery current as a function of MOSFET turn on gate resistor
\[I_{RRM} = f(R_{\text{gon}}) \]

At
- \(T_J = 25/125 \) °C
- \(V_{BE} = 400 \) V
- \(I_F = 15 \) A
- \(V_{GS} = 10 \) V
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At
\[T_j = 25/125 \degree C \]
\[V_{CE} = 400 \text{ V} \]
\[V_{GE} = 10 \text{ V} \]
\[R_{gon} = 4 \Omega \]

MOSFET transient thermal impedance
\[Z_{thJH} = f(t_p) \]

At
\[D = \frac{t_p}{T} \]
\[R_{thJH} = 0.79 \text{ KW} \]

MOSFET thermal model values
<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.44E-02</td>
<td>9.81E+00</td>
</tr>
<tr>
<td>1.06E-01</td>
<td>1.90E+00</td>
</tr>
<tr>
<td>2.44E-01</td>
<td>3.62E-01</td>
</tr>
<tr>
<td>2.92E-01</td>
<td>1.34E-01</td>
</tr>
<tr>
<td>9.32E-02</td>
<td>2.12E-02</td>
</tr>
<tr>
<td>2.59E-02</td>
<td>2.13E-03</td>
</tr>
</tbody>
</table>

FWD transient thermal impedance
\[Z_{thJH} = f(t_p) \]

At
\[D = \frac{t_p}{T} \]
\[R_{thJH} = 2.21 \text{ KW} \]

FWD thermal model values
<table>
<thead>
<tr>
<th>R (C/W)</th>
<th>Tau (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.33E-02</td>
<td>7.21E+00</td>
</tr>
<tr>
<td>1.52E-01</td>
<td>1.08E+00</td>
</tr>
<tr>
<td>6.82E-01</td>
<td>2.18E-01</td>
</tr>
<tr>
<td>6.31E-01</td>
<td>6.79E-02</td>
</tr>
<tr>
<td>3.64E-01</td>
<td>1.40E-02</td>
</tr>
<tr>
<td>2.13E-01</td>
<td>2.62E-03</td>
</tr>
</tbody>
</table>
Figure 21 BOOST MOSFET
Power dissipation as a function of heatsink temperature
\(P_{\text{tot}} = f(T_h) \)

At
\(T_j = 150 \, ^\circ C \)

Figure 22 BOOST MOSFET
Collector/Drain current as a function of heatsink temperature
\(I_C = f(T_h) \)

At
\(T_j = 150 \, ^\circ C \)
\(V_{GS} = 10 \, V \)

Figure 23 BOOST FWD
Power dissipation as a function of heatsink temperature
\(P_{\text{tot}} = f(T_h) \)

At
\(T_j = 150 \, ^\circ C \)

Figure 24 BOOST FWD
Forward current as a function of heatsink temperature
\(I_F = f(T_h) \)

At
\(T_j = 150 \, ^\circ C \)
Figure 25 BOOST MOSFET
Safe operating area as a function of drain-source voltage

\[I_D = f(V_{GS}) \]

Figure 26 BOOST MOSFET
Gate voltage vs Gate charge

\[V_{GS} = f(Q_g) \]

At
\[D = \text{single pulse} \]
\[T_s = 80 \, ^{\circ}C \]
\[V_{GS} = 10 \, V \]
\[T_j = T_{j\text{max}} \, ^{\circ}C \]

\[I_D = 44 \, A \]
Thermistor

Figure 1

Typical NTC characteristic
as a function of temperature

\[R_T = f(T) \]
Switching Definitions BOOST MOSFET

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_j)</td>
<td>125 °C</td>
</tr>
<tr>
<td>(R_{on})</td>
<td>4 Ω</td>
</tr>
<tr>
<td>(R_{off})</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1

Turn-off Switching Waveforms & definition of \(t_{off} \), \(t_{Eoff} \)

\(t_{off} \) = integrating time for \(E_{off} \)

\(V_{GE} \) (0%) = 0 V
\(V_{GE} \) (100%) = 10 V
\(V_C \) (100%) = 800 V
\(I_C \) (100%) = 15 A
\(t_{off} \) = 0.24 \(\mu \)s
\(t_{Eoff} \) = 0.25 \(\mu \)s

Figure 2

Turn-on Switching Waveforms & definition of \(t_{on} \), \(t_{Eon} \)

\(t_{on} \) = integrating time for \(E_{on} \)

\(V_{GE} \) (0%) = 0 V
\(V_{GE} \) (100%) = 10 V
\(V_C \) (100%) = 800 V
\(I_C \) (100%) = 15 A
\(t_{on} \) = 0.02 \(\mu \)s
\(t_{Eon} \) = 0.04 \(\mu \)s

Figure 3

Turn-off Switching Waveforms & definition of \(t_f \)

\(t_f \) = 0.01 \(\mu \)s

Figure 4

Turn-on Switching Waveforms & definition of \(t_r \)

\(t_r \) = 0.01 \(\mu \)s
Switching Definitions BOOST MOSFET

Figure 5
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{off}(100\%) = 12.02$ kW
- $E_{off}(100\%) = 0.10$ mJ
- $t_{Eoff} = 0.25$ μs

Figure 6
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{on}(100\%) = 12.024$ kW
- $E_{on}(100\%) = 0.26$ mJ
- $t_{Eon} = 0.03575$ μs

Figure 7
Gate voltage vs Gate charge (measured)

- $V_{GEoff} = 0$ V
- $V_{GEon} = 10$ V
- $V_{C}(100\%) = 800$ V
- $I_{C}(100\%) = 15$ A
- $Q_{g} = 125.90$ nC

Figure 8
Turn-off Switching Waveforms & definition of t_{rr}

- $V_{d}(100\%) = 800$ V
- $I_{d}(100\%) = 15$ A
- $I_{RRM}(100\%) = -60$ A
- $t_{rr} = 0.03$ μs
Switching Definitions BOOST MOSFET

Figure 9 BOOST FWD
Turn-on Switching Waveforms & definition of t_{Qrr}
($t_{Qrr} = \text{integrating time for } Q_{rr}$)

- $I_{d} (100\%) = 15$ A
- $Q_{rr} (100\%) = 3.02 \mu\text{C}$
- $t_{Qrr} = 1.00 \mu\text{s}$

Figure 10 BOOST FWD
Turn-on Switching Waveforms & definition of t_{Erec}
($t_{Erec} = \text{integrating time for } E_{rec}$)

- $P_{rec} (100\%) = 12.02$ kW
- $E_{rec} (100\%) = 1.04 \text{ mJ}$
- $t_{Erec} = 1.00 \mu\text{s}$
Switching Definitions BUCK MOSFET

General conditions

<table>
<thead>
<tr>
<th>T_J</th>
<th>125 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{on}</td>
<td>4 Ω</td>
</tr>
<tr>
<td>R_{on}</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1
Turn-off Switching Waveforms & definition of t_{off}, t_{on}

$t_{off} = \text{integrating time for } E_{off}$

$V_{GE} (0\%) = 0 \text{ V}$
$V_{GE} (100\%) = 10 \text{ V}$
$V_{C}(100\%) = 800 \text{ V}$
$I_c(100\%) = 15 \text{ A}$
$t_{off} = 0.20 \mu\text{s}$
$t_{on} = 0.21 \mu\text{s}$

Figure 2
Turn-on Switching Waveforms & definition of t_{turn}, t_{con}

$t_{con} = \text{integrating time for } E_{con}$

$V_{GE} (0\%) = 0 \text{ V}$
$V_{GE} (100\%) = 10 \text{ V}$
$V_{C}(100\%) = 800 \text{ V}$
$I_c(100\%) = 15 \text{ A}$
$t_{turn} = 0.03 \mu\text{s}$
$t_{con} = 0.05 \mu\text{s}$

Figure 3
Turn-off Switching Waveforms & definition of t_f

$V_{C}(100\%) = 800 \text{ V}$
$I_c(100\%) = 15 \text{ A}$
$t_f = 0.01 \mu\text{s}$

Figure 4
Turn-on Switching Waveforms & definition of t_r

$V_{C}(100\%) = 800 \text{ V}$
$I_c(100\%) = 15 \text{ A}$
$t_r = 0.01 \mu\text{s}$
Switching Definitions BUCK MOSFET

Figure 5 BUCK MOSFET
Turn-off Switching Waveforms & definition of t_{Eoff}

- $P_{\text{off}} (100\%) = 12.03$ kW
- $E_{\text{off}} (100\%) = 0.04$ mJ
- $t_{\text{Eoff}} = 0.21$ μs

Figure 6 BUCK MOSFET
Turn-on Switching Waveforms & definition of t_{Eon}

- $P_{\text{on}} (100\%) = 12.03$ kW
- $E_{\text{on}} (100\%) = 0.10$ mJ
- $t_{\text{Eon}} = 0.05$ μs

Figure 7 BUCK FWD
Gate voltage vs Gate charge (measured)

- $V_{\text{GEOFF}} = 0$ V
- $V_{\text{GEON}} = 10$ V
- $V_{\text{D}} (100\%) = 800$ V
- $I_{\text{D}} (100\%) = 15$ A
- $Q_{\text{g}} = 171.57$ nC

Figure 8 BUCK MOSFET
Turn-off Switching Waveforms & definition of t_{rr}

- $V_{\text{D}} (100\%) = 800$ V
- $I_{\text{D}} (100\%) = 15$ A
- $I_{\text{RRM}} (100\%) = -13$ A
- $t_{\text{rr}} = 0.01$ μs
Switching Definitions BUCK MOSFET

Figure 9
Turn-on Switching Waveforms & definition of \(t_{Qr} \)
\((t_{Qrr} = \text{integrating time for } Q_r)\)

- \(I_d (100\%) = 15 \) A
- \(Q_r (100\%) = 0.08 \) \(\mu \)C
- \(t_{Qrr} = 0.11 \) \(\mu \)s

Figure 10
Turn-on Switching Waveforms & definition of \(t_{Erec} \)
\((t_{Erec} = \text{integrating time for } E_{rec})\)

- \(P_{rec} (100\%) = 12.03 \) kW
- \(E_{rec} (100\%) = 0.01 \) mJ
- \(t_{Erec} = 0.11 \) \(\mu \)s

Measurement circuits

Figure 11
BUCK stage switching measurement circuit

Figure 12
BOOST stage switching measurement circuit
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12mm housing</td>
<td>10-PY06NRA041FS-M413FY</td>
<td>M413FY</td>
<td>M413FY</td>
</tr>
</tbody>
</table>

Outline

Pinout

Copyright by Vincotech

Revision: 1
PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Status</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
<tr>
<td>Final</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.</td>
</tr>
</tbody>
</table>

DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.