flowNPC1

Features
- neutral point clamped inverter
- reactive power capability
- SiC buck diode
- clip-in pcb mounting
- low inductance layout

Target Applications
- solar inverter
- UPS

Types
- 10-PY06NRA021FS-M410FY

Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out Boost MOSFET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain to source breakdown voltage</td>
<td>V_{DS}</td>
<td>Tj=25°C</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC drain current</td>
<td>I_{D}</td>
<td>Tj=Tj,max</td>
<td>47</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed drain current</td>
<td>I_{Pulse}</td>
<td>I_{p} limited by Tj,max</td>
<td>544</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>Tj=Tj,max</td>
<td>108</td>
<td>W</td>
</tr>
<tr>
<td>Gate-source peak voltage</td>
<td>V_{GS}</td>
<td>static/AC (f>1 Hz)</td>
<td>±20±30</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>Tj=max</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Out Boost FWD				
Peak Repetitive Reverse Voltage	V_{RRM}	Tj=25°C	1200	V
DC forward current	I_{f}	Tj=Tj,max	24	A
Surge Peak Forward Current	I_{FSM}	10 ms sin 180°	170	A
Power dissipation	P_{tot}	Tj=Tj,max	58	W
Maximum Junction Temperature	Tj=max		175	°C
Maximum Ratings

Tj=25°C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{max}</td>
<td>$T_j=25°C$</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>I_f</td>
<td>$T_j=T_{max}$</td>
<td>$T_c=80°C$</td>
<td>24</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>$I_{f_{RMS}}$</td>
<td>$T_j=10$ ms, Half Sine Wave, $D=0.3$</td>
<td>$T_c=25°C$</td>
<td>201</td>
</tr>
<tr>
<td>Power dissipation per Diode</td>
<td>P_{tot}</td>
<td>$T_j=T_{max}$</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j_{max}}$</td>
<td></td>
<td></td>
<td>175</td>
</tr>
</tbody>
</table>

Buck MOSFET					
Drain to source breakdown voltage	V_{DS}			600	V
DC drain current	I_D	$T_j=T_{max}$	$T_c=80°C$	47	A
Pulsed drain current	I_{pulse}	I_D limited by $T_{j_{max}}$	$T_c=25°C$	544	A
Power dissipation	P_{tot}	$T_j=T_{max}$	$T_c=80°C$	108	W
Gate-source peak voltage	V_{gs}	static/AC ($f>1$ Hz)		±20/±30	V
Maximum Junction Temperature	$T_{j_{max}}$			150	°C

Thermal Properties

| Storage temperature | T_{stg} | -40...+125 | °C |
| Operation temperature under switching condition | T_{op} | -40...$(T_{j_{max}} - 25)$ | °C |

Insulation Properties

Insulation voltage	V_{in}	$t=2s$	DC voltage	4000	V
Creepage distance				min 12.7	mm
Clearance				min 12.7	mm
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static drain to source ON resistance</td>
<td>$R_{dS(on)}$</td>
<td>$10 \leq V_{GS} \leq V_{GS}$</td>
<td>$20.8 \leq 2V_{GS}$</td>
<td>mΩ</td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>$V_{GS(th)}$</td>
<td>$V_{GS}(25\degree C)$</td>
<td>$41.2 \leq 3V_{GS}$</td>
<td>V</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>I_{GS}</td>
<td>$20 \leq 0V_{GS}$</td>
<td>$200 \leq 0$</td>
<td>nA</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_{DS}</td>
<td>$0 \leq I_{DS}$</td>
<td>$10 \leq 0$</td>
<td>µA</td>
</tr>
<tr>
<td>Turn On Delay Time</td>
<td>t_{ON}</td>
<td>$10 \leq 400$</td>
<td>$30 \leq 400$</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_{r}</td>
<td>$R_{g(on)}=2 \Omega$</td>
<td>$10 \leq 400$</td>
<td>A</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td>$R_{g(on)}=2 \Omega$</td>
<td>$30 \leq 400$</td>
<td>µs</td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>E_{on}</td>
<td>$0 \leq 0$</td>
<td>$72 \leq 0$</td>
<td>pF</td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>E_{off}</td>
<td>$0 \leq 0$</td>
<td>$300 \leq 0$</td>
<td>µC</td>
</tr>
<tr>
<td>Total gate charge</td>
<td>Q_{g}</td>
<td>$0 \leq 0$</td>
<td>$100 \leq 0$</td>
<td>µC</td>
</tr>
<tr>
<td>Gate to source charge</td>
<td>Q_{iss}</td>
<td>$0 \leq 0$</td>
<td>$2 \leq 0$</td>
<td>µC</td>
</tr>
<tr>
<td>Gate to drain charge</td>
<td>Q_{gs}</td>
<td>$0 \leq 0$</td>
<td>$300 \leq 0$</td>
<td>µC</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>$f=1\text{MHz}$</td>
<td>$13060 \leq 1$</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{gs}</td>
<td>$f=1\text{MHz}$</td>
<td>$720 \leq 1$</td>
<td>pF</td>
</tr>
<tr>
<td>Gate resistor</td>
<td>f_{o}</td>
<td>$10 \leq 100$</td>
<td>$25\degree C$</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{JH}</td>
<td>Thermal grease thickness</td>
<td>$50\mu m$</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to case per chip</td>
<td>R_{JC}</td>
<td>Thermal grease thickness</td>
<td>$50\mu m$</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Out Boost FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>V_{F}</td>
<td>$35 \leq 35$</td>
<td>$2.51 \leq 2.68$</td>
<td>V</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{F}</td>
<td>$1200 \leq 1200$</td>
<td>$60 \leq 5500$</td>
<td>µA</td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{RRM}</td>
<td>$10 \leq 400$</td>
<td>$24 \leq 21$</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>$R_{on}=2 \Omega$</td>
<td>$25\degree C$</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovery charge</td>
<td>Q_{rr}</td>
<td>$R_{on}=2 \Omega$</td>
<td>$25\degree C$</td>
<td>µC</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>$0 \leq 0$</td>
<td>$1.65 \leq 1.09$</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Buck FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_{F}</td>
<td>$30 \leq 30$</td>
<td>$1.43 \leq 1.59$</td>
<td>V</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RRM}</td>
<td>$10 \leq 400$</td>
<td>$24 \leq 21$</td>
<td>A</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>$R_{on}=2 \Omega$</td>
<td>$25\degree C$</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>$R_{on}=2 \Omega$</td>
<td>$25\degree C$</td>
<td>µC</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>d_{rec}/max</td>
<td>$10 \leq 400$</td>
<td>$6880 \leq 4288$</td>
<td>Aµs</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td>$10 \leq 400$</td>
<td>$4.044 \leq 2.64$</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>R_{JH}</td>
<td>Thermal grease thickness</td>
<td>$50\mu m$</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal resistance chip to case per chip</td>
<td>R_{JC}</td>
<td>Thermal grease thickness</td>
<td>$50\mu m$</td>
<td>K/W</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static drain to source ON resistance</td>
<td>(R_{\text{on}})</td>
<td>10 60</td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>(V_{\text{GS(th)}})</td>
<td>(V_{\text{GS(th)}})</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>(I_{\text{GS}})</td>
<td>20 0</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>(I_{\text{DS}})</td>
<td>0 600</td>
</tr>
<tr>
<td>Turn On Delay Time</td>
<td>(t_{\text{ON}})</td>
<td>10 400 30</td>
</tr>
<tr>
<td>Rise Time</td>
<td>(t_r)</td>
<td></td>
</tr>
<tr>
<td>Turn off delay time</td>
<td>(t_{\text{OFF}})</td>
<td>(R_{\text{g/off}}=2 \Omega)</td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_f)</td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss per pulse</td>
<td>(E_{\text{on}})</td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss per pulse</td>
<td>(E_{\text{off}})</td>
<td></td>
</tr>
<tr>
<td>Total gate charge</td>
<td>(Q_{\text{g}})</td>
<td></td>
</tr>
<tr>
<td>Gate to source charge</td>
<td>(Q_{\text{ds}})</td>
<td></td>
</tr>
<tr>
<td>Gate to drain charge</td>
<td>(Q_{\text{ds}})</td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{\text{inc}})</td>
<td>(f=1\text{MHz})</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{\text{out}})</td>
<td>(f=1\text{MHz})</td>
</tr>
<tr>
<td>Gate resistor</td>
<td>(C_{\text{g}})</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink per chip</td>
<td>(R_{\text{hi}})</td>
<td>Thermal grease thickness 550um (k = 1 \text{W/mK})</td>
</tr>
<tr>
<td>Thermal resistance chip to case per chip</td>
<td>(R_{\text{hc}})</td>
<td></td>
</tr>
</tbody>
</table>

Thermistor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated resistance</td>
<td>(R)</td>
<td>(T_j=25°C)</td>
</tr>
<tr>
<td>Deviation of (R_{100}) (\Delta R/R)</td>
<td>(R_{100} = 1486 \Omega)</td>
<td>(T_c=100°C)</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P)</td>
<td>(T_j=25°C)</td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td>(T_j=25°C)</td>
<td>2</td>
</tr>
<tr>
<td>B-value</td>
<td>(B_{25/50})</td>
<td>Tol. ±3%</td>
</tr>
<tr>
<td>B-value</td>
<td>(B_{25/100})</td>
<td>Tol. ±3%</td>
</tr>
<tr>
<td>Vincotech NTC Reference</td>
<td></td>
<td>(T_j=25°C)</td>
</tr>
</tbody>
</table>

Copyright Vincotech 4 Revision: 3
Figure 1 MOSFET Typical output characteristics
\[I_C = f(V_{CE}) \]

At
\[t_p = 250 \mu s \]
\[T_j = 25 \degree C \]
\[V_{GE} \text{ from } 0 \text{ V to } 20 \text{ V in steps of } 2 \text{ V} \]

Figure 2 MOSFET Typical output characteristics
\[I_C = f(V_{CE}) \]

At
\[t_p = 250 \mu s \]
\[T_j = 125 \degree C \]
\[V_{GE} \text{ from } 0 \text{ V to } 20 \text{ V in steps of } 2 \text{ V} \]

Figure 3 MOSFET Typical transfer characteristics
\[I_C = f(V_{GE}) \]

Figure 4 FWD Typical diode forward current as a function of forward voltage
\[I_F = f(V_F) \]

At
\[t_p = 250 \mu s \]
\[V_{CE} = 10 \text{ V} \]
\[T_j = T_{jmax} - 25 \degree C \]
\[T_j = 25 \degree C \]
\[T_j = T_{jmax} - 25 \degree C \]
Figure 5
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(V_{GE} = 10 \, V \)
- \(R_{gon} = 2 \, \Omega \)
- \(R_{goff} = 2 \, \Omega \)

Figure 6
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(V_{GE} = 10 \, V \)
- \(I_C = 30 \, A \)

Figure 7
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(V_{GE} = 10 \, V \)
- \(R_{gon} = 2 \, \Omega \)

Figure 8
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at

- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(V_{GE} = 10 \, V \)
- \(I_C = 30 \, A \)
Figure 9
Typical switching times as a function of collector current
\[t = f(I_C) \]

With an inductive load at
\[T_j = 125 \, ^\circ C \]
\[V_{CE} = 400 \, V \]
\[V_{GS} = 10 \, V \]
\[R_{gon} = 2 \, \Omega \]
\[R_{goff} = 2 \, \Omega \]

Figure 10
Typical switching times as a function of gate resistor
\[t = f(R_G) \]

With an inductive load at
\[T_j = 125 \, ^\circ C \]
\[V_{CE} = 400 \, V \]
\[V_{GS} = 10 \, V \]
\[I_C = 30 \, A \]

Figure 11
Typical reverse recovery time as a function of collector current
\[t_{rr} = f(I_C) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 400 \, V \]
\[V_{GS} = 10 \, V \]
\[R_{gon} = 2 \, \Omega \]

Figure 12
Typical reverse recovery time as a function of MOSFET turn on gate resistor
\[t_{rr} = f(R_{gon}) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 400 \, V \]
\[I_T = 30 \, A \]
\[V_{GE} = 10 \, V \]
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 400 \, V \]
\[V_{GE} = 10 \, V \]
\[R_{gon} = 2 \, \Omega \]

Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

At
\[T_j = 25/125 \, ^\circ C \]
\[V_{CE} = 400 \, V \]
\[V_{GE} = 10 \, V \]
\[I_F = 30 \, A \]
\[V_{GE} = 10 \, V \]
Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI_c}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At
- \(T_j = 25/125 \) °C
- \(V_{CE} = 400 \) V
- \(V_{GE} = 10 \) V
- \(R_{gon} = 2 \) Ω

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor
\[\frac{dI_c}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

At
- \(T_j = 25/125 \) °C
- \(V_{GE} = 10 \) V
- \(I_F = 30 \) A

Figure 19
MOSFET transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

<table>
<thead>
<tr>
<th>MOSFET thermal model values</th>
<th>Thermal grease</th>
<th>Phase change interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (C/W)</td>
<td>Tau (s)</td>
<td>R (C/W)</td>
</tr>
<tr>
<td>0.12</td>
<td>2.641</td>
<td>0.10</td>
</tr>
<tr>
<td>0.20</td>
<td>0.608</td>
<td>0.17</td>
</tr>
<tr>
<td>0.28</td>
<td>0.200</td>
<td>0.23</td>
</tr>
<tr>
<td>0.05</td>
<td>0.027</td>
<td>0.04</td>
</tr>
<tr>
<td>0.01</td>
<td>0.004</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Figure 20
FWD transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

<table>
<thead>
<tr>
<th>FWD thermal model values</th>
<th>Thermal grease</th>
<th>Phase change interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (C/W)</td>
<td>Tau (s)</td>
<td>R (C/W)</td>
</tr>
<tr>
<td>0.31</td>
<td>0.946</td>
<td>0.27</td>
</tr>
<tr>
<td>0.96</td>
<td>0.184</td>
<td>0.82</td>
</tr>
<tr>
<td>0.44</td>
<td>0.063</td>
<td>0.38</td>
</tr>
<tr>
<td>0.37</td>
<td>0.013</td>
<td>0.32</td>
</tr>
<tr>
<td>0.28</td>
<td>0.003</td>
<td>0.24</td>
</tr>
<tr>
<td>0.10</td>
<td>0.001</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Power dissipation as a function of heatsink temperature:

\[P_{\text{tot}} = f(T_h) \]

Collector current as a function of heatsink temperature:

\[I_c = f(T_h) \]

At

\[T_j = 150 \, ^\circ\text{C} \]

Forward current as a function of heatsink temperature:

\[I_F = f(T_h) \]

At

\[T_j = 175 \, ^\circ\text{C} \]

Copyright Vincotech
Figure 25 MOSFET
Safe operating area as a function of collector-emitter voltage
$I_C = f(V_{CE})$

Figure 26 MOSFET
Gate voltage vs Gate charge
$V_{GE} = f(Q_g)$

At
$D =$ single pulse
$Th =$ 80 °C
$V_{GE} =$ 10 V
$Tj =$ T_{max} °C

BUCK

At
$I_C =$ 89 A pulsed
OUTPUT BOOST

Figure 1: Typical output characteristics

- $I_D = f(V_{DS})$
- V_{GS} from 0 V to 20 V in steps of 2 V
- V_{DS} = 12 V
- $T_J = 25\,^\circ\,C$
- $t_{sp} = 250\,\mu s$
- $T_J = T_{J\,max} - 25\,^\circ\,C$

Figure 2: Typical output characteristics

- $I_D = f(V_{GS})$
- V_{GS} from 0 V to 20 V in steps of 2 V
- V_{GS} from 0 V to 20 V in steps of 2 V
- $T_J = 126\,^\circ\,C$
- $t_{sp} = 250\,\mu s$

Figure 3: Typical transfer characteristics

- $I_F = f(V_F)$
- $T_J = 25\,^\circ\,C$
- V_{GS} = 12 V

Figure 4: Typical diode forward current as a function of forward voltage

- $I_D = f(V_F)$
- $T_J = 25\,^\circ\,C$
- $T_J = T_{J\,max} - 25\,^\circ\,C$
Figure 5
Typical switching energy losses
as a function of collector current
\[E = f(I_D) \]

With an inductive load at
\[T_J = 25/125 \, ^\circ\text{C} \]
\[V_{DS} = 400 \, \text{V} \]
\[V_{GS} = 10 \, \text{V} \]
\[R_{gon} = 2 \, \Omega \]
\[R_{goff} = 2 \, \Omega \]

Figure 6
Typical switching energy losses
as a function of gate resistor
\[E = f(R_G) \]

With an inductive load at
\[T_J = 25/125 \, ^\circ\text{C} \]
\[V_{DS} = 400 \, \text{V} \]
\[V_{GS} = 10 \, \text{V} \]
\[I_B = 30 \, \text{A} \]

Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
\[E_{	ext{rec}} = f(I_C) \]

With an inductive load at
\[T_J = 25/125 \, ^\circ\text{C} \]
\[V_{DS} = 400 \, \text{V} \]
\[V_{GS} = 10 \, \text{V} \]
\[R_{gon} = 2 \, \Omega \]
\[R_{goff} = 2 \, \Omega \]

Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
\[E_{	ext{rec}} = f(R_G) \]

With an inductive load at
\[T_J = 25/125 \, ^\circ\text{C} \]
\[V_{DS} = 400 \, \text{V} \]
\[V_{GS} = 10 \, \text{V} \]
\[I_B = 30 \, \text{A} \]
OUTPUT BOOST

Figure 9
BOOST MOSFET
Typical switching times as a function of collector current
\[t = f(I_c) \]

With an inductive load at
- \(T_j = 125 \, ^\circ C \)
- \(V_{DS} = 400 \, V \)
- \(V_{GS} = 10 \, V \)
- \(R_{gon} = 2 \, \Omega \)
- \(R_{goff} = 2 \, \Omega \)

Figure 10
BOOST MOSFET
Typical switching times as a function of gate resistor
\[t = f(R_G) \]

With an inductive load at
- \(T_j = 125 \, ^\circ C \)
- \(V_{DS} = 400 \, V \)
- \(V_{GS} = 10 \, V \)
- \(I_C = 30 \, A \)
- \(R_{gon} = 2 \, \Omega \)

Figure 11
BOOST FWD
Typical reverse recovery time as a function of collector current
\[t_r = f(I_c) \]

At
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(V_{GS} = 10 \, V \)
- \(R_{gon} = 2 \, \Omega \)

Figure 12
BOOST FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor
\[t_r = f(R_{gon}) \]

At
- \(T_j = 25/125 \, ^\circ C \)
- \(V_{DS} = 400 \, V \)
- \(I_V = 30 \, A \)
- \(V_{GS} = 10 \, V \)
OUTPUT BOOST

Figure 13
Typical reverse recovery charge as a function of collector current

\[Q_{rr} = f(I_C) \]

At

- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(V_{GS} = 10 \, V \)
- \(R_{gon} = 2 \, \Omega \)

Figure 14
Typical reverse recovery charge as a function of MOSFET turn on gate resistor

\[Q_{rr} = f(R_{gon}) \]

At

- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(I_F = 30 \, A \)
- \(V_{GS} = 10 \, V \)

Figure 15
Typical reverse recovery current as a function of collector current

\[I_{RRM} = f(I_C) \]

At

- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(V_{GS} = 10 \, V \)
- \(R_{gon} = 2 \, \Omega \)

Figure 16
Typical reverse recovery current as a function of MOSFET turn on gate resistor

\[I_{RRM} = f(R_{gon}) \]

At

- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 400 \, V \)
- \(I_F = 30 \, A \)
- \(V_{GS} = 10 \, V \)
OUTPUT BOOST

Figure 17

Typical rate of fall of forward and reverse recovery current as a function of collector current

\[
\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(I_c)
\]

Figure 18

Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor

\[
\frac{dI}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon})
\]

Figure 19

MOSFET transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

Figure 20

FWD transient thermal impedance as a function of pulse width

\[Z_{thJH} = f(t_p) \]

MOSFET thermal model values

<table>
<thead>
<tr>
<th>Thermal grease</th>
<th>Phase change interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (C/W)</td>
<td>Tau (s)</td>
</tr>
<tr>
<td>0.12</td>
<td>2.641</td>
</tr>
<tr>
<td>0.20</td>
<td>0.608</td>
</tr>
<tr>
<td>0.28</td>
<td>0.200</td>
</tr>
<tr>
<td>0.05</td>
<td>0.027</td>
</tr>
<tr>
<td>0.01</td>
<td>0.004</td>
</tr>
<tr>
<td>0.21</td>
<td>0.003</td>
</tr>
</tbody>
</table>

FWD thermal model values

<table>
<thead>
<tr>
<th>Thermal grease</th>
<th>Phase change interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (C/W)</td>
<td>Tau (s)</td>
</tr>
<tr>
<td>0.05</td>
<td>4.87</td>
</tr>
<tr>
<td>0.28</td>
<td>0.58</td>
</tr>
<tr>
<td>0.79</td>
<td>0.14</td>
</tr>
<tr>
<td>0.25</td>
<td>0.03</td>
</tr>
<tr>
<td>0.17</td>
<td>0.01</td>
</tr>
<tr>
<td>0.12</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Figure 21. BOOST MOSFET
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 150 \, ^\circ\text{C} \]

Figure 22. BOOST MOSFET
Collector/Drain current as a function of heatsink temperature
\[I_{\text{C}} = f(T_h) \]

At
\[T_j = 150 \, ^\circ\text{C} \]
\[V_{\text{GS}} = 10 \, \text{V} \]

Figure 23. BOOST FWD
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]

Figure 24. BOOST FWD
Forward current as a function of heatsink temperature
\[I_{\text{F}} = f(T_h) \]

At
\[T_j = 175 \, ^\circ\text{C} \]
Figure 25 BOOST MOSFET
Safe operating area as a function of collector-emitter voltage
\(I_C = f(V_{CE}) \)

Figure 26 BOOST MOSFET
Gate voltage vs Gate charge
\(V_{GE} = f(Q_g) \)

At
\(D = \) single pulse
\(T_h = 80 \) °C
\(V_{GE} = 10 \) V
\(T_j = T_{j_{\text{max}}} \) °C

At
\(I_C = 89 \) A pulsed
Thermistor

Figure 1
Typical NTC characteristic as a function of temperature

$R_T = f(T)$

![NTC-typical temperature characteristic graph](image)
Switching Definitions BUCK MOSFET

General conditions

<table>
<thead>
<tr>
<th>TJ</th>
<th>125 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rssn</td>
<td>2 Ω</td>
</tr>
<tr>
<td>Rgoff</td>
<td>2 Ω</td>
</tr>
</tbody>
</table>

Figure 1 BUCK MOSFET
Turn-off Switching Waveforms & definition of \(t_{doff}, t_{Eoff} \)
(\(t_{Eoff} \) = integrating time for \(E_{off} \))

\[V_{CE}(0\%) = 0 \text{ V} \]
\[V_{CE}(100\%) = 10 \text{ V} \]
\[I_{C}(100\%) = 30 \text{ A} \]
\[t_{doff} = 0.25 \mu s \]
\[t_{Eoff} = 0.26 \mu s \]

Figure 2 BUCK MOSFET
Turn-on Switching Waveforms & definition of \(t_{don}, t_{Eon} \)
(\(t_{Eon} \) = integrating time for \(E_{on} \))

\[V_{CE}(0\%) = 0 \text{ V} \]
\[V_{CE}(100\%) = 10 \text{ V} \]
\[V_{C}(100\%) = 800 \text{ V} \]
\[I_{C}(100\%) = 30 \text{ A} \]
\[t_{don} = 0.03 \mu s \]
\[t_{Eon} = 0.06 \mu s \]

Figure 3 BUCK MOSFET
Turn-off Switching Waveforms & definition of \(t_f \)

\[V_{C}(100\%) = 800 \text{ V} \]
\[I_{C}(100\%) = 30 \text{ A} \]
\[t_f = 0.046 \mu s \]

Figure 4 BUCK MOSFET
Turn-on Switching Waveforms & definition of \(t_r \)

\[V_{C}(100\%) = 800 \text{ V} \]
\[I_{C}(100\%) = 30 \text{ A} \]
\[t_r = 0.009 \mu s \]
Switching Definitions BUCK MOSFET

Figure 5
BUCK MOSFET

Turn-off Switching Waveforms & definition of t_{off}

- P_{off} (100%) = 24.06 kW
- E_{off} (100%) = 0.16 mJ
- t_{off} = 0.26 μs

Figure 6
BUCK MOSFET

Turn-on Switching Waveforms & definition of t_{on}

- P_{on} (100%) = 24.06 kW
- E_{on} (100%) = 0.21 mJ
- t_{on} = 0.06 μs

Figure 7
BUCK MOSFET

Gate voltage vs Gate charge (measured)

- V_{GEoff} = 0 V
- V_{GEon} = 10 V
- V_C (100%) = 800 V
- I_D (100%) = 30 A
- Q_g = 347.26 nC

Figure 8
BUCK FWD

Turn-off Switching Waveforms & definition of t_r

- V_d (100%) = 800 V
- I_d (100%) = 30 A
- t_{max} (100%) = -21 A
- t_r = 0.013 μs
Switching Definitions BUCK MOSFET

Figure 9
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

- $I_d (100\%) = 30 \text{ A}$
- $Q_{rr} (100\%) = 0.22 \text{ \(\mu\)C}$
- $t_{Qrr} = 0.03 \text{ \(\mu\)s}$

Figure 10
Turn-on Switching Waveforms & definition of t_{Erec}
($t_{Erec} = $ integrating time for E_{rec})

- $P_{rec} (100\%) = 24.06 \text{ kW}$
- $E_{rec} (100\%) = 0.04 \text{ mJ}$
- $t_{Erec} = 0.03 \text{ \(\mu\)s}$

copyright Vincotech
Switching Definitions BOOST MOSFET

General conditions

* TJ = 125 °C*

* R_(son) = 2 Ω*

* R_(off) = 2 Ω*

Figure 1

Turn-off Switching Waveforms & definition of t\(_{\text{doff}}\), t\(_{\text{Eoff}}\)

(t\(_{\text{Eoff}}\) = integrating time for E\(_{\text{off}}\))

Figure 2

Turn-on Switching Waveforms & definition of t\(_{\text{don}}\), t\(_{\text{Eon}}\)

(t\(_{\text{Eon}}\) = integrating time for E\(_{\text{on}}\))

Figure 3

Turn-off Switching Waveforms & definition of t\(_{\text{f}}\)

Figure 4

Turn-on Switching Waveforms & definition of t\(_{\text{r}}\)

<table>
<thead>
<tr>
<th>Voltage/Current</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(_{\text{GE}}) (0%)</td>
<td>0 V</td>
</tr>
<tr>
<td>V(_{\text{GE}}) (100%)</td>
<td>10 V</td>
</tr>
<tr>
<td>V(_{\text{CE}}) (100%)</td>
<td>800 V</td>
</tr>
<tr>
<td>I(_{\text{C}}) (100%)</td>
<td>30 A</td>
</tr>
<tr>
<td>t(_{\text{doff}})</td>
<td>0.33 µs</td>
</tr>
<tr>
<td>t(_{\text{Eoff}})</td>
<td>0.35 µs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage/Current</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(_{\text{GE}}) (0%)</td>
<td>0 V</td>
</tr>
<tr>
<td>V(_{\text{GE}}) (100%)</td>
<td>10 V</td>
</tr>
<tr>
<td>V(_{\text{C}}) (100%)</td>
<td>800 V</td>
</tr>
<tr>
<td>I(_{\text{C}}) (100%)</td>
<td>30 A</td>
</tr>
<tr>
<td>t(_{\text{don}})</td>
<td>0.05 µs</td>
</tr>
<tr>
<td>t(_{\text{Eon}})</td>
<td>0.08 µs</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Switching Definitions BOOST MOSFET

Figure 5
Turn-off Switching Waveforms & definition of t_{Eoff}

\[\text{P}_{\text{off}} (100\%) = 23.95 \text{ kW} \]
\[\text{E}_{\text{off}} (100\%) = 0.33 \text{ mJ} \]
\[t_{\text{Eoff}} = 0.35 \mu\text{s} \]

Figure 6
Turn-on Switching Waveforms & definition of t_{Eon}

\[\text{P}_{\text{on}} (100\%) = 23.95 \text{ kW} \]
\[\text{E}_{\text{on}} (100\%) = 0.48 \text{ mJ} \]
\[t_{\text{Eon}} = 0.08 \mu\text{s} \]

Figure 7
Gate voltage vs Gate charge (measured)

\[V_{\text{GEOff}} = 0 \text{ V} \]
\[V_{\text{GEon}} = 10 \text{ V} \]
\[V_{\text{G} (100\%)} = 800 \text{ V} \]
\[I_{\text{D} (100\%)} = 30 \text{ A} \]
\[Q_{\text{G}} = 373.03 \text{ nC} \]

Figure 8
Turn-off Switching Waveforms & definition of t_{rr}

\[V_{\text{G}} (100\%) = 800 \text{ V} \]
\[t_{\text{f}} (100\%) = 30 \text{ A} \]
\[t_{\text{rr} (100\%)} = -94 \text{ A} \]
\[t_{\text{rr}} = 0.09 \mu\text{s} \]
Switching Definitions BOOST MOSFET

Figure 9
Turn-on Switching Waveforms & definition of t_{Qrr}
(t_{Qrr} = integrating time for Q_{rr})

I_d (100%) = 30 A
Q_{rr} (100%) = 4.73 μC
$t_{Qrr} = 1.00 \mu s$

Figure 10
Turn-on Switching Waveforms & definition of t_{Erec}
(t_{Erec} = integrating time for E_{rec})

P_{rec} (100%) = 23.95 kW
E_{rec} (100%) = 1.58 mJ
$t_{Erec} = 1.00 \mu s$
Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12mm housing</td>
<td>10-PY06NRA021FS-M410FY</td>
<td>M410FY</td>
<td>M410FY</td>
</tr>
</tbody>
</table>

Outline

Pinout

copyright Vincotech
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.