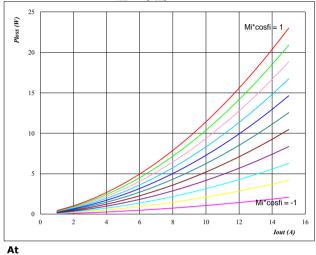

flow 7PACK 0

Output Inverter Application

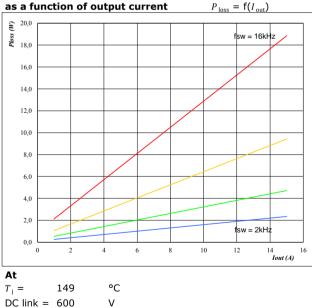
1200 V / 8 A

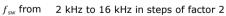
FWD


10-F0127PA008SC-L156E09 10-FZ127PA008SC-L156E08

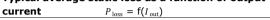
IGBT

Figure 1


Typical average static loss as a function of outputcurrent $P_{loss} = f(I_{out})$



 $T_{i} = 149$ °C Mi*cos ϕ from -1 to 1 in steps of 0,2


Figure 3

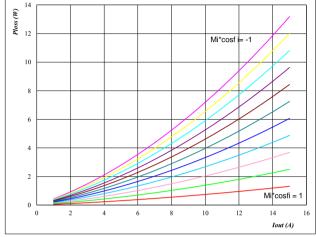
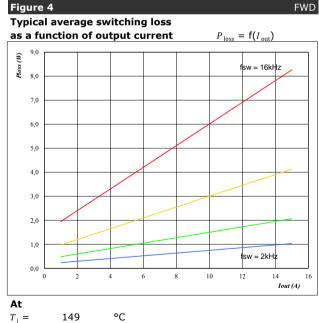
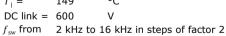

Typical average switching loss as a function of output current

Figure 2 Typical average static loss as a function of output




IGBT

 $T_{i} = 149$

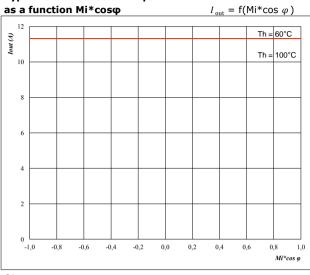
 $Mi^*cos\phi$ from -1 to 1 in steps of 0,2

°C

10-F0127PA008SC-L156E09 10-FZ127PA008SC-L156E08

flow 7PACK 0

Output Inverter Application

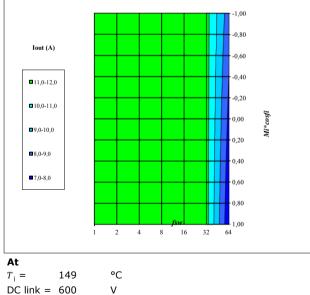

Phase

1200 V / 8 A

Phase

Phase

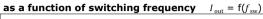
Figure 5 Typical available 50Hz output current

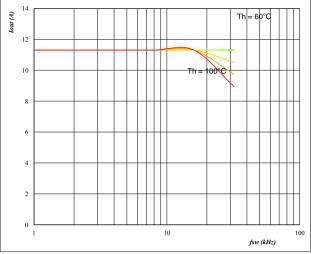

At

$T_{j} =$	149	°C
DC link =	600	V
$f_{sw} =$	4	kHz

60 °C to 100 °C in steps of 5 °C $T_{\rm h}$ from

Figure 7


Typical available 50Hz output current as a function of Mi*cos φ and switching frequency $I_{out} = f(f_{sw}, Mi*cos φ)$



80 $T_{\rm h}$ =

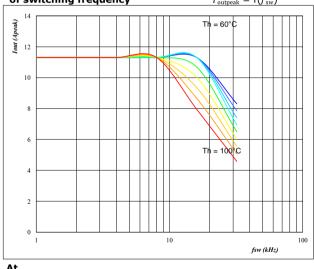
°C

Figure 6 Typical available 50Hz output current

At

' _i =	149	°C
C link =	600	V

DC link = 600


Mi*cos φ : 0,8

 $T_{\rm h}$ from 60 °C to 100 °C in steps of 5 °C

Figure 8

Phase

Typical available OHz output current as a function of switching frequency $I_{\text{outpeak}} = f(f_{\text{sw}})$

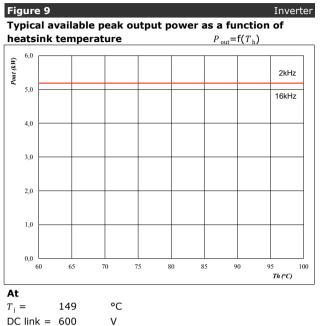
At

°C $T_{j} =$ 149 V

DC link = 600

 $T_{\rm h}$ from 60 °C to 100 °C in steps of 5 °C

Mi = 0


10-F0127PA008SC-L156E09 10-FZ127PA008SC-L156E08

flow 7Pack 0

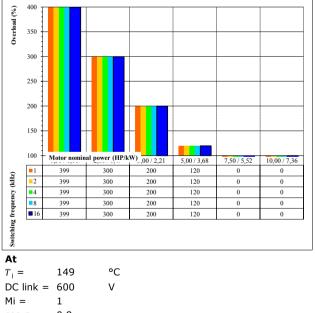
Output Inverter Application

1200 V / 8 A

Inverter

DC link = 600 1

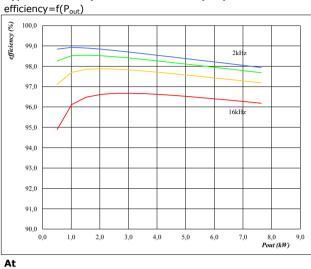
Mi =


cos φ= 0,80

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Figure 11

Inverter


Typical available overload factor as a function of motor power and switching frequency $P_{\text{peak}} / P_{\text{nom}} = f(P_{\text{nom}}, fsw)$

cos φ= 0,8 f_{sw} from 1 kHz to 16kHz in steps of factor 2 $T_{\rm h}$ = 80 °C Motor eff = 0,85

Figure 10

Typical efficiency as a function of output power

L		

149 $T_{j} =$ DC link = 600

Mi = 1

cos φ= 0,80

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

°C

V