Features
- Mixed NPC three-level topology
- High speed components
- Integrated NTC

Target applications
- UPS

Types
- 10-FZ12NMA080SM01UL740F58

Maximum Ratings

$T_i = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>V_{GES}</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>I_{C}</td>
<td>$T_i = T_{j\text{max}}$ $T_i = 80 , ^\circ C$</td>
<td>79</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>$I_{C_{\text{pk}}}$</td>
<td>I_{C} limited by $T_{j\text{max}}$</td>
<td>300</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>$T_i = T_{j\text{max}}$ $T_i = 80 , ^\circ C$</td>
<td>133</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>V_{GES}</td>
<td></td>
<td>4.20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\text{max}}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>
Maximum Ratings

\(T_i = 25 \, ^\circ\text{C} \), unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak repetitive reverse voltage</td>
<td>(V_{\text{RRM}})</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_F)</td>
<td>(T_i = T_{\text{max}}), (T_s = 80 , ^\circ\text{C})</td>
<td>46</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{\text{tot}})</td>
<td>(T_i = T_{\text{max}}), (T_s = 80 , ^\circ\text{C})</td>
<td>94</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{\text{max}})</td>
<td></td>
<td>175</td>
<td>(^\circ\text{C})</td>
</tr>
<tr>
<td>Buck Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-emitter voltage</td>
<td>(V_{\text{CES}})</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td>(I_C)</td>
<td>(T_i = T_{\text{max}}), (T_s = 80 , ^\circ\text{C})</td>
<td>82</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>(I_{\text{CRM}})</td>
<td>(I_s) limited by (T_{\text{max}})</td>
<td>320</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{\text{tot}})</td>
<td>(T_i = T_{\text{max}}), (T_s = 80 , ^\circ\text{C})</td>
<td>219</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter voltage</td>
<td>(V_{\text{GES}})</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>(T_{\text{max}})</td>
<td></td>
<td>175</td>
<td>(^\circ\text{C})</td>
</tr>
<tr>
<td>Buck Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>(V_{\text{RRM}})</td>
<td></td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Continuous (direct) forward current</td>
<td>(I_F)</td>
<td>(T_i = T_{\text{max}}), (T_s = 80 , ^\circ\text{C})</td>
<td>76</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>(I_{\text{CRM}})</td>
<td></td>
<td>200</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{\text{tot}})</td>
<td>(T_i = T_{\text{max}}), (T_s = 80 , ^\circ\text{C})</td>
<td>106</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_{\text{max}})</td>
<td></td>
<td>175</td>
<td>(^\circ\text{C})</td>
</tr>
<tr>
<td>Capacitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum DC voltage</td>
<td>(V_{\text{MAX}})</td>
<td></td>
<td>500</td>
<td>V</td>
</tr>
<tr>
<td>Operation Temperature</td>
<td>(T_{\text{op}})</td>
<td></td>
<td>-55...+125</td>
<td>(^\circ\text{C})</td>
</tr>
</tbody>
</table>
Maximum Ratings

$T_i = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{st}</td>
<td></td>
<td>-40...+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{jop}</td>
<td></td>
<td>-40...($T_{jmax} - 25$)</td>
<td>°C</td>
</tr>
<tr>
<td>Isolation Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>V_{isol}</td>
<td>DC Test Voltage* $t_p = 2 , \text{s}$</td>
<td>6000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC Voltage $t_p = 1 , \text{min}$</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min. 12,7</td>
<td>mm</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>9,15</td>
<td>mm</td>
</tr>
<tr>
<td>Comparative Tracking Index</td>
<td>CTI</td>
<td></td>
<td>> 200</td>
<td></td>
</tr>
</tbody>
</table>

*100 % tested in production
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>$V_{GE\text{th}}$</td>
<td>$V_{GE} = V_{CE}$</td>
<td>0,001</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td></td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CBO}</td>
<td></td>
<td>0</td>
<td>µA</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td></td>
<td>20</td>
<td>nA</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_g</td>
<td>none</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{ie}</td>
<td>$f = 1$ MHz</td>
<td>0</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oe}</td>
<td></td>
<td>15</td>
<td>nF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td></td>
<td>0</td>
<td>pF</td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_g</td>
<td>15 520 100</td>
<td>25</td>
<td>nC</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to sink</td>
<td>R_{j-s}</td>
<td>phase-change material $\lambda = 3.4$ W/mK</td>
<td>0,72</td>
<td>K/W</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td></td>
<td>±15</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>τ</td>
<td>$R_{on} = 4$ Ω $R_{off} = 4$ Ω</td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td>350</td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>τ</td>
<td></td>
<td>81</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>$Q_{on} = 3.3$ µC $Q_{on} = 7.8$ µC</td>
<td>25</td>
<td>mWs</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>$Q_{off} = 9.5$ µC</td>
<td>25</td>
<td>mWs</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,21</td>
<td>2,31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 125</td>
<td></td>
</tr>
<tr>
<td>Boost Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_{F}</td>
<td></td>
<td>50</td>
<td>125</td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{R}</td>
<td></td>
<td>1200</td>
<td>25</td>
</tr>
<tr>
<td>Thermal</td>
<td>$R_{th(j-s)}$</td>
<td>phase-change material</td>
<td>1,02</td>
<td>K/W</td>
</tr>
<tr>
<td>Peak recovery current</td>
<td>I_{RRM}</td>
<td></td>
<td>350</td>
<td>150</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>Q_{rd}</td>
<td>$di/dt = 8288$ A/µs</td>
<td>25 125 150</td>
<td>3,291 7,845 9,525</td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{rec}</td>
<td></td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$(di/dt)_{max}$</td>
<td>$di/dt = 7250$ A/µs</td>
<td>25 125 150</td>
<td>11172 9951 9159</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buck Switch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V_{GE}</td>
<td>0,08</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation</td>
<td>V_{CE}</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CE}</td>
<td>0</td>
<td>1200</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GE}</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_{g}</td>
<td>none</td>
<td>Ω</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>8600</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>360</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>15</td>
<td>600</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to</td>
<td>$R_{th(j-s)}$</td>
<td>0,43</td>
<td>K/W</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>25</td>
<td>144</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>25</td>
<td>1,590</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V_{GE}</td>
<td>0,08</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation</td>
<td>V_{CE}</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CE}</td>
<td>0</td>
<td>1200</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GE}</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_{g}</td>
<td>none</td>
<td>Ω</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>8600</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>360</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>15</td>
<td>600</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to</td>
<td>$R_{th(j-s)}$</td>
<td>0,43</td>
<td>K/W</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>25</td>
<td>144</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>25</td>
<td>1,590</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-emitter threshold voltage</td>
<td>V_{GE}</td>
<td>0,08</td>
<td>V</td>
</tr>
<tr>
<td>Collector-emitter saturation</td>
<td>V_{CE}</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Collector-emitter cut-off current</td>
<td>I_{CE}</td>
<td>0</td>
<td>1200</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GE}</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Internal gate resistance</td>
<td>r_{g}</td>
<td>none</td>
<td>Ω</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td>8600</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>360</td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{res}</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{g}</td>
<td>15</td>
<td>600</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction to</td>
<td>$R_{th(j-s)}$</td>
<td>0,43</td>
<td>K/W</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{on}</td>
<td>±15</td>
<td>350</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy (per pulse)</td>
<td>E_{on}</td>
<td>25</td>
<td>144</td>
</tr>
<tr>
<td>Turn-off energy (per pulse)</td>
<td>E_{off}</td>
<td>25</td>
<td>1,590</td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{GE}</td>
<td>[V]</td>
<td>100</td>
<td>1,61</td>
<td>1,77</td>
</tr>
<tr>
<td>V_{GS}</td>
<td>[V]</td>
<td>125, 150</td>
<td>1,58</td>
<td>1,57</td>
</tr>
<tr>
<td>V_{CE}</td>
<td>[V]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{DS}</td>
<td>[V]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{F}</td>
<td>[V]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{C}</td>
<td>[A]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{D}</td>
<td>[A]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{F}</td>
<td>[A]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_j</td>
<td>[°C]</td>
<td>Min</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Buck Diode

Static

- **Forward voltage** V_F
 - 100 V: 1,61 V, 1,77 V

- **Reverse leakage current** I_r
 - 650 µA

Thermal

- **Thermal resistance junction to sink** $R_{th(j-s)}$
 - 0,90 K/W

Dynamic

- **Peak recovery current** I_{RRM}
 - ±15 A: 34 A, 42 A

- **Reverse recovery time** t_{rr}
 - 25 ns, 100 ns, 148 ns

- **Recovered charge** Q_r
 - 25 µC

- **Reverse recovered energy** E_{rec}
 - 25 mWs

- **Peak rate of fall of recovery current** $(di/dt)_{max}$
 - 25 A/µs

Capacitor

- **Capacitance** C
 - 150 nF

- **Dissipation factor** $f = 1$ kHz
 - 25 %

Thermistor

- **Rated resistance** R
 - 25 kΩ

- **Deviation of R_{NC}** $\Delta R/R_{NC}$
 - 100 %, -12 %, +14 %

- **Power dissipation** P
 - 25 mW

- **Power dissipation constant** P
 - 25 mW/K

- **B-value** $B_{25/100}$
 - 25 K

- **Vincotech NTC Reference**
 - B
Boost Switch Characteristics

figure 1. IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

- \(t_p = 250 \, \mu s \)
- \(V_{CE} = 15 \, V \)
- \(T_J = 25 \, ^\circ C \)

figure 2. IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

- \(t_p = 250 \, \mu s \)
- \(V_{CE} = 10 \, V \)
- \(T_J = 125 \, ^\circ C \)

figure 3. IGBT

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

- \(t_p = 100 \, \mu s \)
- \(V_{CE} = 10 \, V \)
- \(T_J = 25 \, ^\circ C \)

figure 4. IGBT

Transient Thermal Impedance as function of Pulse duration

\[Z_{th(j-s)} = f(t_p) \]

- \(D = \frac{t_p}{T} \)
- \(R_{th} = 0.72 \, K/W \)

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(t) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.52E-02</td>
<td>1.73E-00</td>
</tr>
<tr>
<td>1.31E-01</td>
<td>2.44E-01</td>
</tr>
<tr>
<td>3.01E-01</td>
<td>6.32E-02</td>
</tr>
<tr>
<td>1.21E-01</td>
<td>1.39E-02</td>
</tr>
<tr>
<td>4.30E-02</td>
<td>3.50E-03</td>
</tr>
<tr>
<td>4.35E-02</td>
<td>3.33E-04</td>
</tr>
</tbody>
</table>
Boost Switch Characteristics

Figure 5. Gate voltage vs Gate charge

\[V_{GE} = f(Q_G) \]

Figure 6. Safe operating area

\[I_C = f(V_{CE}) \]

At

- \(I_c = 100 \) A
- \(V_G = \pm 15 \) V
- \(T_j = T_{j\text{max}} \)
- \(D = \) single pulse
- \(T_s = 80 \) °C
- \(V_{CE} = \pm 15 \) V
- \(T_j = T_{j\text{max}} \)
Boost Diode Characteristics

Figure 1. FWD
Typical forward characteristics

\[I_F = f(V_F) \]

\[Z_{th(j-s)} = f(t_p) \]

\[t_p = 250 \, \mu s \]

\[T : 25 \, ^\circ C \]

\[125 \, ^\circ C \]

\[150 \, ^\circ C \]

\[D = \frac{t_p}{T} \]

\[R_{th(j-s)} = 1,02 \, \text{K/W} \]

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,56E-02</td>
<td>3,42E+00</td>
</tr>
<tr>
<td>1,14E-01</td>
<td>5,52E-01</td>
</tr>
<tr>
<td>4,09E-01</td>
<td>9,76E-02</td>
</tr>
<tr>
<td>2,64E-01</td>
<td>3,22E-02</td>
</tr>
<tr>
<td>9,94E-02</td>
<td>6,42E-03</td>
</tr>
<tr>
<td>7,49E-02</td>
<td>9,84E-04</td>
</tr>
</tbody>
</table>

Figure 2. FWD
Transient thermal impedance as a function of pulse width

\[Z_{th(j-s)} = f(t_p) \]

\[t_p \] (s)
Buck Switch Characteristics

figure 1. IGBT

Typical output characteristics

\[I_C = f(V_{CE}) \]

\[
t_p = 250 \ \mu s \quad V_{CE} = 15 \ \text{V} \quad T_J = 125 \ ^\circ\text{C}
\]

\[
t_p = 250 \ \mu s \quad V_{CE} = 15 \ \text{V} \quad T_J = 150 \ ^\circ\text{C}
\]

figure 2. IGBT

Typical output characteristics

\[I_C = f(V_{GE}) \]

\[
t_p = 250 \ \mu s \quad V_{GE} = 15 \ \text{V} \quad T_J = 125 \ ^\circ\text{C}
\]

\[
t_p = 250 \ \mu s \quad V_{GE} = 15 \ \text{V} \quad T_J = 150 \ ^\circ\text{C}
\]

figure 3. IGBT

Typical transfer characteristics

\[I_C = f(V_{GE}) \]

\[
t_p = 100 \ \mu s \quad V_{GE} = 10 \ \text{V} \quad T_J = 125 \ ^\circ\text{C}
\]

\[
t_p = 100 \ \mu s \quad V_{GE} = 10 \ \text{V} \quad T_J = 150 \ ^\circ\text{C}
\]

figure 4. IGBT

Transient thermal impedance as function of pulse duration

\[Z_{th(j-s)} = f(t_p) \]

\[
D = \frac{t_p}{T} \quad R_{th(j-s)} = 0.43 \ \text{K/W}
\]

IGBT thermal model values

\[
R \ (\text{K/W}) \quad t \ (\text{s})
\]

<table>
<thead>
<tr>
<th>R</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.91E-02</td>
<td>1.96E+00</td>
</tr>
<tr>
<td>7.77E-02</td>
<td>3.67E-01</td>
</tr>
<tr>
<td>1.92E-01</td>
<td>9.56E-02</td>
</tr>
<tr>
<td>6.69E-02</td>
<td>2.22E-02</td>
</tr>
<tr>
<td>2.08E-02</td>
<td>4.92E-03</td>
</tr>
<tr>
<td>1.78E-02</td>
<td>4.96E-04</td>
</tr>
</tbody>
</table>

Copyright Vincotech
Buck Switch Characteristics

Figure 5. Gate voltage vs gate charge

V_{GE} = f(Q_{G})

- \(I_{C} = 80 \) A
- \(T_s = 80 \) °C
- \(V_{GE} = \pm 15 \) V
- \(T_j = T_{j\text{max}} \) °C

Figure 6. Safe operating area

\(I_{C} = f(V_{CE}) \)

- \(D = \) single pulse
- \(V_{CE} = 200\) V
- \(V_{CE} = 400\) V
- \(V_{CE} = 800\) V
- \(V_{CE} = 1000\) V

- \(I_{C} = 0,01 \) to 1000 A
- \(V_{CE} = 100 \) to 10000 V
Buck Diode Characteristics

Typical forward characteristics

\[I_F = f(V_F) \]

- \(I_F = 250 \, \mu s \)
- \(T_J = 25 \, ^\circ C \)
- \(T_J = 125 \, ^\circ C \)
- \(T_J = 150 \, ^\circ C \)

\[Z_{th(j-s)} = f(t_p) \]

- \(D = 0.5 \)
- \(D = 0.2 \)
- \(D = 0.1 \)
- \(D = 0.05 \)
- \(D = 0.02 \)
- \(D = 0.01 \)
- \(D = 0.005 \)
- \(D = 0.000 \)

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.42E-02</td>
<td>3.64E+00</td>
</tr>
<tr>
<td>1.41E-01</td>
<td>5.85E-01</td>
</tr>
<tr>
<td>3.41E-01</td>
<td>1.04E-01</td>
</tr>
<tr>
<td>1.94E-01</td>
<td>2.64E-02</td>
</tr>
<tr>
<td>9.09E-02</td>
<td>6.04E-03</td>
</tr>
<tr>
<td>5.85E-02</td>
<td>5.72E-04</td>
</tr>
</tbody>
</table>
Thermistor Characteristics

Typical NTC characteristic as a function of temperature

\[R = R(T) \]

![NTC-typical temperature characteristic graph](image-url)
Boost Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at 25 °C
- \(V_{in} = 350 \) V
- \(V_{in} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

\(I_C = 81 \) A

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at 25 °C
- \(V_{in} = 350 \) V
- \(V_{in} = \pm 15 \) V
- \(I_C = 81 \) A

Figure 3. FWD
Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at 25 °C
- \(V_{in} = 350 \) V
- \(V_{in} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 4. FWD
Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at 25 °C
- \(V_{in} = 350 \) V
- \(V_{in} = \pm 15 \) V
- \(I_C = 81 \) A
Boost Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

$t_d(on) = f(I_C)$

$t_d(off) = f(I_C)$

With an inductive load at
$T_J = 150 \, ^\circ C$
$V_{CE} = 350 \, V$
$V_{GE} = \pm 15 \, V$
$R_{son} = 4 \, \Omega$

Figure 6. IGBT
Typical switching times as a function of gate resistor

$t_d(on) = f(R_{g})$

$t_d(off) = f(R_{g})$

With an inductive load at
$T_J = 150 \, ^\circ C$
$V_{CE} = 350 \, V$
$V_{GE} = \pm 15 \, V$
$R_{gon} = 4 \, \Omega$

Figure 7. FWD
Typical reverse recovery time as a function of collector current

$t_{rr} = f(I_C)$

At
$V_{CE} = 350 \, V$
$V_{GE} = \pm 15 \, V$
$R_{off} = 4 \, \Omega$

$T_J = 25 \, ^\circ C$

$T_J = 125 \, ^\circ C$

$T_J = 150 \, ^\circ C$

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor

$t_{rr} = f(R_{gon})$

At
$V_{CE} = 350 \, V$
$V_{GE} = \pm 15 \, V$

$T_J = 25 \, ^\circ C$

$T_J = 125 \, ^\circ C$

$T_J = 150 \, ^\circ C$

Sample data:

- Collector current (I_C)
- Gate voltage (V_{GE})
- Collector voltage (V_{CE})
- Gate resistor (R_{g})
- On-state resistance (R_{son})
- Off-state resistance (R_{off})
- Reverse recovery time (t_{rr})
Boost Switching Characteristics

Figure 9. Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

Figure 10. Typical recovered charge as a function of IGBT turn-on gate resistor

\[Q_r = f(R_{gon}) \]

Figure 11. Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

Figure 12. Typical peak reverse recovery current as a function of IGBT turn-on gate resistor

\[I_{RM} = f(R_{gon}) \]
Boost Switching Characteristics

Figure 13.
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
\frac{di_F}{dt}, \frac{di_{rr}}{dt} = f(I_C)
\]

At
\begin{align*}
V_{GS} &= 350 \text{ V} \\
V_{RES} &= \pm 15 \text{ V} \\
R_{Gon} &= 4 \text{ } \Omega
\end{align*}

At
\begin{align*}
T_j &= 25 \text{ °C} \\
T_j &= 125 \text{ °C} \\
T_j &= 150 \text{ °C}
\end{align*}

Figure 14.
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[
\frac{di_F}{dt}, \frac{di_{rr}}{dt} = f(R_{Gon})
\]

At
\begin{align*}
V_{GS} &= 350 \text{ V} \\
V_{RES} &= \pm 15 \text{ V} \\
R_{Gon} &= 4 \text{ } \Omega
\end{align*}

At
\begin{align*}
I_C &= 81 \text{ A} \\
I_C &= 150 \text{ °C}
\end{align*}

Figure 15.
IGBT
Reverse bias safe operating area
\[
I_C = f(V_{CE})
\]

At
\begin{align*}
T_j &= 175 \text{ °C} \\
R_{Gon} &= 4 \text{ } \Omega \\
R_{Goff} &= 4 \text{ } \Omega
\end{align*}
Boost Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_j</td>
<td>125 °C</td>
</tr>
<tr>
<td>$R_{DS(on)}$</td>
<td>4 Ω</td>
</tr>
<tr>
<td>$R_{DS(off)}$</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1. Turn-off Switching Waveforms & definition of t_{off}, t_{Eoff} (t_{Eoff} = integrating time for $Eoff$)

$V_{GE}(0\%) = -15 \text{ V}$

$V_{CE}(0\%) = 15 \text{ V}$

$I_{C}(100\%) = 350 \text{ V}$

$I_{C}(10\%) = 81 \text{ A}$

$t_{off} = 0.088 \mu s$

$t_{Eoff} = 0.103 \mu s$

Figure 2. Turn-on Switching Waveforms & definition of t_{on}, t_{Eon} (t_{Eon} = integrating time for Eon)

$V_{CE}(10\%) = 15 \text{ V}$

$V_{CE}(100\%) = 350 \text{ V}$

$I_{C}(10\%) = 81 \text{ A}$

$I_{C}(100\%) = 81 \text{ A}$

$t_{on} = 0.066 \mu s$

$t_{Eon} = 0.115 \mu s$

Figure 3. Turn-off Switching Waveforms & definition of t_f

$V_{CE}(10\%) = 350 \text{ V}$

$I_{C}(10\%) = 81 \text{ A}$

$t_{f} = 0.010 \mu s$

Figure 4. Turn-on Switching Waveforms & definition of t_r

$V_{CE}(10\%) = 350 \text{ V}$

$I_{C}(10\%) = 81 \text{ A}$

$t_{r} = 0.008 \mu s$
Boost Switching Characteristics

Figure 5. IGBT

Turn-Off Switching Waveforms & definition of t_{Eoff}

- $P_{off}(100\%) = 28.49$ kW
- $E_{off}(100\%) = 0.60$ mJ
- $t_{Eoff} = 0.10 \mu s$

Figure 6. IGBT

Turn-On Switching Waveforms & definition of t_{Eon}

- $P_{on}(100\%) = 28.49$ kW
- $E_{on}(100\%) = 1.40$ mJ
- $t_{Eon} = 0.11 \mu s$

Figure 7. FWD

Turn-off Switching Waveforms & definition of t_{rr}

- $V_F(100\%) = 350$ V
- $I_F(100\%) = 81$ A
- $I_{rr}(100\%) = -147$ A
- $t_{rr} = 0.048 \mu s$
Boost Switching Characteristics

Figure 8. FWD

Turn-on Switching Waveforms & definition of t_{Qr} (t_{Qr} = integrating time for Q_r)

\[I_F(100\%) = 81\ A \]
\[Q_r(100\%) = 7,85\ \mu C \]
\[t_{Qr} = 1,00\ \mu s \]

Figure 9. FWD

Turn-on Switching Waveforms & definition of t_{Erec} (t_{Erec} = integrating time for E_{rec})

\[P_{rec}(100\%) = 28,49\ kW \]
\[E_{rec}(100\%) = 2,08\ mJ \]
\[t_{Erec} = 1,00\ \mu s \]
Buck Switching Characteristics

Figure 1. IGBT
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at 25 °C
- \(V_{DS} = 350 \) V
- \(V_{DS} = \pm 15 \) V
- \(R_g = 4 \) Ω
- \(I_C = 80 \) A

Figure 2. IGBT
Typical switching energy losses as a function of gate resistor

\[E = f(R_g) \]

With an inductive load at 25 °C
- \(V_{DS} = 350 \) V
- \(V_{DS} = \pm 15 \) V
- \(I_C = 80 \) A

Figure 3. FWD
Typical reverse recovered energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at 25 °C
- \(V_{DS} = 350 \) V
- \(V_{DS} = \pm 15 \) V
- \(R_g = 4 \) Ω

Figure 4. FWD
Typical reverse recovered energy loss as a function of gate resistor

\[E_{rec} = f(R_g) \]

With an inductive load at 25 °C
- \(V_{DS} = 350 \) V
- \(V_{DS} = \pm 15 \) V
- \(I_C = 80 \) A
Buck Switching Characteristics

Figure 5. IGBT
Typical switching times as a function of collector current

$t = f(I_C)$

With an inductive load at

\[T_j = 150 °C \]
\[V_{CE} = 350 V \]
\[V_{GE} = ±15 V \]
\[R_{gon} = 4 \, Ω \]
\[I_C = 80 A \]

Figure 6. IGBT
Typical switching times as a function of gate resistor

$t = f(R_{g})$

With an inductive load at

\[T_j = 150 °C \]
\[V_{CE} = 350 V \]
\[V_{GE} = ±15 V \]
\[I_C = 80 A \]

Figure 7. FWD
Typical reverse recovery time as a function of collector current

$t_{rr} = f(I_C)$

At

\[V_{CE} = 350 V \]
\[V_{GE} = ±15 V \]
\[R_{goff} = 4 \, Ω \]

Figure 8. FWD
Typical reverse recovery time as a function of IGBT turn on gate resistor

$t_{rr} = f(R_{g(on)})$

At

\[V_{CE} = 350 V \]
\[V_{GE} = ±15 V \]
\[T_j = 125 °C \]
\[R_{g(on)} = 4 \, Ω \]
\[I_C = 80 A \]
Buck Switching Characteristics

Figure 9. FWD
Typical recovered charge as a function of collector current

\[Q_r = f(I_C) \]

Figure 10. FWD
Typical recovered charge as a function of IGBT turn-on gate resistor

\[Q_r = f(R_{gon}) \]

Figure 11. FWD
Typical peak reverse recovery current as a function of collector current

\[I_{RM} = f(I_C) \]

Figure 12. FWD
Typical peak reverse recovery current as a function of IGBT turn-on gate resistor

\[I_{RM} = f(R_{gon}) \]

At
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[T_j = 125 \text{ °C} \]
\[I_C = 80 \text{ A} \]

At
\[V_{CE} = 350 \text{ V} \]
\[V_{GE} = \pm 15 \text{ V} \]
\[T_j = 125 \text{ °C} \]
\[I_C = 80 \text{ A} \]
Buck Switching Characteristics

Figure 13. FWD
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[
di/dt, di_rr/dt = f(I_C)
\]

Graph showing di/dt and di_rr/dt as functions of I_C at different temperatures and voltages.

Figure 14. FWD
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[
di/dt, di_rr/dt = f(R_{gon})
\]

Graph showing di/dt and di_rr/dt as functions of R_{gon}.

Figure 15. IGBT
Reverse bias safe operating area
\[
I_C = f(V_{CE})
\]

Graph showing the safe operating area for I_C and V_{CE}.

At
- \(V_{Bus} = 350\) V, \(V_{GE} = \pm 15\) V, \(R_{gon} = 4\) Ω, \(R_{goff} = 4\) Ω, \(I_C = 80\) A, \(T_j = 175\) °C.
Buck Switching Definitions

General conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_j</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{gum}</td>
<td>4 Ω</td>
</tr>
<tr>
<td>R_{goff}</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1. IGBT

- Turn-off Switching Waveforms & definition of t_{doff} (t_{doff} = integrating time for E_{off})

- V_{CE}
- I_C
- V_G
- V_{CE}

- $V_G(0%) = 15$ V
- $V_G(100%) = 350$ V
- $I_C(100%) = 80$ A
- $t_{doff} = 0.270$ µs
- $t_Eoff = 0.783$ µs

Figure 3. IGBT

- Turn-on Switching Waveforms & definition of t_{don} (t_{don} = integrating time for E_{on})

- V_{CE}
- I_C
- V_G
- V_{CE}

- $V_G(0%) = -15$ V
- $V_G(100%) = 15$ V
- $I_C(100%) = 80$ A
- $t_{don} = 0.150$ µs
- $t_{Eon} = 0.461$ µs

Figure 2. IGBT

- Turn-off Switching Waveforms & definition of t_f

- V_{CE}
- I_C
- V_G
- V_{CE}

- $V_G(100%) = 350$ V
- $I_C(100%) = 80$ A
- $t_{f} = 0.073$ µs
- $t_{r} = 0.041$ µs

Figure 4. IGBT

- Turn-on Switching Waveforms & definition of t_r

- V_{CE}
- I_C
- V_G
- V_{CE}

- $V_G(100%) = 350$ V
- $I_C(100%) = 80$ A
- $t_{f} = 0.041$ µs

Graphs and plots

- Graph 1: Turn-off switching waveforms with definitions for t_{doff}, t_{Eoff}.
- Graph 2: Turn-on switching waveforms with definitions for t_{don}, t_{Eon}.
- Graph 3: Turn-off switching waveforms with definition of t_f.
- Graph 4: Turn-on switching waveforms with definition of t_r.
Buck Switching Characteristics

Figure 5. IGBT
Turn-off Switching Waveforms & definition of tEoff

- P_{off}(100%) = 28.03 kW
- E_{off}(100%) = 3.09 mJ
- t_{Eoff} = 0.78 µs

Figure 6. IGBT
Turn-on Switching Waveforms & definition of tEon

- P_{on}(100%) = 28.03 kW
- E_{on}(100%) = 4.66 mJ
- t_{Eon} = 0.46 µs

Figure 7. FWD
Turn-off Switching Waveforms & definition of trr

- V_{F}(100%) = 350 V
- I_{F}(100%) = 80 A
- J_{off}(100%) = -42 A
- t_{rr} = 0.148 µs
Buck Switching Characteristics

Figure 8. FWD
Turn-on Switching Waveforms & definition of t_{Qr} (t_{Qr} = integrating time for Q_r)

- I_F (100%) = 80 A
- Q_r (100%) = 4.72 μC
- t_{Qr} = 0.30 μs

Figure 9. FWD
Turn-on Switching Waveforms & definition of t_{Erec} (t_{Erec} = integrating time for E_{rec})

- P_{rec} (100%) = 28.03 kW
- E_{rec} (100%) = 0.58 mJ
- t_{Erec} = 0.30 μs
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste with 12 mm housing</td>
<td>10-FZ12NMA080SM01-L740F58</td>
</tr>
</tbody>
</table>

Datamatrix

<table>
<thead>
<tr>
<th>Text</th>
<th>Name</th>
<th>Date code</th>
<th>UL & VIN</th>
<th>Lot</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWYY</td>
<td>UL VIN</td>
<td>LLLLL</td>
<td>SSSS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pin Table

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33,6</td>
<td>0</td>
<td>S12</td>
</tr>
<tr>
<td>2</td>
<td>30,8</td>
<td>0</td>
<td>G12</td>
</tr>
<tr>
<td>3</td>
<td>Not assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>19,2</td>
<td>0</td>
<td>-DC</td>
</tr>
<tr>
<td>5</td>
<td>Not assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10,1</td>
<td>0</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>2,8</td>
<td>0</td>
<td>S14</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>G14</td>
</tr>
<tr>
<td>9</td>
<td>Not assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>9,9</td>
<td>Ph</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>12,7</td>
<td>Ph</td>
</tr>
<tr>
<td>12</td>
<td>Not assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>22,6</td>
<td>S13</td>
</tr>
<tr>
<td>14</td>
<td>2,8</td>
<td>22,6</td>
<td>G13</td>
</tr>
<tr>
<td>15</td>
<td>10,1</td>
<td>22,6</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td>Not assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>19,2</td>
<td>22,6</td>
<td>+DC</td>
</tr>
<tr>
<td>18</td>
<td>Not assembled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>30,8</td>
<td>22,6</td>
<td>G11</td>
</tr>
<tr>
<td>20</td>
<td>33,6</td>
<td>22,6</td>
<td>S11</td>
</tr>
<tr>
<td>21</td>
<td>33,6</td>
<td>14,8</td>
<td>Therm1</td>
</tr>
<tr>
<td>22</td>
<td>33,6</td>
<td>8,2</td>
<td>Therm2</td>
</tr>
</tbody>
</table>

Outline

- Tolerance of pin positions: ±0.05mm at the end of pins
- Dimension of coordinate pins is only offset without tolerance
Pinout

Identification

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Voltage</th>
<th>Current</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T13, T14</td>
<td>IGBT</td>
<td>650 V</td>
<td>100 A</td>
<td>Boost Switch</td>
<td></td>
</tr>
<tr>
<td>D13, D14</td>
<td>FWD</td>
<td>1200 V</td>
<td>50 A</td>
<td>Boost Diode</td>
<td></td>
</tr>
<tr>
<td>T11, T12</td>
<td>IGBT</td>
<td>1200 V</td>
<td>80 A</td>
<td>Buck Switch</td>
<td></td>
</tr>
<tr>
<td>D11, D12</td>
<td>FWD</td>
<td>650 V</td>
<td>100 A</td>
<td>Buck Diode</td>
<td></td>
</tr>
<tr>
<td>C10, C20</td>
<td>Capacitor</td>
<td>500 V</td>
<td></td>
<td>Capacitor</td>
<td></td>
</tr>
<tr>
<td>Rt</td>
<td>NTC</td>
<td></td>
<td></td>
<td>Thermistor</td>
<td></td>
</tr>
</tbody>
</table>
DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.