10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet

Features
- mixed voltage component topology
- neutral point clamped inverter
- reactive power capability
- low inductance layout

Target Applications
- solar inverter
- UPS

Types
- 10-FZ12NMA080SH01-M260F
- 10-PZ12NMA080SH01-M260FY

Maximum Ratings

$T_j=25^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{CE}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_j=T_{j\max}$</td>
<td>69</td>
<td>A</td>
</tr>
<tr>
<td>DC collector current</td>
<td>I_C</td>
<td>$T_j=T_{j\max}$</td>
<td>88</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{CEM}</td>
<td>t_p, limited by $T_{j\max}$</td>
<td>240</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{j\max}$</td>
<td>158</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>P_{tot}</td>
<td>$T_j=T_{j\max}$</td>
<td>239</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{CE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>$V_{GE}=15V$</td>
<td>10</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>V_{CE}</td>
<td>$V_{CE}=15V$</td>
<td>800</td>
<td>µs</td>
</tr>
<tr>
<td>Turn off safe operating area (RBSOA)</td>
<td>I_{FSM}</td>
<td>$V_{CE \max} = 1200V$</td>
<td>160</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{j\max}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Half Bridge IGBT

- Collector-emitter break down voltage
- DC collector current
- Repetitive peak collector current
- Power dissipation
- Gate-emitter peak voltage
- Short circuit ratings
- Turn off safe operating area (RBSOA)
- Maximum Junction Temperature

Neutral Point FWD

- Peak Repetitive Reverse Voltage
- DC forward current
- Surge forward current
- I2t-value
- Repetitive peak forward current
- Power dissipation
- Maximum Junction Temperature
Maximum Ratings

Neutral Point IGBT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-emitter break down voltage</td>
<td>V_{ce}</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>DC collector-emitter peak voltage</td>
<td>i_c</td>
<td>$T_j=T_{jmax}$</td>
<td>52</td>
<td>A</td>
</tr>
<tr>
<td>Repetitive peak collector current</td>
<td>I_{FPM}</td>
<td>t_{p} limited by T_{jmax}</td>
<td>225</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{jmax}$</td>
<td>72</td>
<td>W</td>
</tr>
<tr>
<td>Gate-emitter peak voltage</td>
<td>V_{GE}</td>
<td></td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Short circuit ratings</td>
<td>t_{SC}</td>
<td>$T_j\leq150^\circ$C</td>
<td>6</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>V_{CC}</td>
<td>$V_{GE}=15$V</td>
<td>360</td>
<td>V</td>
</tr>
<tr>
<td>Turn off safe operating area (RBSOA)</td>
<td>I_{FSM}</td>
<td>$V_{CE} \text{ max } = 600$V</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>ºC</td>
</tr>
</tbody>
</table>

Half Bridge FWD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Repetitive Reverse Voltage</td>
<td>V_{zedm}</td>
<td></td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>i_f</td>
<td>$T_j=T_{jmax}$</td>
<td>47</td>
<td>A</td>
</tr>
<tr>
<td>Surge forward current</td>
<td>I_{ZDM}</td>
<td>$t_{p}=10$ms, $sin 180^\circ$</td>
<td>335</td>
<td>A</td>
</tr>
<tr>
<td>12t-value</td>
<td>i_{t}^{12}</td>
<td></td>
<td>560</td>
<td>A2s</td>
</tr>
<tr>
<td>Repetitive peak forward current</td>
<td>I_{FPM}</td>
<td>t_{p} limited by T_{jmax}</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_j=T_{jmax}$</td>
<td>79</td>
<td>W</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_{jmax}</td>
<td></td>
<td>175</td>
<td>ºC</td>
</tr>
</tbody>
</table>

Thermal Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td></td>
<td>-40...+125</td>
<td>ºC</td>
</tr>
<tr>
<td>Operation temperature under switching condition</td>
<td>T_{op}</td>
<td></td>
<td>-40...+(T_{jmax} - 25)</td>
<td>ºC</td>
</tr>
</tbody>
</table>

Insulation Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>t=2s</th>
<th>DC voltage</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation voltage</td>
<td>V_a</td>
<td></td>
<td>4000</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Creepage distance</td>
<td></td>
<td></td>
<td>min 12,7</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
<td>8,95</td>
<td>mm</td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half Bridge IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{CE} = V_{CE}$</td>
<td>0,003</td>
<td>$T_j=25^\circ C$</td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td>I_C or I_F A or I_D A</td>
<td>15</td>
<td>$T_j=25^\circ C$</td>
</tr>
<tr>
<td>Collector-emitter cut-off current incl. Diode</td>
<td>I_{CES}</td>
<td>$T_j=25^\circ C$</td>
<td>0</td>
<td>$T_j=25^\circ C$</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{GES}</td>
<td>$T_j=25^\circ C$</td>
<td>20</td>
<td>$T_j=25^\circ C$</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gint}</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>t_{f1}</td>
<td>$R_{gon}=4 \Omega$</td>
<td>±15</td>
<td>$T_j=25^\circ C$</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td>$R_{goff}=4 \Omega$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>t_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>$f=1MHz$</td>
<td>0</td>
<td>$T_j=25^\circ C$</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease thickness ≤ 50um</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutral Point FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_D</td>
<td></td>
<td>15</td>
<td>$T_j=25^\circ C$</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{r}</td>
<td></td>
<td>600</td>
<td>$T_j=25^\circ C$</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td>$R_{gon}=4 \Omega$</td>
<td>±15</td>
<td>$T_j=25^\circ C$</td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$I_{(dr/dt)}_{max}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered energy</td>
<td>E_{ne}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td>Thermal grease thickness ≤ 50um</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Characteristic Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral Point IGBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate emitter threshold voltage</td>
<td>$V_{GE(th)}$</td>
<td>$V_{CE}=V_{CE}$</td>
<td>0,0012</td>
<td></td>
</tr>
<tr>
<td>Collector-emitter saturation voltage</td>
<td>V_{CEsat}</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Collector-emitter cut-off incl diode</td>
<td>t_{off}</td>
<td></td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>Gate-emitter leakage current</td>
<td>I_{ges}</td>
<td></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Integrated Gate resistor</td>
<td>R_{gint}</td>
<td></td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td>$R_{goff}=4 , \Omega$</td>
<td>± 15</td>
<td>350</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_{r}</td>
<td>$R_{gon}=4 , \Omega$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td>$R_{goff}=4 , \Omega$</td>
<td>± 15</td>
<td>480</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_{f}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on energy loss</td>
<td>E_{on}</td>
<td>$T_j=25^\circ C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-off energy loss</td>
<td>E_{off}</td>
<td>$T_j=25^\circ C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>C_{in}</td>
<td></td>
<td>4620</td>
<td></td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{out}</td>
<td>$f=1,MHz$</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>C_{rss}</td>
<td></td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>Gate charge</td>
<td>Q_{G}</td>
<td>± 15</td>
<td>480</td>
<td>75</td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td>$T_j=25^\circ C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half Bridge FWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode forward voltage</td>
<td>V_{f}</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td>I_{r}</td>
<td></td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{rr}</td>
<td></td>
<td>± 15</td>
<td>350</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovered charge</td>
<td>Q_{rr}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak rate of fall of recovery current</td>
<td>$\theta_{f}(\Delta I_{rr})$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td></td>
<td>1,55</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance chip to heatsink</td>
<td>$R_{th(j-s)}$</td>
<td>$T_j=25^\circ C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated resistance</td>
<td>R</td>
<td></td>
<td>22000</td>
<td></td>
</tr>
<tr>
<td>Deviation of R100</td>
<td>δ_{R100}</td>
<td>$R100=1486,\Omega$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power dissipation constant</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(25^\circ C)}$</td>
<td>Tol. ±3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-value</td>
<td>$B_{(100^\circ C)}$</td>
<td>Tol. ±3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

copyright Vincotech 4 13 May. 2015 / Revision 10
Half Bridge

Figure 1

Typical output characteristics

$I_C = f(V_{CE})$

At

- $\tau_p = 250 \mu s$
- $T_J = 25 ^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2

Typical output characteristics

$I_C = f(V_{CE})$

At

- $\tau_p = 250 \mu s$
- $T_J = 125 ^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3

Typical transfer characteristics

$I_C = f(V_{CE})$

At

- $\tau_p = 250 \mu s$
- $V_{CE} = 10 V$

Figure 4

Typical diode forward current as a function of forward voltage

$I_F = f(V_F)$

At

- $\tau_p = 250 \mu s$

copyright Vincotech
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 4 \, \Omega \)
- \(R_{goff} = 4 \, \Omega \)

Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at

- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 4 \, \Omega \)
- \(I_C = 56 \, A \)
Half Bridge

Typical switching times as a function of collector current

\[t = f(I_C) \]

Figure 9

With an inductive load at

- \(T_J = 125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 4 \, \Omega \)
- \(R_{goff} = 4 \, \Omega \)

Figure 10

With an inductive load at

- \(T_J = 125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(I_C = 56 \, A \)

Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

Figure 11

Figure 12

At

- \(T_J = 25/125 \, ^\circ C \)
- \(V_{CE} = 350 \, V \)
- \(V_{GE} = \pm 15 \, V \)
- \(R_{gon} = 4 \, \Omega \)

Copyright Vincotech 7 13 May. 2015 / Revision 10
Half Bridge

Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

At
\[T_j = 25/125 \ ^\circ \text{C} \]
\[V_{CE} = 350 \ \text{V} \]
\[V_{GE} = \pm 15 \ \text{V} \]
\[R_{gon} = 4 \ \Omega \]

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

At
\[T_j = 25/125 \ ^\circ \text{C} \]
\[V_R = 350 \ \text{V} \]
\[I_F = 56 \ \text{A} \]
\[V_{GE} = \pm 15 \ \text{V} \]

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

At
\[T_j = 25/125 \ ^\circ \text{C} \]
\[V_{CE} = 350 \ \text{V} \]
\[V_{GE} = \pm 15 \ \text{V} \]
\[R_{gon} = 4 \ \Omega \]

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

At
\[T_j = 25/125 \ ^\circ \text{C} \]
\[V_R = 350 \ \text{V} \]
\[I_F = 56 \ \text{A} \]
\[V_{GE} = \pm 15 \ \text{V} \]
Half Bridge
Half Bridge IGBT and Neutral Point FWD

Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\(\frac{dI}{dt}, \frac{dI_{\text{rec}}}{dt} = f(I_C) \)

\[\frac{dI_0}{dt}, \frac{dI_{\text{rec}}}{dt} = f(R_{\text{gon}}) \]

At
- \(T_j = 25/125 \ ^\circ\text{C} \)
- \(V_{CE} = 350 \ \text{V} \)
- \(V_{GE} = \pm 15 \ \text{V} \)
- \(R_{\text{gon}} = 4 \ \Omega \)

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\(\frac{dI}{dt}, \frac{dI_{\text{rec}}}{dt} = f(R_{\text{gon}}) \)

At
- \(T_j = 25/125 \ ^\circ\text{C} \)
- \(V_R = 350 \ \text{V} \)
- \(I_F = 56 \ \text{A} \)
- \(V_{GE} = \pm 15 \ \text{V} \)

Figure 19
IGBT transient thermal impedance as a function of pulse width
\(Z_{JH} = f(t_p) \)

At
- \(D = \frac{t_p}{T} \)
- \(R_{\text{thJH}} = 0,60 \ \text{K/W} \)

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\text{Tau (s)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10</td>
<td>1,8E+00</td>
</tr>
<tr>
<td>0,23</td>
<td>2,9E-01</td>
</tr>
<tr>
<td>0,21</td>
<td>1,0E-01</td>
</tr>
<tr>
<td>0,05</td>
<td>1,4E-02</td>
</tr>
<tr>
<td>0,01</td>
<td>1,7E-03</td>
</tr>
</tbody>
</table>

Figure 20
FWD transient thermal impedance as a function of pulse width
\(Z_{JH} = f(t_p) \)

At
- \(D = \frac{t_p}{T} \)
- \(R_{\text{thJH}} = 1,63 \ \text{K/W} \)

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\text{Tau (s)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,07</td>
<td>5,7E+00</td>
</tr>
<tr>
<td>0,17</td>
<td>1,2E+00</td>
</tr>
<tr>
<td>0,65</td>
<td>2,0E-01</td>
</tr>
<tr>
<td>0,51</td>
<td>6,6E-02</td>
</tr>
<tr>
<td>0,13</td>
<td>9,1E-03</td>
</tr>
<tr>
<td>0,11</td>
<td>1,5E-03</td>
</tr>
</tbody>
</table>
Half Bridge

Figure 21
Half Bridge IGBT and Neutral Point FWD

Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]

Figure 22
IGBT

Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]
\[V_{GE} = 15 \, V \]

Figure 23
FWD

Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]

Figure 24
FWD

Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]
Figure 25
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{ce}) \]

At
\(D = \) single pulse
\(T_a = 80 \) °C
\(V_{GE} = \pm 15 \) V
\(T_j = T_{J\max} \) °C

Figure 26
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At
\(I_C = 80 \) A

Figure 27
Reverse bias safe operating area

\[I_C = f(V_{ce}) \]

At
\(T_j = T_{J\max} - 25 \) °C
DC link \(V_{CE\max} = \) DC link plus
Switching mode : 3 level switching
Neutral point

Neutral Point IGBT and Half Bridge FWD

Figure 1
Neutral Point IGBT

Typical output characteristics

$I_C = f(V_{CE})$

At

- $t_p = 250 \, \mu s$
- $T_j = 25 \, ^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

Figure 2
Neutral Point IGBT

Typical output characteristics

$I_C = f(V_{CE})$

At

- $t_p = 250 \, \mu s$
- $T_j = 125 \, ^\circ C$
- V_{CE} from 7 V to 17 V in steps of 1 V

Figure 3
Neutral Point IGBT

Typical transfer characteristics

$I_C = f(V_{CE})$

At

- $t_p = 250 \, \mu s$
- $V_{CE} = 10 \, V$

Figure 4
FWD

Typical diode forward current as a function of forward voltage

$I_F = f(V_F)$

At

- $t_p = 250 \, \mu s$
- $T_j = T_j_{max} - 25 \, ^\circ C$
Neutral point
Neutral Point IGBT and Half Bridge FWD

Figure 5
Typical switching energy losses as a function of collector current

\[E = f(I_C) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω
- \(R_{goff} = 4 \) Ω

Figure 6
Typical switching energy losses as a function of gate resistor

\[E = f(R_G) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 56 \) A

Figure 7
Typical reverse recovery energy loss as a function of collector current

\[E_{rec} = f(I_C) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 8
Typical reverse recovery energy loss as a function of gate resistor

\[E_{rec} = f(R_G) \]

With an inductive load at
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(I_C = 56 \) A
Neutral point
Neutral Point IGBT and Half Bridge FWD

Figure 9
Typical switching times as a function of collector current

\[t = f(I_C) \]

With an inductive load at

- \(T_J = 125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)
- \(R_{goff} = 4 \, \Omega \)

Figure 10
Typical switching times as a function of gate resistor

\[t = f(R_G) \]

With an inductive load at

- \(T_J = 125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(I_C = 56 \, \text{A} \)

Figure 11
Typical reverse recovery time as a function of collector current

\[t_{rr} = f(I_C) \]

At

- \(T_J = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
- \(R_{gon} = 4 \, \Omega \)

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor

\[t_{rr} = f(R_{gon}) \]

At

- \(T_J = 25/125 \, ^\circ\text{C} \)
- \(V_{CE} = 350 \, \text{V} \)
- \(I_F = 56 \, \text{A} \)
- \(V_{GE} = \pm 15 \, \text{V} \)
Neutral point
Neutral Point IGBT and Half Bridge FWD

Figure 13
Typical reverse recovery charge as a function of collector current
\[Q_{rr} = f(I_C) \]

- **At**
 - \(T_j = 25/125 \) °C
 - \(V_{CE} = 350 \) V
 - \(V_{GE} = \pm 15 \) V
 - \(R_{gon} = 4 \) Ω

Figure 14
Typical reverse recovery charge as a function of IGBT turn on gate resistor
\[Q_{rr} = f(R_{gon}) \]

- **At**
 - \(T_j = 25/125 \) °C
 - \(V_R = 350 \) V
 - \(I_F = 56 \) A
 - \(V_{GE} = \pm 15 \) V

Figure 15
Typical reverse recovery current as a function of collector current
\[I_{RRM} = f(I_C) \]

- **At**
 - \(T_j = 25/125 \) °C
 - \(V_{CE} = 350 \) V
 - \(V_{GE} = \pm 15 \) V
 - \(I_F = 56 \) A
 - \(R_{gon} = 4 \) Ω

Figure 16
Typical reverse recovery current as a function of IGBT turn on gate resistor
\[I_{RRM} = f(R_{gon}) \]

- **At**
 - \(T_j = 25/125 \) °C
 - \(V_R = 350 \) V
 - \(I_F = 56 \) A
 - \(V_{GE} = \pm 15 \) V
Neutral point
Neutral Point IGBT and Half Bridge FWD

Figure 17
Typical rate of fall of forward and reverse recovery current as a function of collector current
\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(I_c) \]

At
- \(T_J = 25/125 \) °C
- \(V_{CE} = 350 \) V
- \(V_{GE} = \pm 15 \) V
- \(R_{gon} = 4 \) Ω

Figure 18
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor
\[\frac{dI_0}{dt}, \frac{dI_{rec}}{dt} = f(R_{gon}) \]

At
- \(T_J = 25/125 \) °C
- \(V_R = 350 \) V
- \(I_F = 56 \) A
- \(V_{GE} = \pm 15 \) V

Figure 19
IGBT transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
- \(D = t_p / T \)
- \(R_{thJH} = 1.32 \) K/W

IGBT thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>6.4E+00</td>
</tr>
<tr>
<td>0.17</td>
<td>1.3E+00</td>
</tr>
<tr>
<td>0.35</td>
<td>2.5E-01</td>
</tr>
<tr>
<td>0.60</td>
<td>8.5E-02</td>
</tr>
<tr>
<td>0.13</td>
<td>8.9E-03</td>
</tr>
</tbody>
</table>

Figure 20
FWD transient thermal impedance as a function of pulse width
\[Z_{thJH} = f(t_p) \]

At
- \(D = t_p / T \)
- \(R_{thJH} = 1.21 \) K/W

FWD thermal model values

<table>
<thead>
<tr>
<th>(R) (K/W)</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>6.2E+00</td>
</tr>
<tr>
<td>0.11</td>
<td>1.1E+00</td>
</tr>
<tr>
<td>0.34</td>
<td>2.0E-01</td>
</tr>
<tr>
<td>0.54</td>
<td>6.8E-02</td>
</tr>
<tr>
<td>0.14</td>
<td>1.2E-02</td>
</tr>
<tr>
<td>0.05</td>
<td>2.8E-03</td>
</tr>
</tbody>
</table>
Neutral point
Neutral Point IGBT and Half Bridge FWD

Figure 21
IGBT
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]

Figure 22
IGBT
Collector current as a function of heatsink temperature
\[I_C = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]
\[V_{\text{gs}} = 15 \, \text{V} \]

Figure 23
FWD
Power dissipation as a function of heatsink temperature
\[P_{\text{tot}} = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]

Figure 24
FWD
Forward current as a function of heatsink temperature
\[I_F = f(T_h) \]

At
\[T_j = 175 \, ^\circ C \]
Neutral Point
Neutral Point IGBT and Half Bridge FWD

Figure 25
Safe operating area as a function of collector-emitter voltage

\[I_C = f(V_{CE}) \]

At
\[D = \text{single pulse} \]
\[T_a = 80 \, ^\circ\text{C} \]
\[V_{GE} = 15 \, \text{V} \]
\[T_j = T_{j\text{max}} \, ^\circ\text{C} \]

Figure 26
Gate voltage vs Gate charge

\[V_{GE} = f(Q_g) \]

At
\[I_C = 75 \, \text{A} \]

Figure 27
Reverse bias safe operating area

\[I_C = f(V_{CE}) \]

At
\[T_j = T_{j\text{max}}-25 \, ^\circ\text{C} \]
DC link \(V_{\text{DC}} = \text{DC link plus} \)
Switching mode : 3 level switching
Thermistor

Figure 1 Thermistor

Typical NTC characteristic
as a function of temperature

\[R_\text{t} = f(T) \]
Switching Definitions Neutral point IGBT

General conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{gon}</td>
<td>4 Ω</td>
</tr>
<tr>
<td>R_{goff}</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1 Neutral point IGBT

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

(t_{doff} = integrating time for E_{off})

- $V_{CG}(0\%) = -15$ V
- $V_{CG}(100\%) = 15$ V
- $V_{CE}(100\%) = 350$ V
- $I_C(100\%) = 56$ A
- $t_{doff} = 0.21 \mu s$
- $t_{Eoff} = 0.58 \mu s$

Figure 2 Neutral point IGBT

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

(t_{don} = integrating time for E_{on})

- $V_{CG}(0\%) = -15$ V
- $V_{CG}(100\%) = 15$ V
- $V_{CE}(100\%) = 350$ V
- $I_C(100\%) = 56$ A
- $t_{don} = 0.09 \mu s$
- $t_{Eon} = 0.16 \mu s$

Figure 3 Neutral point IGBT

Turn-off Switching Waveforms & definition of t_r

- $V_C(100\%) = 350$ V
- $I_C(100\%) = 56$ A
- $t_r = 0.11 \mu s$

Figure 4 Neutral point IGBT

Turn-on Switching Waveforms & definition of t_r

- $V_C(100\%) = 350$ V
- $I_C(100\%) = 56$ A
- $t_r = 0.01 \mu s$
Switching Definitions Neutral point IGBT

Figure 5 Neutral point IGBT
Turn-off Switching Waveforms & definition of \(t_{\text{Eoff}} \)

\[P_{\text{off}} (100\%) = 19.56 \text{ kW} \]
\[E_{\text{off}} (100\%) = 2.50 \text{ mJ} \]
\[t_{\text{Eoff}} = 0.58 \mu\text{s} \]

Figure 6 Neutral point IGBT
Turn-on Switching Waveforms & definition of \(t_{\text{Eon}} \)

\[P_{\text{on}} (100\%) = 19.56 \text{ kW} \]
\[E_{\text{on}} (100\%) = 0.75 \text{ mJ} \]
\[t_{\text{Eon}} = 0.16 \mu\text{s} \]

Figure 7 Neutral point IGBT
Gate voltage vs Gate charge (measured)

\[V_{GE\text{ off}} = -15 \text{ V} \]
\[V_{GE\text{ on}} = 15 \text{ V} \]
\[V_C (100\%) = 350 \text{ V} \]
\[I_C (100\%) = 56 \text{ A} \]
\[Q_g = 775.97 \text{ nC} \]

Figure 8 Neutral point FWD
Turn-off Switching Waveforms & definition of \(t_r \)

\[V_d (100\%) = 350 \text{ V} \]
\[I_d (100\%) = 56 \text{ A} \]
\[I_{\text{RRM}} (100\%) = -118 \text{ A} \]
\[t_r = 0.15 \mu\text{s} \]
Switching Definitions Neutral point IGBT

Figure 9 Neutral point IGBT
Turn-on Switching Waveforms & definition of $t_{Q_{rr}}$
($t_{Q_{rr}}$ = integrating time for Q_{rr})

![Switching Waveforms](image)

$I_d (100\%) = 56$ A
$Q_{rr} (100\%) = 8,22$ µC
$t_{Q_{rr}} = 1,00$ µs

Figure 10 Neutral point IGBT
Turn-on Switching Waveforms & definition of $t_{E_{rec}}$
($t_{E_{rec}}$ = integrating time for E_{rec})

![Switching Waveforms](image)

$P_{rec} (100\%) = 19,56$ kW
$E_{rec} (100\%) = 2,42$ mJ
$t_{E_{rec}} = 1,00$ µs

Measurement circuits

Figure 11
BOOST stage switching measurement circuit

![Diagram](image)
Switching Definitions Half Bridge IGBT

General conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_J</td>
<td>125 °C</td>
</tr>
<tr>
<td>R_{gon}</td>
<td>4 Ω</td>
</tr>
<tr>
<td>R_{goff}</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

Figure 1

Turn-off Switching Waveforms & definition of t_{doff}, t_{Eoff}

(t_{Eoff} = integrating time for E_{off})

- $V_{GEO}(0\%) = -15$ V
- $V_{GEC}(100\%) = 15$ V
- $V_{CE}(100\%) = 700$ V
- $I_C(100\%) = 56$ A
- $t_{doff} = 0.23$ µs
- $t_{Eoff} = 0.60$ µs

Figure 2

Turn-on Switching Waveforms & definition of t_{don}, t_{Eon}

(t_{Eon} = integrating time for E_{on})

- $V_{GEO}(0\%) = -15$ V
- $V_{GEC}(100\%) = 15$ V
- $V_{CE}(100\%) = 700$ V
- $I_C(100\%) = 56$ A
- $t_{don} = 0.08$ µs
- $t_{Eon} = 0.21$ µs

Figure 3

Turn-off Switching Waveforms & definition of t_f

- $V_{CE}(100\%) = 700$ V
- $I_C(100\%) = 56$ A
- $t_f = 0.07$ µs

Figure 4

Turn-on Switching Waveforms & definition of t_r

- $V_{CE}(100\%) = 700$ V
- $I_C(100\%) = 56$ A
- $t_r = 0.02$ µs
Switching Definitions Half Bridge IGBT

Figure 5: Turn-off Switching Waveforms & definition of t_{Eoff}

- P_{off} (100%) = 39.44 kW
- E_{off} (100%) = 2.24 mJ
- t_{Eoff} = 0.60 µs

Figure 6: Turn-on Switching Waveforms & definition of t_{Eon}

- P_{on} (100%) = 39.44 kW
- E_{on} (100%) = 0.96 mJ
- t_{Eon} = 0.21 µs

Figure 7: Gate voltage vs Gate charge (measured)

- $V_{\text{GE off}}$ = -15 V
- $V_{\text{GE on}}$ = 15 V
- V_{C} (100%) = 700 V
- I_{C} (100%) = 56 A
- Q_{g} = 596.49 nC

Figure 8: Turn-off Switching Waveforms & definition of t_{rr}

- V_{d} (100%) = 700 V
- I_{d} (100%) = 56 A
- I_{RRM} (100%) = -83 A
- t_{rr} = 0.07 µs
Switching Definitions Half Bridge IGBT

Figure 9
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t_{Qrr}
($t_{Qrr} = \text{integrating time for } Q_{rr}$)

Figure 10
Half Bridge IGBT
Turn-on Switching Waveforms & definition of $t_{E_{rec}}$
($t_{E_{rec}} = \text{integrating time for } E_{rec}$)

$I_d (100\%) = 56 \text{ A}$
$Q_{rr} (100\%) = 2,74 \mu \text{C}$
$t_{Qrr} = 0,16 \mu \text{s}$

$P_{\text{rec}} (100\%) = 39,44 \text{ kW}$
$E_{\text{rec}} (100\%) = 0,53 \text{ mJ}$
$t_{E_{rec}} = 0,16 \mu \text{s}$

Measurement circuits

Figure 11
BUCK stage switching measurement circuit
Ordering Code & Marking

<table>
<thead>
<tr>
<th>Version</th>
<th>Ordering Code</th>
<th>in DataMatrix as</th>
<th>in packaging barcode as</th>
</tr>
</thead>
<tbody>
<tr>
<td>without thermal paste 12mm housing</td>
<td>10-FZ12NMA080SH01-M260F</td>
<td>M260F</td>
<td>M260F</td>
</tr>
<tr>
<td>without thermal paste 12mm housing</td>
<td>10-PZ12NMA080SH01-M260FY</td>
<td>M260FY</td>
<td>M260FY</td>
</tr>
</tbody>
</table>

Outline

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>106</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>108</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>111</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>71</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>126</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>126</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>126</td>
</tr>
<tr>
<td>15</td>
<td>19,2</td>
<td>126</td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>226</td>
</tr>
<tr>
<td>17</td>
<td>30,8</td>
<td>226</td>
</tr>
<tr>
<td>18</td>
<td>33,6</td>
<td>226</td>
</tr>
<tr>
<td>19</td>
<td>33,6</td>
<td>14,8</td>
</tr>
<tr>
<td>20</td>
<td>33,6</td>
<td>14,2</td>
</tr>
</tbody>
</table>

Pinout

- **+DC**: 15,16
- **GND**: 05, 14
- **-DC**: 03,04
- **Line**: 08, 09, 10, 11
- **G1**: 17
- **S1**: 18
- **G2**: 02
- **S2**: 01
- **NTC1**: 19
- **NTC2**: 20

copyright Vincotech
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use.

LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.